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Abstract

The liberalization of electricity markets has forced the energy produc-
ing companies to react to the new situation. The abolishment of monopo-
lies and the launch of open markets have increased the need of calculating
costs closer to the profit frontier to be still competitive, not only against
the other German but also against foreign suppliers. Thus, an efficient
risk management and risk controlling are needed to ensure the financial
survival of the company even during bad times. In this work we use the
RAROC methodology to develop a Monte Carlo Simulation based model
to quantify risks related to wholesale electricity contracts, also called full
load contracts. We do not only consider risk due to market price fluctu-
ations but also due to correlation effects between the spot market price
and the load curve of a single customer.
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1 Introduction

In 1997 the EU directive 96/92/EC started the deregulation process of Euro-
pean electricity markets with the goal of achieving a more efficient supply with
electricity in competitive markets. In Germany this directive was implemented
through the amendment of the power industry law in 1998. This liberalization
led to the establishment of a regulated electricity market, which institutional-
ized itself in two electricity exchanges, the EEX in Frankfurt and the LPX in
Leipzig. In the year 2002 both exchanges merged to bundle market activity.

Electricity companies were forced to deal with the new situation. In reaction,
energy trading companies were established, which should act as intermediate be-
tween the power generating and the sales businesses, as well as with the outside
market. These trading companies are responsible of capturing and evaluating
the risks occurring when electricity is traded at a spot and future market.

The exchange itself is not the main distribution channel, since most cus-
tomers do not want to bother to buy electricity at an exchange. They rather
make direct contracts with the electricity company to provide them with elec-
tricity for a fixed price per unit.

Entering such a contract, also called full load contract, the electricity trader
commits himself to the obligation to deliver electricity for a fixed price. This
means the trader is willing to bear several kinds of risks in place of the cus-
tomer, for which the trader should be compensated. In the following work we
want to quantify the risk related to full load contracts. Furthermore we want
distinguish between customers according to their load profiles, which are a main
determinant of the riskiness of the contract.

2 Introduction to the RAROC Framework

2.1 Performance Measures without Risk

The traditional performance measures to evaluate the performance of a com-
pany, business unit or single investment are mainly RoI - Return on Investment
and RoE - Return on Equity. RoI compares the return to the amount of invested
money, where RoE only takes the invested equity capital into account. Written
as formulas we get:

RoI =
Return

Invested Capital
(2.1)

and

RoE =
Return

Invested Equity Capital
(2.2)

The shortcomings of these concepts are obvious: They are accounting-based and
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do not reflect the real performance3. Neither do they take risk into account nor
is it possible to determine the denominator for single business units from the
firm’s balance sheet.

The point that RoI, RoE and similar measures do not take risk into con-
siderations is a big problem. Suppose there are two investments, both have
the same return rate but one of them is much riskier. If you compare the two
investments they would have the same RoI or RoE and would be regarded as
equal. Obviously this is not true. Since banks are usually considered being
risk-averse, they would prefer the less risky investment and for taking more risk
they require a premium, i.e. a higher return.

As a consequence the return has to be compared to the risk undertaken,
otherwise it would be impossible to compare the performances of two different
investments or business units, e.g. the trading desks for derivatives and govern-
ment bonds. There are many measures to achieve this. In the next section we
present the most popular ones.

2.2 Performance Measures for risky Portfolios

The need to compare the performance of portfolios and business units with
respect to their risk is not new. Based on the portfolio and capital market
theory several measures have been developed (see (PS99), p.295ff). The most
popular ones are:

Jensens Alpha

Based on the capital market line of the CAPM4, Jensen assumes it is possible
to gain profit out of a disequilibrium in the market. If single assets are over- or
underpriced and the portfolio manager recognizes this, he can utilize it and go
short or long in this position, respectively.

Jensens Alpha measures the difference between the actual rate of excess re-
turn and the theoretical one given by the CAPM, i.e.:

α = (r − rf )− (E[r]− rf ) (2.3)

where r is the portfolio-return and rf the risk free interest rate. Plugging in the
CAPM equation E[r] = rf +β(E[rm]−rf ) and evaluating ex-post this becomes:

α = (r − rf )− [β(rm − rf )] (2.4)

where rm is the return of the market portfolio and β the systematic risk of the
investment (for details on the CAPM see for example (PS99)).

