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Summary

We consider a problem of real-world risk-return analysis of credit

portfolios in a multi-objective function setting with respect to ad-

ditional constraints. For the approximation of a set of feasible,

risk-return-efficient portfolio structures in this setting we discuss

a flexible approach that incorporates multi-objective evolutionary

and local search methods as well as specific features of the Cre-

ditRisk+ model. We apply the hybrid approach to a sample loan

portfolio to illustrate its working principle.

Introduction

The intensive development of quantitative portfolio credit risk

models like CreditRisk+ and the increasing trade in financial ins-

truments for transferring credit risk like credit default swaps, col-

lateralized loan obligations etc. are major reasons for a growing

importance of credit portfolio risk-return analysis and optimiza-

tion. Beyond that, there will possibly be more demand for credit

portfolio optimization, as soon the supervisory capital require-

ments for banks will be changed due to proposals of the Basel

Committee, e.g. by setting new capital weights on some credit risk

exposure types and providing supervisory capital relief for risk mi-

tigation (cf. e.g. Basel Committee for Banking Supervision [1]). 

In the following sections, we will focus on the approximation of

risk-return efficient sets1 for credit portfolios with respect to cons-

traints, e.g. imposed by changes of supervisory capital regulations

or internal reallocation of risk capital. This kind of portfolio ma-

nagement is of great importance, especially for, but not limited to,

many German and European banks, since the typical largest ex-

posures to credit risk for small and medium-size universal banks

are loans given to companies or private households not having di-

rect access to the capital market. Such exposures are well-suited

for risk measurement within the CreditRisk+ model framework.

In contrast to the methods for the computation of the efficient

frontier for a given set of alternative stock market investments ba-

sed on the portfolio’s variance and related measures, usually a

non-linear, non-convex downside risk measure like the Credit-Va-

lue-at-Risk is preferred for portfolio credit risk-return analysis,

therefore requiring a different method of computation. Moreover,

e.g. Lehrbass [6] has pointed out that this computational problem

often cannot be modelled using real-valued variables, since typi-

cally neither the decision alternatives allow an arbitrary amount

of each credit risk exposure to be traded nor is it possible to ob-

tain a short position providing a hedge for each arbitrarily chosen

exposure from a given portfolio. In addition to that, e.g. the capi-

tal requirements for credit risk exposures imposed by the banking

supervision authorities are an important constraint to be consi-

dered in the computation of efficient credit portfolio structures. 

For our considerations, the concept of Pareto-optimality is essen-

tial, i.e. efficient structures are Pareto-optimal concerning the two

distinct (and usually contrary) objective functions specifying the

aggregated risk and the aggregated return of each potential credit

portfolio structure for a given set of alternatives. Therefore, we are

interested in multiple, feasible non-dominated solutions to a con-

strained portfolio credit risk-return optimization problem that are

comparable to the efficient frontier in stock portfolio investment

analysis. However, in our case we deal with a discrete search spa-

ce having many local optima and particularly using multiple tar-

get functions not required to be linear, quadratic or convex. In this

context, a feasible non-dominated solution is a portfolio structu-

re that does not violate the constraints, and for which we cannot

find any other feasible solution being better in all two target

function values. 

The remainder of this chapter is organized as follows: In the first

section, we specify our portfolio credit risk optimization problem.

Afterwards, we compare this problem to a related problem consi-

dered by Lehrbass [6]. Then we give an overview of our hybrid evo-

lutionary algorithm framework for the portfolio credit risk opti-

mization problem. The next section shows how the CreditRisk+

model is integrated into our framework. In a sample application

we illustrate the working principle of the hybrid algorithm. 

1. Notation and Problem Definition

In this section, we will present the basic terminology of the cons-

trained discrete credit portfolio risk-return analysis problem to be

solved. 

Definition 1. Given is a credit portfolio containing K > 1 obligors. Each
investment alternative (obligor) A ∈ {1, ... , K} incorporates the risk
of default and is characterized by the following data which is conside-
red to be constant within the time period [0,t1] where t1 is the chosen
risk horizon (usually t1 = 1 in practical applications): 

• net exposure vA v 0 (loss in monetary units if obligor A defaults)

• expected default probability pA v 0

• standard deviation of default probability2 σA v 0
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• sector weights wAk, k ∈ {0, ... , N} v 0

• expected rate of return ηA in relation to vA

(net of cost, particularly after cost of funding but before credit risk)

• supervisory capital requirement percentage cA v 0 in relation to vA.

The above variables are mainly the basic inputs for the Credit-

Risk+ model as described in Chapter 2. Moreover, the expected re-

turn and the capital requirement for each obligor have been ad-

ded. Both are expressed in relation to vA, which usually requires

a simple rescaling step of real-world parameters like supervisory

capital weights based on gross exposure but this avoids unneces-

sary additional variables in our problem specification. In the fol-

lowing text, we will abbreviate the respective set of scalar variables

vA, pA, σA, ηA, cA of all obligors by vectors v : = (v1, ... ,vK)T and

analogously η, p, σ and c. The sector weights are abbreviated by a

matrix w : = (wAk)A ∈ {1, ... , K},k ∈ {0, ... , N} .

