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Extreme Value Theory in Actuarial Consulting:

Windstorm Losses in Central Europe

Dietmar Pfeifer, University of Hamburg and
AON Re Jauch & H�ubener, Hamburg

Abstract. Scienti�c consulting especially in reinsurance brokerage has become of

growing importance in the recent years, not only in competition with attempts to

transfer insurance risk to the capital markets via catastrophe options and other

derivative instruments. This study shows that and how extreme value theory can be

fruitfully applied to classical and modern problems in reinsurance. As an example,

central European windstorm losses which exhibit both temporal as well as spatial

aspects are analyzed using some tools of Xtremes.

1. Introduction

A classical �eld of reinsurance is certainly in the domain of all kind of natural catas-

trophes like wind and hailstorms, ooding, earthquakes etc. Since the damages

occurring here usually are rather costly it is necessary to �nd good mathematical

models which describe the underlying random mechanisms in an appropriate way.

One must either calculate a classical PML (Probable Maximum Loss, usually a

high quantile of the loss distribution) or perform simulation studies for estimating

the performance of typical reinsurance tools such as XL (eXcess{of{Loss) or SL

(Stop{Loss) contracts with and without reinstatements, or combinations thereof.

See also Chapter 11 in this book for further aspects.

Nice discussions on the use of mathematical methods in the (re)insurance

industry, especially extreme value theory, can also be found, e.g., in Embrechts et

al. (1997), Hipp (1999) or Woo (1999). Such methods are also useful companions

of physical investigations and simulations based on meteorological approaches as

pursued by Applied Insurance Research, for example (see Clark (1997)). Indeed,

actuarial consulting experience has shown that many of the results of \merely"

statistical analyses of catastrophic risks coincide quite well with the sophisticated

�ndings and forecasts of such physical models.
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In this study we want to demonstrate the practical applicability of extreme

value statistics by analyzing a data set which in its original form has been used

for actuarial consulting of a larger group of clients. In order to preserve the neces-

sary discretion the data (stored in aon-re.dat) have been pre{processed, e.g. some

economically reasonable detrending was performed, and the original currency was

converted to U.S. $.

The data set comprises adjusted claims from windstorm losses in central

Europe during the years 1980 to 1997, in three geographically adjacent zones in

the direction from west to east. Since in Europe the wind direction is typically

like this, the data exhibit a strong spatial dependence structure (see Fig. 1 below)

while the temporal dependence over the years is negligible. Both univariate as well

as multivariate tools from Xtremes will be applied to this data set in the sequel.
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Fig. 1. Time series of wind-

storm losses (1000 U.S. $);

zones 1 (solid), zone 2 (dot-

ted) and zone 3 (dashed).

2. Univariate Data Analysis

In a �rst step the three zones were each analyzed separately. Due to the comparably

small number of 18 observations per zone it was desirable to include all available

data in the model �tting procedure. Although it is in general diÆcult to �nd a

class of distributions which provides a good �t over the whole range of observations

(see Beirlant et al. (1996) for a discussion of this point) it seems that the class of

Fr�echet distributions is often appropriate in modelling windstorm losses (see, e.g.,

Pfeifer (1997) or Rootz�en and Tajvidi (1997)).

The following ML estimates for the parameters � (shape) and � (scale) were

found for the three zones (cf. Table 1).

zone 1 zone 2 zone 3

�̂ 1.35418 1.32626 1.27924

�̂ 1553.05 1791.01 506.45

Table 1. Univariate parame-

ter estimates for the Fr�echet

class.
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The estimates for the shape parameter � indicate heavy upper tails of the

windstorm losses.

The following illustrations show the corresponding Q{Q plots for the three

zones and the empirical vs. the parametric quantile function of zones 1 and 3 (the

zone 2 was omitted from the graph for the sake of a better visibility).

1 2 3 4 5 6 7 8 9

5000

10000

0.2 0.4 0.6 0.8 1

5000

10000

Fig. 2. (left.) Q{Q plots for windstorm losses: zone 1 (solid), zone 2 (dotted), zone 3

(dashed). (right.) Parametric quantile functions: zone 1 (solid), zone 3 (dashed); pertain-

ing empirical quantile functions (dotted).

It is remarkable that in particular in the lower and central part of the distri-

butions the �t is quite satisfactory.