3In banking the uselessness of RoE is especially high, because many projects are completely
financed with debt capital, thus have an infinite RoE.

4Capital Asset Pricing Model
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Jensens Alpha measures the performance of the portfolio compared to the
market and thus makes it possible to compare two portfolio managers. But
since it takes only the systematic risk into account, this comparison is only fair
if two portfolios have the same systematic risk, which is not true in general.

The Treynor Ratio

The Treynor ratio, also called reward-to-volatility-ratio, measures the excess
return adjusted by the systematic risk. Thus it is subject to the same criticism
as Jensens Alpha. It is given by:

T =
(E[r]− rf )

β
(2.5)

The Sharpe Ratio

The reward-to-variability-ratio of Sharpe is similar to the Treynor ratio but ad-
justs the excess return with the overall risk, i.e. systematic and unsystematic
risk, measured by the standard deviation σ of the portfolio:

S =
(E[r]− rf )

σ
(2.6)

The Sharpe Ratio has the advantage that it takes also unsystematic risk into
account, i.e. it can be used to compare undiversified portfolios. On the other
hand, bank portfolios can be usually regarded as well diversified, so this advan-
tage does not really count.

The general problem of these measures is that they lead to dimensionless
numbers, which are well suited to compare single portfolios, but do not enable
the management to control the overall risk of the firm. Furthermore Jensens
Alpha and the Treynor Ratio are based on the CAPM and thus also subject
to the criticism of it. The Sharpe Ratio does not have this problem but when
considering Risk Management the standard deviation does not seem to be the
appropriate risk measure. Risk Management aims to protect the company from
heavy downward movements, i.e. big losses, but the standard deviation is also
sensible to upward movements.

3 Risk Adjusted Performance Measures

In the need of an efficient Risk Management and the ability to compare different
business units new Risk Adjusted Performance Measures (RAPMs) have become
popular in the banking business. Many acronyms for RAPMs can be found
in the literature, e.g. RAR, ROC, RAROC, RORAC, RARORC, RAROEC,
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RARORAC. This can be very confusing, especially because same acronyms can
stand for different things and equal things sometimes have different names.

The confusion about the naming of RAPMs is basically a result of the his-
torical development. In the late 1970s Bankers Trust developed a RAPM to
measure credit risk and called it RAROC - Risk adjusted Return on Capital.
This was defined as:

RAROCBankersTrust =
Risk-adjusted Return

Equity Capital
(3.1)

What is the ”Risk-adjusted Return”? Bankers Trust wanted to include in their
calculations the fact that it is possible that a debtor defaults, i.e. he does not pay
back the loan. Thus, they subtracted the expected loss from the deterministic
return receiving for the loan. However, the name ”Risk-adjusted Return” is
misleading. Since the expected loss is known, there is no risk involved. If,
for example, the credit debtor of a 5 years loan has a S&P5-Rating of BBB,
which corresponds to an average default rate of 2.1% (see (Jor01) p.319), the
expected loss of a loan of 1,000,000 Euro would be 21,000 Euro. With an
interest rate of 10% on the loan, the Expected Return can be computed as:
0.1 · 1, 000, 000 Euro − 21, 000 Euro = 79, 000 Euro. Thus, the ”Risk-adjusted
Return” is in reality just the Expected Return of the business.

In the denominator, Bankers Trust used the Equity Capital involved. As
described in section 2.1.1 this has several shortcomings, why nowadays not the
Equity Capital, but the Economic Capital is used. Thus, the RAROC is defined
as:

RAROC =
Expected Return

Economic Capital
(3.2)

The Economic Capital (EC) is neither the required regulatory capital6 for
the business nor does it correspond to the Equity Capital used. The EC is the
amount of money which is needed to secure the banks survival in a worst case
scenario, i.e. it is a buffer against heavy shocks. It should capture all types of
risk (market, credit and operational risk) and is often calculated by VaR - the
Value at Risk. The VaR is a quantile of the profit and loss (P&L) distribution,
i.e. it measures the maximum amount of money one can lose at a given confi-
dence level in a specified period of time. If X is the random variable describing
the profit and loss of the business, the formula to compute VaR at a level of α is:

P (X < −V aR) = α (3.3)

what means

5Standard & Poors, American Rating Company
6In Germany determined by the KWG (Kreditwesengestz) and the Grundsatz 1.