We assume that the investor has to decide about holding a subset

of the obligors in her portfolio, consider e.g. a bank that wants to

optimize its loan portfolio containing K different obligors. We fix

the following notations according to the assumptions that a su-

pervisory capital budget for the investments is fixed and given by

the bank’s maximum supervisory capital. 

• A supervisory capital budget of the investor is given by B > 0 .

• A portfolio structure is given by a vector 

x = (x1, x2, ... , xK)T, xA ∈ {0, νA} .

Since every xA can only take the values 0 or νA, the investor has

to decide whether to hold the whole net exposure νA in her port-

folio. In many real-world portfolio optimization problems the de-

cision is e.g. either keeping the obligor A in the credit portfolio or

selling the entire net exposure of obligor A to a risk buyer. Or,

alternatively stated, whether adding a new exposure to the credit

portfolio. This is particularly true for formerly non-traded instru-

ments like corporate loans in a bank’s credit portfolio. Even if the-

re are more than two decision alternatives for each potential in-

vestment in obligor A, the decision variables will often consist of

a finite, discrete number of choices. 

Facing these decision alternatives, an investor has to consider two

conflicting objective functions: the aggregated return and the ag-

gregated risk from her portfolio. Usually, there is a tradeoff bet-

ween both objectives, since any rational investor will ask for a pre-

mium (additional return) to take risk. 

Definition 2. The aggregated expected return from a portfolio struc-
ture x is calculated by 

ret (x, p, η) := Σ ηAxA - Σ pAxA = Σ (ηA - pA)xA .
A                   A                   A

This is a common net risk-adjusted return calculation since the

aggregated expected losses are subtracted from the portfolio’s ag-

gregated expected net return before cost of credit risk. 

Definition 3. The aggregated downside risk from the portfolio struc-
ture x for the investor is calculated by 

risk (x, p, σ, ω) := ULε (x, p, σ, ω) 

where ULε (x, p, σ, ω) denotes the resulting Credit-Value-at-Risk to
the chosen confidence level ε for the given portfolio structure represen-
ted by the vector x. 

The above choice of the risk measure is a common choice for mea-

suring credit risk or economic capital in banks, cf. the remarks by

Gundlach in Chapter 2. For our considerations in this section, we

do not need to choose the calculation procedure for the cumula-

tive distribution function of aggregated losses or the approxima-

tion procedure for the risk measure. A summary of Panjer’s re-

cursion algorithm can be found in the appendix to Chapter 2 and

more recent approaches are discussed in Part II of this volume. 

Definition 4. The required supervisory capital of a given portfolio
structure x is 

cap(x, c) := Σ xA cA
A

Definition 5. A portfolio structure x is feasible if and only if 

cap(x, c) u B.

The following definition is essential for the concept of Pareto-

optimality. 

Definition 6. Given two distinct feasible portfolio structures x and y,
x dominates y if and only if one of the following cases is true:

ret(x, p, η) > ret(y, p, η) ^ risk(x, p, σ, ω) u risk(y, p, σ, ω)

ret(x, p, η) v ret(y, p, η) ^ risk(x, p, σ, ω) < risk(y, p, σ, ω)

If x dominates y, we will denote this relationship by x >dy . 

This means that a feasible portfolio structure x is better than a fea-

sible portfolio structure y if and only if x is better in at least one

of the two criteria and not worse than y in the other criterion. It is

obvious that a rational investor will prefer x over y if x > dy.  

Definition 7. Let the set S of all possible portfolio structures for the spe-
cified data from Definition 1 and the subset S’ S of all feasible 
structures in S be given. A solution x ∈ S’ is a feasible Pareto-optimal
portfolio structure if and only if it satisfies the following condition: 

∀y ∈ S’ : ¬ (y > d x ).

⊇
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To choose between the best combinations of obligors using her

preferences or utility function, a rational investor is interested in

finding the set of feasible Pareto-optimal portfolio structures that

has maximum cardinality. This set is comparable to the efficient

frontier of Markowitz [7], but in a constrained, discrete decision

space. 

Problem 1. The problem of finding the set of feasible Pareto-opti-

mal portfolio structures having maximum cardinality for the set

of investment alternatives S can be formulated as: calculate the set

PE* := {x ∈ S’ : ∀y ∈ S’ : ¬ (y > d x)}.

Problem 1 is a computationally hard problem in the sense of NP-

hardness – see Seese and Schlottmann [12] for a formal analysis

of such and further portfolio credit risk problems.3 This means

that unless the computational complexity classes P and NP satis-

fy the condition P = NP, which is still an open problem besides

many attempts to prove this relationship, there is no determinis-

tic algorithm that calculates PE* within polynomial computing

time (measured by the number of the obligors K). For practical

implementations, these results on computational complexity im-

ply that the constrained search space for feasible risk-return effi-

cient portfolio structures grows exponentially with the numbers

of obligors, i.e. the number of potential solutions is 2K. Given 

limited computational resources (e.g. a fixed number of executa-

ble operations per second) and a bounded runtime, Problem 1

cannot be solved exactly by simple enumeration of all possible so-

lutions even when dealing with rather small problem dimensions. 

