News

Banking Industry

Thoughts on the Impact of Machine Learning

Farhad Khakzad

Some Thoughts on the Impact of Machine Learning on the Banking Industry – Beyond Myths

In 1890, a company was founded in the USA that eventually developed into a leading brand. 80 years after its inception, the company had a market share of approximately 90% in its core field of business: film and photography. The company’s name is Kodak. Kodak was known for its top performance and the forward-looking view of its engineers. These engineers invented the digital camera in 1975. In spite of its long and successful company history, Kodak went bankrupt in 2012. The opportunities provided by the company’s breakthrough technology and its engineering prowess may not have been fully leveraged by the management. Kodak may provide a useful lesson and an incentive for leaders to manage and leverage disruptive technologies.

From today’s view, we believe that machine learning and deep learning are such disruptive technologies that should be leveraged. Advanced computing methods have become more and more popular alongside advances in the emergence of big data. In the finance and banking sector, increasing demand for more efficient approaches has been seen especially in the field of machine learning. The field was originally devoted to developing algorithms in artificial intelligence. In response to its significant advances, however, machine learning and its subfield of deep learning have emerged as breakthroughs with vast applications in a wide array of fields.

In our paper, we discuss the existing definitions as well as our thoughts on some of the applications of machine learning and deep learning. We will provide an insight into the significance of artificial intelligence in the banking industry, in particular and its response to big data market forces, with a focus on German Banks. To illustrate the breadth of the field’s significance, we will also address the automotive industry in Germany and its connection to machine learning technologies. To deepen our understanding of the subject, we will explain the mathematical background behind deep learning and its intersection with artificial neural networks. We will provide a brief look into the subject of Blockchain and its relevance to artificial intelligence. A second part of this paper will analyze the practical implications (use cases) of the technologies and their expected developments in the short and long term.

Download

[ Source of images: Adobe Stock ]


Themenverwandte Artikel

Kausalzusammenhänge mit AI erkennen: Chancen und Risiken künstlicher Intelligenz News

Chancen und Risiken künstlicher Intelligenz

Kausalzusammenhänge mit AI erkennen

Redaktion RiskNET

Artificial Intelligence (AI) erobert die Welt: Über 1,2 Milliarden Ergebnisse liefert Google zu den Suchbegriffen "Künstliche Intelligenz",…

Staatsverschuldung: Das "R – G"-Theorem in der Finanzpolitik Comment

Staatsverschuldung

Das "R – G"-Theorem in der Finanzpolitik

Martin W. Hüfner, Chief Economist, Assenagon Asset Management S.A.

Vor gut einem halben Jahr hielt der französische Ökonom Olivier Blanchard eine Rede, die für erhebliche Aufregung sorgte. Auf der renommierten…

Sicheres Autonomes Fahren: Studie zu Methoden im Risikomanagement Study

Studie zu Methoden im Risikomanagement

Sicheres Autonomes Fahren

Irina Heckmeier

Selbstfahrende Autos, die Personen von A nach B bringen, Roboter, die Pakete ausliefern oder Wassergleiter, die Unterwasserleitungen nach Lecks…

Nur noch vier Länder A1: Wenig grün, viel rot auf der Risikoweltkarte News

Nur noch vier Länder A1

Wenig grün, viel rot auf der Risikoweltkarte

Redaktion RiskNET

Norwegen, die Niederlande, die Schweiz und Luxemburg. Das sind die vier verbliebenen Länder in der Kategorie A1 beim internationalen Kreditversicherer…

Zahlreiche Risiken überschatten Wachstumsausblick News

Szenarioanalyse

Zahlreiche Risiken überschatten Wachstumsausblick

Redaktion RiskNET

Die EU-Kommission hat ihre Wachstumsprognosen für die größten Länder der Eurozone für dieses und das nächste Jahr weitgehend bestätigt, sieht den…