4



−V aR
∫

−∞

f(x)dx = α (3.4)

where f(x) is the density of the profit and loss distribution. This means you are
looking for the alpha-quantile of the P&L-function. Figure 1 shows for example
the VaR at the five percent level of a given P&L distribution. (More details
about VaR can be found in (Jor01) or (Dow98)).

−VaR 0
0

0.1

0.2

0.3

0.4

0.5

Profit & Loss Distribution

95% 
5% 

Figure 1: Value at Risk

If we express the Economic Capital as VaR, (3.2) becomes:

RAROC =
Expected Return

VaR
(3.5)

The appealing thing about RAROC is that it provides a uniform measure of
performance that the management can use to compare businesses with different
sources of risk and capital requirements (ZWKJ96). Especially the ability to
calculate the Economic Capital became more and more important in the past,
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since the view that Equity Capital is a scarce resource has become the general
opinion. If the sum over the ECs of all possible investments of a firm is higher
than its Equity Capital, the management has to decide which of those invest-
ments should be made7. Hence, RAROC is not only suited to compare all kinds
of businesses with each other, it is also a powerful management tool for capital
allocation and risk control.

4 RAROC and EVA

4.1 Shareholder Value and Economic Profit

We stated that RAROC is able to compare two investments A and B and to
decide which of them is the better one. But to know that A is better than B
does not necessary mean that doing this business is profitable for the company.
Since the ultimate goal of a company is to increase its Shareholder Value, the
decision rule in a RAROC framework should be:

Invest in project A ⇐⇒ RAROC(A) > µ (4.1)

The question to be asked here now is: What is the so called hurdle rate µ?
If, as described before, your priority lies on the Shareholder Value, your goal

must be to have a higher RAROC than the Cost of Equity Capital. Note that
from the accounting point of view, the cost of Equity Capital is neglected. But
if you want to decide whether an investment adds Shareholder Value, i.e. gener-
ates a real economic profit, this opportunity costs have to be considered. This
concept is often referred to as EVA8 - Economic Value Added. Stated in one
formula it means:

Increase in Shareholder Value⇐⇒ RAROC > Cost of Equity Capital Rate
(4.2)

Note that some authors prefer to subtract the Cost of Equity Capital already
from the Expected Return in the RAROC formula, then (3.5) and (4.2) become:

RAROC =
Expected Return - (Cost of Capital Rate · VaR)

VaR
(4.3)

and

Increase in Shareholder Value⇐⇒ RAROC > 0 (4.4)

So far, we have just renamed the hurdle rate with Cost of Equity Capital Rate.

7Of course diversification effects should be taken into consideration.
8EVA is a registered trademark of Stern Stewart & Co
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Not much is gained except the fact that we now have an idea by what the hurdle
rate is affected. Determining the Cost of Equity Capital is not easy and there
can be found several approaches to this problem. One possible way to address
this question is just to ask what rate of return the shareholders expect from
their investment? This expected return rate could be our internal hurdle rate.
Another idea is to let the management decide what return they want to achieve.
Both ways are not really scientifically satisfying but used in practice.

4.2 Determining the Cost of Equity Capital

To determine the expected rate of return of the shareholders in a scientifically
founded way, basically, two approaches could be used: The Capital Asset Pricing
Model (CAPM) if we assume frictionless capital markets and the model of Froot
and Stein (see (FS98)) if we drop this assumption.

Cost of Capital with the CAPM

Using the CAPM, one can argue that, if an investor is well diversified, he only
wants a premium for taking over systematic risk, i.e. risk related to the entire
market. Thus we can use the basic CAPM equation to determine the expected
return of an investor in a company i:

E[ri] = rf + (E[rm]− rf ) · βi (4.5)

where
ri = return of company i
rf = risk-free rate of return
rm = return of the market portfolio9

βi =
Cov(ri,rm)
V ar(rm)

This model is appropriate if the assumptions of a frictionless capital market
and a perfect diversified investor holds. Relaxing these assumptions the debt
to equity ratio becomes important to determine the cost of Equity Capital. In
this case one can use Option Pricing Models (OPMs) as described in the next
paragraph.