2. The Approach by Lehrbass using Real-Valued 
Decision Variables

In his article on constrained credit portfolio risk-return optimi-

zation, Lehrbass [6] maximized a single target function using real-

valued variables, i.e. he considered a relaxation of our Problem 1

in a single objective function setting. Using our notation, the fol-

lowing optimization problem is an example for a two-obligor pro-

blem discussed by Lehrbass: 

Problem 2. Given is an arbitrary, but fixed bound B > 0 (capital

budget) and an arbitrary, fixed bound V > 0 on the downside risk

(in [6] : risk-adjusted capital), solve the following optimization

problem: 

max {ηA1 xA1 + ηA2 xA2}, (1)
xA1,xA2

cA1 xA1 + cA2 xA2 u B, (2)

risk(x, p, σ, w) u V, (3)

xA1 u vA1, xA2 u vA2, (4)

xA1, xA2 ∈ RR0
+. (5)

Note that in contrast to the formulation in [6] the above problem

has upper bounds on the decision variables to keep consistence

with the decision alternatives considered so far, but this does not

change the main idea. In his study, Lehrbass applied standard me-

thods for solving convex optimization problems to Problem 2, see

[6] for more details. 

Assuming that there is a solution satisfying (2), (3), (4) and (5),

one obtains a single optimal solution x*A1, x*A2 by solving an in-

stance of Problem 2 once for the given parameters. This optimal

solution has the maximum return for the given upper bound V
on the risk and for the given upper bound B on the required capital.

By solving Problem 2 several times using different upper bounds

V in the risk constraint (3) one obtains a set of Pareto-optimal so-

lutions that represent the tradeoff between portfolio risk and re-

turn. Since Problem 2 has real-valued decision variables, there are

usually infinitely many solutions, hence this set of Pareto-optimal

solutions is an approximation for the tradeoff between portfolio

risk and return. 

In contrast to the above formulation of Problem 2, when retur-

ning to our Problem 1 we have to deal with a discrete optimizati-

on problem consisting of a fixed number of distinct choices. This

is due to real-world restrictions like integral constraints and mar-

ket frictions, e.g. transaction cost or round lots. Moreover, portfo-

lio optimization problems based on downside risk measures

incorporate non-linear objective functions. If the Credit-Value-at-

Risk is used in the risk objective function as in Problem 1, this ob-

jective function becomes even non-convex.4 Thus, the necessary

conditions for the application of standard algorithms for convex

optimization problems are not satisfied for Problem 1. Therefore,

we apply an algorithm to this problem that searches for discrete

solutions and does not assume linearity or convexity of the 

objective functions or constraints. 

3. A Multi-Objective Evolutionary Approach 
Combined with Local Search

3.1. Description of the algorithmic framework

Since the first reported implementation and test of a multi-

objective evolutionary approach, the vector-evaluated genetic 

algorithm (VEGA) by Schaffer [9] in 1984, this special branch of 

evolutionary computation has attracted many researchers dealing

with non-linear and non-convex multi-objective optimization pro-

blems. After the introduction of VEGA, many different evolutio-

nary algorithms (EAs) have been proposed for multi-objective op-

timization problems, see e.g. Deb [3] for an overview and a de-

tailed introduction. 

In general, a multi-objective evolutionary algorithm (MOEA) is a

randomized heuristic search algorithm reflecting the Darwinian

‘survival of the fittest’ principle that can be observed in many na-

tural evolution processes, cf. e.g. Holland [5]. At each discrete time
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step t, a MOEA works on a set of solutions P(t) called population

or generation. A single solution x ∈ P(t) is an individual. To 

apply a MOEA to a certain problem the decision variables have to

be transformed into genes, i.e. the representation of possible so-

lutions by contents of the decision variables has to be transformed

into a string of characters from an alphabet Σ. The original re-

presentation of a solution is called phenotype, the genetic coun-

terpart is called genotype. For our portfolio credit risk optimiza-

tion problem (Problem 1), we assume that the decision variables

xA will be arranged in a vector to obtain gene strings representing

potential solutions. The resulting genotypes consist of real-

valued genes that are connected to strings and take either value 0
or νA depending on the absence or presence of obligor A in the

current solution. So we obtain strings of length K that represent

some of the 2K combinations of possible (but neither necessarily

feasible nor necessarily optimal) portfolio structures. Examples

showing such gene strings are given later in Figure 1 and Figure 2.

The following hybrid multi-objective evolutionary algorithm

(HMOEA) combining MOEA concepts and local search methods

computes an approximation of PE* mainly by modifying indivi-

duals using so-called variation operators, which change the con-

tents of genes, by evaluating individuals based on the given ob-

jective functions and the constraints, and by preferring indivi-

duals that have a better evaluation than other individuals in P(t).

More details on these subjects and the other elements of the

HMOEA are given below. 

Algorithm 1. HMOEA basic algorithm scheme

1: t :=0
2: General initial population P(t) 
3: Initialize elite population Q(t) := o
4: Evalutate P(t)
5: Repeat

6: Select individuals from P(t)    
7: Recombine selected individuals 

(variation operator 1)
8: Mutate recombined individuals

(variation operator 2)
9: Apply local search to mutate individuals

(variation operator 3)
10: Create offspring population P’(t)
11: Evaluate joint population J(t) : = P(t) ∪ P’(t)
12: Update elite population Q(t) from J(t)
13: Generate P(t+1) from J(t)
14: t := t + 1
15: Until Q(t) = Q(max {0, t - tdiff}) v t > tmax

16: Output: Q(t) 

At the start of the algorithm, the initial population P(0) will be ge-

nerated by random initialization of every individual to obtain a 

diverse population in the search space of potential solutions. 