This can also be seen from the following illustrations. In Fig. 3 (left) we

compare the parametric density of windstorm losses from zone 1 with a kernel

density estimate (uniform kernel, global bandwidth b = 1470, local bandwidth

= 760 at minimum data point x1:18 = 669). On the left{hand side one �nds the

corresponding illustrations for zone 3 (uniform kernel, global bandwidth b = 550,

local bandwidth = 107 at minimum data point x1:18 = 146).
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Fig. 3. Estimated parametric density vs. kernel density estimate, zone 1 (left) and zone

3 (right).
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On the basis of the parameter estimates �̂ and �̂, PML estimates for a return

period of T years can be represented as

PML(T ) = �̂ (� ln (1� 1=T ))
�1=�̂

� �̂T
1=�̂

for large values of T , the approximation being quite good for T � 20 already as it

is shown in the subsequent Table 2.

Table 2. Tabulated PMLs for di�erent return periods

zone 1 zone 2 zone 3

T PML(T ) approx. PML(T ) approx. PML(T ) approx.

20 13923 14188 16815 17142 5162 5267

50 27705 27912 33948 34207 10696 10780

100 46396 46568 57471 57689 18461 18533

200 77551 77694 97107 97291 31800 31862

500 152732 152845 193996 194142 65165 65216

1000 254910 255004 327291 327414 112075 112118

The maximum observed losses in zones 1 to 3 within 18 years were 13496,

17430 and 6749 resp., all occurring in the same year 1990 (cf. Fig. 1). This is in

coincidence with the 20 year PMLs shown above. It is also remarkable that the

estimates for the shape parameter � are all around the value of 1.3 which shows a

great constancy of the \dangerousness" of the loss distribution even over a larger

geographical region. On the other hand, an investigation using the pot approach

does not provide useful information about � due to the small number of data.

Of course, results as above must be considered with great care, especially if

PML estimates for a large return period are to be considered and the data basis is

small. They should always be accompanied by further statistical investigations, not

only on the basis of extreme value theory. It must however be kept in mind, that

in reinsurance practice, return periods between 200 and 500 years are a common

basis for XL and SL{contracts nowadays. We refer to the corresponding discussion

in Hipp (1999) and Berz (1999).

3. Multivariate Analysis

Due to the geographical dependencies of windstorm losses the present data set

is a good candidate for a multivariate extreme value analysis, in particular w.r.t.

the Marshall{Olkin, Gumbel{McFadden und H�usler{Reiss models. In this section,

we shall concentrate on these aspects in detail, using zones 1 and 2 only for the

graphical analysis. Other comparisons can easily be performed in a similar manner.

The illustration in Fig. 4 shows a superposition of a scatterplot of the data,

and contourplots of a kernel density and a bivariate extreme value density. The

kernel density is based on bandwidths 2100 and 1900 and a direction ' = 1:1 which
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corresponds to the observed direction of the data (obtained with the Visualize

menu for multivariate data sets in Xtremes). The estimated extreme value density

will be explained below.
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Fig. 4. Scatterplot of zone 2 plot-

ted against zone 1 superposed with

the contour plots of a bivariate ker-

nel density (dotted) and a bivariate

extreme value density (solid).

The contour plot of the kernel density represents the data in a reasonable

manner with the exception of the isolated data point (representing the losses in

the year 1990) in the north{east corner of the graph. One may argue that especially

larger losses are highly dependent. This is mainly due to the fact that severe storms

in central Europe usually a�ect several states simultaneously (such as in 1990 with

storms Daria and Vivien, see Berz (1999)).

The following Table 3 contains the estimated dependence parameters for the

models mentioned above (see also Chapter 9 in this book), obtained with the

Estimate menu for the MAX{domain in Xtremes. The univariate margins are the

Fr�echet distributions pertaining to the estimated parameters in Table 1. In all

three models, the estimated parameters reveal the strong dependence of loss data

between adjacent geographical zones, as expected.

The parametric contourplot in Fig. 4 belongs to the estimated Gumbel{

McFadden density with dependence parameter � = 1:903.

Table 3. Matrices of estimated dependence parameters �.

Marshall{Olkin model Gumbel{McFadden model H�usler{Reiss model

zone 1 zone 2

zone 2 0.585

zone 3 0.578 0.427

zone 1 zone 2

zone 2 1.858

zone 3 1.517 1.782

zone 1 zone 2

zone 2 1.903

zone 3 2.856 1.462
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4. Conclusion

Extreme value theory repeatedly turns out to be one of the most powerful and

meanwhile widely accepted statistical tools in the (re)insurance industry, at least

w.r.t. univariate statistics. However, also multivariate statistical procedures will

gain more importance in the near future, e.g. in connection with ratings of insur-

ance bonds or hedging strategies in the framework of the so{called alternative risk

transfer (see Hipp (1999)). For this purpose, suitable copula models for insurance

losses and risks play an important role. Regrettably, it is still an open question

how such models can eÆciently be identi�ed, in particular when the data sets are

small (see also Dall'Aglio et al. (1991) for a careful discussion of this topic).
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