Cost of Capital with OPMs

Option Pricing Theory can be used to determine the value of the Equity Capital,
which can be interpreted as a call option on the total firm capital. Raising debt
capital can be seen as selling of assets of the company with the agreement to
be allowed to continue using them, and at the same time, selling a call option
with the right to buy the assets at the maturity date of the loan back for the
amount of the loan.

9Usually an index is used as market portfolio, for example DAX or MDAX in Germany or
S&P500 in the USA.
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To compute the value of this option we can use the pricing formula for Eu-
ropean Calls of Black and Scholes:

c = K ·N
(

ln(K
X
) + [rf + (σ2/2)]t

σ
√
t

)

− e−rf t ·X ·N
(

ln(K
X
) + [rf − (σ2/2)]t

σ
√
t

)

(4.6)

with
c = price of the call option
K = today’s price of the underlying
X = strike price
N(·) = distribution function of the gaussian distribution
σ2 = volatility of the underlying

If we plug in the value of the entire company V as underlying and the amount
of dept capital DC as strike price we have a formula for the market value of the
Equity Capital EqC:

EqC = V ·N
(

ln( V
DC

) + [rf + (σ2/2)]t

σ
√
t

)

−e−rf t·DC·N
(

ln( V
DC

) + [rf − (σ2/2)]t

σ
√
t

)

(4.7)

Using the CAPM and the average return of investments r, one can derive
the Cost of Equity Capital (see (PS99) for details):

rEqC = rf +N

(

ln( V
DC

) + [rf + (σ2/2)]t

σ
√
t

)

· (r − rf ) ·
V

EqC
(4.8)

As (PS99) point out, the practical use of this equation is very limited, since
again strong assumptions had to be made and the determination of several
parameters is empirically almost impossible.

The model of Froot and Stein

Froot and Stein developed in 1998 a model which allows for the existence of
friction in the capital market (FS98). They assume that a bank, with an ex-
isting portfolio, has the choice either to accept or reject a new loan, whose size
is small compared to the entire portfolio. They decompose the risk of the loan
into tradable and non-tradable components. To price the tradable risk, they
use the CAPM, the non-tradable risk depends on the bank’s level of risk aver-
sion. Above all, they show that, if a bank is risk-averse, it will always hedge
its tradable risk because nothing can be earned by taking over this kind of risk.
The hurdle rate µ developed in Froot and Stein’s model is given by:
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µ = g · Cov(εT , εm) +G · Cov(εN , εP ) (4.9)

where
g = market price of risk
G = the bank’s level of risk aversion
εT = the tradable risk of the loan
εN = the non-tradable risk of the loan
εm = the systematic market risk factor
εP = the non-tradable risk of the entire portfolio

Like the other approaches this model is more of theoretical than of practical
use. The assumptions made are more realistic compared to the CAPM but even
more unknown variables (e.g. the risk aversion of the bank) enter the calculation.
Nevertheless Froot and Stein achieve interesting results as the point that the
existence of banks can be justified by their assumption of non-tradable risk.

4.3 Hurdle Rates for different Business Units

While determining the hurdle rate, one hits the question whether there should
be different hurdle rates for each business unit, which would be consistent with
modern finance theory because only the systematic risk should be considered
which could be different for each unit. The Economic Capital always reflects the
systematic and the unsystematic risk, but since a bank can be regarded as well
diversified only the systematic risk is important. Because of this, each business
unit has to be assigned with its own beta which then can be used to compute
its hurdle rate, using for example (4.5).

On the other hand it seems desirable to have a corporate wide identical
hurdle rate which reflects the ambition of the investors and the management.
More practical arguments for one uniform hurdle rate are the difficulties in
estimating the betas for each business unit and most of all the influence costs
coming up from internal ”fights” when the hurdle rates are determined. This is
why many banks, e.g. the Bank of America, use one corporate wide hurdle rate
(see (ZWKJ96)).