We use an elite population Q(t) in our algorithm that keeps the

best feasible solutions found so far at each time step t. Rudolph

& Agapie [8] have shown under weak conditions that in a MOEA

having such an elite population, the members of Q(t) converge to

elements of PE* with probability 1 for t –> ∞ which is a desirable

convergence property. Furthermore, the algorithm can be termi-

nated at any time by the user without losing the best feasible so-

lutions found so far. This is particularly important for real-world

applications. At the start of the algorithm, Q(t) is empty. When

the algorithm terminates, Q(t) contains the approximation for

PE*. 

The evaluation of P(t) in line 4 and J(t) in line 11 is based on the

non-domination concept proposed by Goldberg [4] and explicitly

formulated for constrained problems, e.g. in Deb [3, p. 288]. In

our context, it leads to the following type of domination check,

which extends Definition 6. 

Definition 8. Given two distinct portfolio structures x and y, x  con-
straint-dominates y if and only if one of the following cases is true: 

cap(x, c) u B ^ cap(y, c) u B ^
ret(x, p, η) > ret(y, p η)  ^ risk(x, p, σ, w) u risk(y, p, σ, w)        (6)

cap(x, c) u B ^ cap(y, c) u B ^
ret(x, p, η) v ret(y, p, η) ^ risk(x, p, σ w) < risk(y, p, σ w)           (7)

cap(x, c) u B ^ cap(y, c) > B            (8)

cap(x, c) > B ^ cap(y, c) > B ^ cap(x, c) < cap(y, c)                     (9)

If x constraint-dominates y, we will denote this relationship by 
x > cdY. 

The first two cases in Definition 8 refer to the cases from Defini-

tion 6 where only feasible solutions were considered. Case (8) ex-

presses a preference for feasible over infeasible solutions and case

(9) prefers the solution that has lower constraint violation. 

The non-dominated sorting procedure in our HMOEA uses the

dominance criterion from Definition 8 to classify the solutions in

a given population, e.g. P(t), into different levels of constraint-do-

mination. The best solutions, which are not constraint-domina-

ted by any other solution in the population, obtain domination le-

vel 0 (best rank). After that, only the remaining solutions are che-

cked for constraint-domination, and the non-constraint-domina-

ted solutions among these obtain domination level 1 (second best

rank). This process is repeated until each solution has obtained

an associated domination level. 

In line 6 of Algorithm 1, the selection operation is performed

using a binary tournament based on the domination level. Two

individuals x and y are randomly drawn from the current popu-

lation P(t), using uniform probability of psel :=          for each indi-

vidual. The domination levels of these individuals are compared,

which implicitly yields a comparison between the individuals’

dominance relation according to Definition 8. If, without loss of

generality, x > cdy then x wins the tournament and is considered

1

IP(t)I
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for reproduction. If they cannot be compared using the constraint-

domination criterion (i.e. they have the same domination level)

the winning individual is finally determined using a draw from a

uniform distribution over both possibilities. 

The first variation operator is the standard one-point crossover for

discrete decision variables, i.e. the gene strings of two selected in-

dividuals are cut at a randomly chosen position and the resulting

tail parts are exchanged with each other to produce two new off-

spring. This operation is performed with crossover probability

pcross on individuals selected for reproduction. The main goal of

this variation operator is to move the population through the spa-

ce of possible solutions. In the example displayed in Figure 1, two

individuals are shown on the left, each representing a possible

portfolio structure for the given investment alternatives. Each in-

dividual has five genes, which code the decision variables. The

randomly chosen cut position is between the second and the third

gene, such that the contents of the third, fourth and fifth gene are

exchanged between the two individuals to obtain two offspring.

In analogy to natural mutation, the second variation operator

changes the genes of the obtained offspring individuals random-

ly with probability pmut (mutation rate) per gene to allow the in-

vention of new, previously undiscovered solutions in the popula-

tion. Its second task is the prevention of the HMOEA stalling in

local optima as there is always a positive probability leaving a 

local optimum if the mutation rate is greater than zero. Figure 2

gives an example for this variation operator where the fifth gene

of the offspring individual 1’ from Figure 1 is mutated. 

Our third variation operator in line 9 of Algorithm 1 represents a

problem-specific local search procedure that is applied with pro-

bability plocal to each selected solution x after crossover and mu-

tation. This local search procedure can exploit the structure of a

given solution x to perform an additional local optimization of x
towards elements of PE*, e.g. by using an algorithm that changes

x according to local information about our objective functions in

the region around x. We consider this to be a significant impro-

vement compared with a standard, non-hybrid MOEA, since the

randomized search process of the MOEA can be guided a bit more

towards the elements of PE* and therefore, such a local search

operator can improve the convergence speed of the overall algo-

rithm towards the desired solutions. This is particularly impor-

tant for real-world applications, where speed matters when large

portfolios are to be considered. In addition to these arguments,

portfolio credit risk models like CreditRisk+ provide additional 

local structure information for a current solution x beyond the ob-

jective function values that can be exploited very efficiently from

a computational complexity’s perspective. This is described in

more detail in the next subsection below. 

By applying the variation operators to the selected individuals we

obtain an offspring population P’(t). The members of the joint

population J(t) containing all parent solutions from P(t) and all

offspring solutions from P’(t) are evaluated using the non-domi-

nated sorting procedure described above. After that, the elite po-

pulation Q(t) is updated by comparing the best feasible solutions

in J(t) (i.e. having domination level 0) to the solutions in Q(t): if

a solution x ∈ J(t) constraint-dominates a solution y ∈ Q(t), the

solution y is removed from Q(t). Furthermore, if x ∈ J(t) is not

constraint-dominated by any solution from Q(t), x is added to

Q(t). After this update procedure, Q(t) contains the best feasible

solutions found so far. 

Before finishing the population step t and setting  t –> t + 1 the

members of the new parent population P(t + 1) have to be selected

from J(t), since ⏐J(t)⏐ > ⏐P(T+1)⏐ by definition of J(t) := P(t) ∪
P’(t). Since elitist EAs, which preserve the best solutions from

Figure 1: One-point crossover variation operator

50.5 0 19.1 60.4 40.1

50.5 34.7 19.1 0 40.1 50.5 34.7 19.1 60.4 40.1

50.5 0 19.1 0 40.1

random cut point random cut point

before crossover after crossover

individual 1

individual 2

individual 1°

individual 2°

Figure 2: Mutation variation operator

50.5 34.7 19.1 0 40.1 50.5 34.7 19.1 60.4 40.1

randomly selected gene

before mutation after mutation

individual 1° individual 1°°
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both parents and offspring, usually have better convergence pro-

perties, we also use this mechanism in our algorithm. Hence, the

parents of the new parent population P(t + 1) are selected from

J(t) according to their domination level. This means the solutions

from J(t) having domination level 0 are copied to P(t + 1), the

remaining capacity of P(t + 1) is filled with solutions from J(t)
having domination level 1 and so on, until not all solutions from

J(t) having a certain domination level k can be copied to P(t + 1)
due to the bounded capacity of P(t + 1). Of course, if the number

of solutions from J(t) which have domination level 0 already ex-

ceeds the capacity of P(t + 1) then k = 0 in the above example. 

Let J’(t) J(t) denote the subset of solutions having domination

level k which cannot be copied entirely to P(t + 1). To solve the

selection problem and to obtain a good distribution of the soluti-

ons in the two-dimensional objective function space, an additio-

nal criterion is used to choose the solutions from J’(t) to be co-

pied to P(t + 1): we incorporate the concept of crowding-sort des-

cribed e.g. in Deb [3], which selects the solutions from J’(t) by con-

sidering the distance between the objective function values of the-

se solutions. Here, the perimeter of the largest possible rectangle

that can be drawn around a single solution x∈J’(t) in the objective

function space without adding a second solution y ∈ J’(t), y ≠ x,

to the rectangle’s interior serves as a distance measure. The solu-

tion x ∈ J’(t) that has the largest value of this distance measure is

copied to P(t + 1), and afterwards x is removed from J’(t). This

process is repeated until P(t + 1) is filled up. As a consequence, at

this step the algorithm prefers solutions that belong to less

crowded regions of the objective function space. 

Finally, the algorithm terminates if Q(t) has not been improved

for a certain number tdiff of population steps or if a maximum

number of tmax population steps has been performed. 

3.2. Incorporating CreditRisk+ into the algorithmic framework

In the remaining sections of this chapter, we assume the bank has

implemented the standard CreditRisk+ model. For the corres-

ponding calculations no explicit default correlations are required,

since the volatilities of the obligors’ default probabilities in con-

junction with the common risk factors of all obligors replace a

direct modelling of the default correlation p(A1, A2) for two obli-

gors  A1, A2. However, in [2, 56 ff.], the following implicit default

correlation formula is provided (below we use the assumption

that all random scalar factors Sk are normalized to an expectation

μk = 1): 

N

p(A1, A2) ≈ pA1 pA2 Σ wA1k wA2k σk
k=1

where σk is the variance of the random scalar factor for sector k.

The dependence structure between obligors can be exploited to

provide an adequate genetic modelling of the decision variables

for the given portfolio data by sorting the obligors in ascending

order according to the level of default dependency. This can be

performed using a simple sorting procedure that exploits the

structure of the sector weights and the variation coefficients of the

sector random variables, see Schlottmann and Seese [10, 10 - 11]

for a detailed example and further explanations. 

To create a local search operator required by an implementation

of the HMOEA scheme, we use the following local search target

function, which uses the quotient between aggregated net return

and aggregated risk to evaluate a given portfolio structure x: 

ret(x, p, η) 
f(x, p, σ, w, η) := 

risk(x, p, σ, w)

This is a common definition of a risk-adjusted performance mea-

sure like RAROC and similar concepts. Considering the specifi-

cation of the return function in Definition 2 as well as the chosen

risk measure ULε we obtain: 

K

Σ xA(ηA - pA)
A=1

f(x, p, σ, w, η) := . (10)

ULε(x, p, σ, w)

If we maximize this function f, we will implicitly maximize the

net return and minimize ULε, and this will drive the portfolio

structure x towards the set of global Pareto-optimal portfolio

structures (cf. the domination criteria specified in Definition 6).

The local search variation operator shown in Algorithm 2 exploits

this property and besides that, it also respects the given supervi-

sory capital constraint. 