4.4 Ex-ante vs. Ex-post RAROC

As described in previous sections, RAROC can be basically used with two dif-
ferent intentions:

1. Performance Measurement (ex-post)

2. Capital Allocation (ex-ante)

The latter are forward looking decisions, usually based on the historical per-
formance. When using RAROC as ex-post performance measure it must be
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decided whether the allocated (ex-ante view) or the actually utilized (ex-post
view) Economic Capital should be used. Why is this a problem? On the one
hand, one can argue that only the utilized capital should be considered, because
otherwise the incentive to use all capital even if it does not make sense could be
created. On the other hand, if only the utilized capital were used to measure the
performance of a business unit, there could be a trend to underinvestment since
the manager would not want to decrease his RAROC. This could happen if the
project’s RAROC is lower than the business unit’s average RAROC but high
enough to add Shareholder Value (i.e. the Economic Profit is higher than zero).
Obviously this is not desirable, especially because capital is a scarce resource
which must not be wasted.

To get an answer to this problem one should consider how the capital allo-
cation process works:
If it is a top-down process, i.e. the top management decides about the capital
allocation to each business unit without consulting the units themselves, only
the utilized capital should enter the performance evaluation. The business units
should not be punished for the potentially bad management decisions to assign
too much capital to them.

If the capital allocation is decided on request of the business units, i.e. they
have to apply for the capital, they should be punished if their requests were
too high and thus, the allocated capital should be used to evaluate their perfor-
mance.

This procedure is still far from perfect, since usually a mixture of these two
capital allocation processes will be used. (Sai99) proposes a intermediate so-
lution: The utilized capital is used to calculate the RAROC and a penalty on
unutilized capital is subtracted. This penalty rate will be somewhere between
zero and the hurdle rate. Depending on the level of the penalty rate the men-
tioned problems can be addressed more or less.

In this chapter we introduced the general RAROC concept, how it is used in
banking and discussed some of the issues arising when applying it in practice.
However, the focus of this thesis is on the energy business and not banking.
Therefore, the following chapter will give an overview over the German Energy
Market before developing an Energy-RAROC model.

5 The SMaPS Model

In this section we introduce the model we will use later to simulate trajectories
for the spot price process. This model, called SMaPS (Spot Market Price Sim-
ulation) was developed by EnBW Gesellschaft für Stromhandel mbH, section
Risk Controlling and the University of Karlsruhe (TH) (see (BKMS04)). In
the first section we describe the model, in the second section we shortly discuss
advantages and disadvantages of it.
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5.1 Model Description

The SMaPS model is a three factor model in discrete time with hours as time
unit. It is based on three different stochastic processes, which are assumed to
be independent of each other :

� a load process (Lt)t∈Z+

� a short term market process (Xt)t∈Z+

� a long term process (Yt)t∈Z+

The fundamental model equation is:

St = exp(f(t,
Lt

vt
) +Xt + Yt) (5.1)

where f(t, ·), t ∈ Z+ is the so-called price-load curve (PLC) and νt is the average
relative availability of power plants.

The load process Lt describes the demand of electricity in each hour t. This
load can be directly observed and thus, estimating with historical data is pos-
sible without considering the spot prices. (BKMS04) model the load process
as sum of the deterministic load forecast L̂t and a SARIMA time series model
with a lag of 24h L′

t:

Lt = L̂t + L′
t (5.2)

The deterministic quantity νt ∈ [0, 1] denotes the relative availability of power
plants on the market we want to generate price paths (1 stands for full avail-
ability). Our focus is on the German market, where the availability in sum-
mer is lower than in the winter because maintenance work is conducted then.
(BKMS04) refer to the quantity Lt/νt as adjusted load, showing in their statis-
tical analysis that using the adjusted load leads to more realistic results than
using just the load Lt.

The PLC f : Z+ × [0,∞)→ R describes the nonlinear relationship between
the adjusted load and the spot price. Because it depends on many uncertain
parameters, (BKMS04) decided to use an empirical estimate of this function
from historical load and price data. The authors also show that the PLC differs
over time, especially it changes from weekdays to weekends and peak hours to
offpeak hours. Thus they fit different PLC for different weekdays and daytimes.