Algorithm 2. Local search variation operator

1: For each x ∈ P(t) execute the following lines with probability plocal

2: If cap(x, c) > B Then

3: D := -1
4: End If

5: If cap(x, c) u B Then

6: Choose D between D := 1 or D := -1 with uniform probability 0.5
7: End If

8: ∀A : xA:= xA,Step := 0
9: Do

10: ∀A : xA:= xA,Step := Step + 1
K

11: retold := Σ xA (ηA - pA) and riskold := ULε(x, p, σ, w)
A = 1

∂
12: For each xJ calculate partial derivative dJ :=        (x, p, σ, w, r)

∂xJ

13: If D = -1 Then

14: Choose A := arg min {dJ⏐xJ > 0}
J

15:  Remove this exposure from portfolio : xA := 0
16: Else

17: Choose A := arg max {dJ⏐xJ = 0}
J

18:  Add this exposure to portfolio: xA := vA

19: End If

⊇
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K

20: retnew := Σ xA (ηA - pA) and risknew := ULε(x, p, σ, w)
A = 1

21: While Step u Stepmax ^ (∃A : xA > 0) ^ (∃J : xJ = 0)^
x ∉ P(t) ^ x ∉ Q(t)^
((D = -1 ^ cap(x, c) > B) ∨(D = 1 ^ cap(x, c) u B̂
(retnew > retold  ∨ risknew < riskold)))

22: Replace x in P(t) by its optimized version
23: End For

24: Output: P(t)

If the current solution x from P(t) to be optimized with probabi-

lity plocal (which is a parameter of the algorithm) is infeasible be-

cause the capital restriction is violated (cf. line 2 in Algorithm 2),

the algorithm will remove the obligor having the minimum gra-

dient component value from the portfolio (lines 14 and 15). This

condition drives the hybrid search algorithm towards feasible so-

lutions. In the case of a feasible solution that is to be optimized,

the direction of search for a better solution is determined by a

draw of a uniformly distributed (0,1)-random variable (cf. lines 5

and 6). This stochastic behaviour helps preventing the local 

search variation operator from stalling into the same local 

optima. 

The partial derivative dJ for obligor J required in line 12 of Algo-

rithm 2 can be obtained by evaluation of the following formula 

(a proof is provided in the appendix): 

K

xJ(ηJ - pJ) ULε(x, ...) - Σ xA (ηJ - pJ)rJ(ULε(x, ...))
dJ = A=1 (11)

xJ (ULε(x, ...))2

where we abbreviated ULε(x,...) := ULε(x,p,σ,w) and rJ(ULε (x,...))
is the marginal risk contribution for obligor J to the unexpected

loss, cf. the corresponding remarks in Chapter 2.

Remembering the fact that the risk contributions, and therefore,

the partial derivatives dJ can be calculated efficiently (e.g. in KN
computational steps for K obligors and N sectors if the approxi-

mation suggested by [2] is used5) for an individual that has already

a valid fitness evaluation, this yields a very fast variation operator. 

Besides the proposed use of the risk contributions suggested by

CSFP, the above algorithm can easily be adapted to other types of

risk contributions or calculation schemes, see Chapter 3 by Tasche

for more details. 

The local search algorithm terminates if at most Stepmax iterations

have been performed (parameter 0 < Stepmax u K), if the current

solution cannot be modified further, if it is already included in the

populations P(t) or Q(t) or if no improvement considering the

violation of constraints or the target function can be made. 

3.3. Application to a sample loan portfolio

We now focus on a small sample portfolio containing middle-

market loans to illustrate the proposed method of risk-return ana-

lysis in the CreditRisk+ model framework. Table 1 gives a short

overview of the characteristics of the data and the chosen para-

meters.6

Table 1: Overview of data and parameters

Parameter Value

K (# obligors) 20

N (# systematic risk factors) 1

pA (probability of default) 2% to 7%

Variation coefficient of default probabilitty 0,75

K
( Σ     vA) 2

A=1
(granularity of portfolio)

K
Σ     v2

A
A=1

15,7

L0 (loss unit)
maxA∈{1, ..., K} {vA}

100  

ε (confidence level) 0,99

B

K (constraint level)
Σ     cA vA

A=1
2/3

|P(t)| (population size) 30

pcross (crossover probability) 0,95

pmut (mutatio probability) 1/20

plocal (local search probability) 0,10

Stepmax (max. local search iterations) 4

tdiff (termination condition) 100

Figure 3: Evolution of individuals within Q(t)
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In our example, we used |P(t)| = 30 individuals in each popula-

tion step t, which is a compromise between developing a diverse

set of solutions in P(t) and the corresponding computational 

effort spent per step t. Due to the elite population and the local 

search variation operator in the HMOEA, the choice of this para-

meter is not very crucial for this algorithm. In other tests using

different portfolio sizes, we chose 20 u |P(t)| u 100, and this

parameter range is a common choice in other Evolutionary

Algorithm applications, too. The common parameter setting of

pcross := 0.95 and pmut := 1/K is reported to work well in many other

studies using elitist Evolutionary Algorithms, and this was also

supported by test results during development of the HMOEA. 

The choice of plocal and Stepmax. can be made by the respective

user of the HMOEA depending on her preferences: if one is in-

terested in finding better solutions in earlier populations, then

both the probability and the number of local search iterations 

given an application of the respective variation operator will be set

higher, and in this case more computational effort is spent by the

algorithm on the local improvement of the solutions. However,

the local search optimization pressure should not be too high, 

since one is usually also interested in finding a diverse set of so-

lutions. A choice of 0 < plocal u 0.1 and Stepmax << K (which 

means the parameter is significantly lower than K) is also pre-

ferable concerning the additional computational effort to be spent

by the local search variation operator. In our tests, we use a para-

meter set of plocal := 0.1 and Stepmax. := 4 for the HMOEA which

also yielded promising results in other test cases consisting of 

significantly different loan portfolio data sets. 

Figure 3 illustrates the evolution of the individuals within Q(t)
during a run of the HMOEA until t = 100. The objective function

values of the six individuals within the first elite population Q(0)
are indicated by circles in Figure 3. The elite population Q(1)
obtained after the following iteration of lines 5 to 15 of Algorithm

1 contains the individuals that have the objective function values

marked by a plus sign. For instance, the two individuals from

Q(0) whose objective function values are approximately

(45000,3500) are dominated by the two individuals from Q(1)
that are close to them but have higher portfolio return and/or less

portfolio unexpected loss values. Hence, the former two members

of Q(0) are no longer members of Q(1) . On the other hand, three

elements from Q(0) are not dominated within the next iteration

of the evolution process, hence they remain in Q(1). This is indi-

cated by the three circles that contain a plus sign. 

Until t = 10 the individuals in the elite population have moved sig-

nificantly in the relevant direction towards the upper left corner

of the displayed risk-return space, and the cardinality of the elite

population has been raised to 33. Several members of Q(10) even

cannot be improved until t = 100,which can be seen in the upper

right corner of Figure 3. However, the members of Q(100) have a

larger spread over the two-dimensional objective function space

due to individuals which have been found in the lower left area of

this figure. The cardinality of Q(100) is 68. 

Summarizing the elite populations shown, Figure 3 displays typi-

cal convergence properties during a run of the hybrid algorithm:

In early iterations, the algorithm mainly improves the dominati-

on-related objective function values. Over time, more solutions

are discovered and the diversity of the individuals in the objective

function space is raised due to the crowding-sort procedure des-

cribed in Section 3.1. 

Our test data set is small enough to allow a complete enumera-

tion of the search space, i.e. the feasible Pareto-optimal set PE*
can be computed within reasonable computing time to verify the

solution quality of the approximation set computed by the

HMOEA after a total of t = 581 population steps. 

Figure 4 displays a comparision between the objective function

values of the 100 elements within PE* and those of the 97 mem-

bers of the final elite population Q(581). The hybrid approach re-

quired 43 seconds for the computation of the approximation set

Q(581) on a standard PC (2 GHz single CPU), whereas the enu-

meration took 1318 seconds (approx. 22 minutes) of computation

time for PE*. A visual inspection reveals that Q(581) is a good ap-

proximation set for PE* since the points of PE* (indicated by "x")

are approximated by mostly identical or at least very close points

of Q(581) which are marked by a respective circle in Figure 4. 

In many MOEA applications, actually a single run of the algo-

rithm is performed to obtain an approximation of the feasible 

Pareto-optimal solutions as shown in the above example. We per-

formed a total of 50 independent runs of the HMOEA on the test

problem using different pseudorandom number sequences to ob-

tain 50 approximations of PE*. The average runtime over 50 in-

dependent runs of the HMOEA was only 33 seconds, and no 

single run required more than 54 seconds. In each independent

run, the HMOEA found the two boundary solutions, which is a

desirable result for the stochastic search algorithm. The cardina-

lity of the approximation set was 96.3 on average and v 91 in all

Figure 4: Comparison of PE* to Q(581)
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runs, and the spread of the approximation solutions in the ob-

jective function space was similar to Figure 4 in each single run.

Remembering that adding one obligor to the portfolio doubles the

size of the search space, which means that the enumeration effort

increases exponentially with the number of obligors, we expect

that the gap between the runtime of the enumeration and the run-

time for obtaining an approximation using the HMOEA increa-

ses significantly. For a suitably large portfolio, a complete enu-

meration cannot be performed within reasonable time given a

bounded runtime on a specific computer. Hence, the hybrid ap-

proach is particularly useful to compute approximations for PE*
in these cases. For instance, we have computed an approximation

set for a non-homogeneous portfolio containing 386 corporate ob-

ligors of a German bank on the specified PC within approxima-

tely 1 hour. 

Concerning larger portfolio dimensions, a few issues have to be

kept in mind. First, the computational effort to calculate or ap-

proximate ULε strongly influences the runtime of the HMOEA.

Thus, the choice of the calculation procedure for the loss distri-

bution and the corresponding percentile has to be made with 

respect to the tradeoff between accuracy of the results and the 

required computation time. In our case, the extent of loss discre-

tization in the standard CreditRisk+ model (i.e. choice of L0) 

strongly influences the computational effort to be spent on the cal-

culation of the risk objective function. A finer discretization yields

more precise results but at the cost of a higher runtime, whereas

less precise ULε results can be achieved in less runtime. We have

to point out that this issue is not specific to our algorithm but to

all algorithms that require a large number of risk objective func-

tion evaluations during the search for risk-return efficient solu-

tions. Alternative methods of approximating ULε offer potentially

faster approximations that might be interesting for larger portfo-

lios, see Chapters 5 to 8 for more details. 

Secondly, the usual convergence results for Evolutionary Algo-

rithms assume t −> ∞, whereas in practical applications our 

hybrid algorithm has to be stopped after a finite number of po-

pulation steps t. Therefore, it is important to remember that Q(t)
is an approximation and not necessarily identical to PE*, particu-

larly for large portfolios having a huge search space. 

Thirdly, since evolutionary algorithms are well-suited for distri-

buted computation or parallel implementation (see e.g. [11]) 

there is a good prospect of improving the speed of our approach

by using more than one CPU at least for some tasks to process

large-dimensional portfolios. 

4. Conclusion and Outlook

We formally defined a constrained multi-objective problem of

risk-return analysis for a credit portfolio based on binary decision

variables. The aggregated expected net return from a potential

portfolio structure and the corresponding aggregated downside

risk measured by unexpected loss were considered as objective

functions of a bank also having an additional capital budget res-

triction imposed e.g. by supervisory capital. 

For the approximation of the set of feasible Pareto-optimal solu-

tions to our problem of portfolio risk-return analysis, we discus-

sed a hybrid approach that combines concepts from different

multi-objective evolutionary algorithm schemes and a problem-

specific local search operator based on a risk-adjusted perfor-

mance measure. This hybrid approach is not restricted to linear

or convex objective functions and is also flexible concerning the

constraints. We implemented the CreditRisk+ portfolio credit risk

model into the algorithm and derived a local search operator that

exploits model-specific features. Although our implementation

was executed on a single standard desktop PC, the hybrid algo-

rithm found approximations of almost all feasible, Pareto-optimal

solutions within seconds for our small test portfolio. Moreover,

we have pointed out important issues for applications of our pro-

posed hybrid method to larger problem instances. 

Besides the integration of another variant of the CreditRisk+ (cf.

the chapters in the first three parts of this volume), further re-

search from the viewpoint of risk measurement could focus on al-

ternative objective functions like expected shortfall, tail condi-

tional expectation and related measures (see e.g. Chapter 3), and

in this case an appropriate local search operator can easily be im-

plemented. Moreover, the multi-objective evolutionary approach

supports the incorporation of more than two objective functions

without significant changes, which might e.g. be very interesting

for hold-to-maturity calculations as proposed in the CreditRisk+

manual [2]. 

Due to the flexibility of our algorithm, many further constraints

of practical interest can be considered, for instance the simulta-

neous use of different capital budgets or unexpected loss limits

on subsets of obligors (e.g. depending on obligor-specific criteria

like country or industry) in the risk-return analysis. Even more so-

phisticated restrictions can be handled, e.g. restrictions on the

structure of the parts of a portfolio to be sold in an asset-backed

security transaction that is itself calculated using a non-linear pri-

cing model as described in the Chapters 18 by Kluge and Lehr-

bass and 19 by Hellmich and Steinkamp. 

5. Appendix: Proof of Formula (11)

Given a portfolio structure specified by x, p, σ,ω, η, the partial de-

rivative of the function f given by (10) is calculated using the quo-

tient rule and the abbreviation ULε(x, ...) := ULε(x, p, σ, ω):

The material is taken from: Grundlach, M. / Lehrbass, F. (Eds.):CreditRisk+™ in the Banking Industry, Springer Finance, Heidelberg, 2004, S. 259-278.© Springer, Heidelberg
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∂
dJ :=           f(x, p, σ, w, η)

∂xJ

K                                 ∂
(ηJ - pJ) ULε(x, ...) - (Σ xA (ηA - pA)) (ULε(x, ...))

=                                    A=1                             ∂xJ

(ULε(x, ...))2

Assuming xJ ≠0 yields

K                                    ∂ULε(x, ...)
xJ(ηJ - pJ) ULε(x, ...) - (Σ xA (ηA - pA))xJ

dJ =                                        A=1                                            ∂xJ

xJ (ULε(x, ...))2

Using the relationship 

∂
rJ(ULε(x, p, σ, ω)) ≡ xJ (ULε(x, p, σ, ω))

∂xJ

(cf. Chapters 2 and 3) we finally obtain

K                                    

xJ(ηJ - pJ) ULε(x, ...) - (Σ xA (ηA - pA))rJ (ULε(x, ...))
dJ =                                        A=1                                            

xJ (ULε(x, ...))2
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1 Risk-return efficient sets consist of Pareto-optimal solution with respect

to the objective functions portfolio risk and portfolio return. A formal 

definition is given later.

2 Alternativly, the variation coefficient of the gamma-distributed random

scalar factors in the CreditRisk+ model can be given, see the remarks in

Chapter 2. In this case, no obligor-specific standard deviation of default

probability is required.

3 The computational complexity class P contains all problems which can

be solved by a deterministic algorithm in polynomial time (measured by

the size of the input). NP contains all problems for which a determi-

nistic algorithm can verify in polynomial time whether a given solution

candidate actually is a solution. A problem is NP-hard if all problems in

the class NP can be reduced to it.

4 This is due to the non-convexity of the Value-at-Risk downside risk 

measure. 

5 Using the common O-notation the computational effort is O(KN), hence

the required number of operations grows linearly in the number ofobli-

gors.
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