The market process Xt models the short term behavior of the market. The
market price fluctuations are due to an effect, (BKMS04) call the ”psychology
of the market”. They also include outages of power plants in the process Xt.
As Lt, also Xt is modelled as SARIMA model with a seasonality of 24h.

The long term process Yt reflects the stochastic nature of future prices. It is
modelled as random walk with drift and include the information given by future
prices from the market into the model.
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Having defined the basic components of the SMaPS model we now want to
describe the model selection and fit of (BKMS04). As first step they determine
the empirical PLC of each hour of the day and each day of the week by fitting
cubic splines to the historical data. Because the three stochastic processes are
assumed to be independent of each other ((BKMS04) justify this assumption by
statistical analysis) they can be modelled one by one. For the stochastic com-
ponent of the load process L′

t, a SARIMA(1,0,1)x(1,0,1) model is selected. The
parameters are estimated using standard maximum-likelihood estimators. For
the short term market process and the long term process, the authors describe
the problem that the spot price is a function of both of them. They suggest two
different solutions for this problem: First one can assume Yt ≡ 0 for the histor-
ical data. Then one can model and calibrate Xt using historical data with the
relationship Xt = ln(St)− f(t, Lt/νt). Another approach to this problem is the
usage of the so-called Kalmann filter. The authors describe this mathematical
technique but also show that it does not lead to significantly different results.
Thus they use the more simple approach by setting Yt ≡ 0 to calibrate the short
term process. A SARIMA(1,0,1)x(1,0,1) model is fitted for Xt.

The long term process is modelled as a random walk with drift:

Yt+1 = Yt + (µ− 1

2
σ2
Y ) + σY εYt (5.3)

where εYt are independent normally distributed random variables. Even though
the original model is in discrete time, the authors use the continuous time exten-
sion to derive their results which can be used as approximation for the discrete
setting. The continuous version of (5.3) is given by a Brownian Motion:

dYt = (µt −
1

2
σ2
Y )dt+ σY dWt (5.4)

The authors now switch to an equivalent martingale measure P ∗ to estimate
the parameters assuming a zero market price of risk for Lt and Xt

10. Under the
measure P ∗ (5.4) becomes

dYt = (µt − λt −
1

2
σ2
Y )dt+ σY dWt (5.5)

where λt denotes the market price of risk for Yt. Hence, the growth rate µ∗t in
the risk neutral world is

µ∗t = µt − λt (5.6)

(BKMS04) derive a formula for µ∗t using the fact that the distributions of Xt

and Lt can be approximated with their stationary distributions if the delivery

10See the next section for a justification of this assumption.
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period is far enough in the future. The derived formula for µ∗
t is:

µ∗T =
∂

∂T

(

log
Ft,T

ŜT

)

(5.7)

where Ft,T is the price of a future at time t with delivery hour T and Ŝt is given
by:

Ŝt = exp(V ar[Xt]/2)E[exp(f(T,LT /νT ))] (5.8)

Using the SMaPS model we are now able to generate trajectories of the spot
price process in the risk neutral world and use the risk neutral pricing approach
for evaluating contracts written on the spot price as underlying. We will denote
the expectation under the risk neutral measure with E

∗[·] throughout the entire
thesis.

For illustration figure 2 shows one spot price trajectory generated with the
SMaPS model. It is worth noticing that the distribution of the generated spot
prices fulfills the requirement of heavy tails (leptocurticity), i.e. it has more
mass in the tails than the normal distribution, which can be also observed in
the historical spot price time series11.
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Figure 2: Trajectory generated with the SMaPS model

5.2 Model Discussion

The assumption of zero market price of risk may seem a bit over simplifying.
However, this approach is not unusual for electricity spot price models. An
economic justification for this assumption can be found in (Hul03), chapter 29.

11For an empirical analysis see for example (Dei03).
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Since the changes in electricity prices and the return on the market are very
weakly correlated, it can be reasonable to assume a zero market price of risk
what is equivalent to assume that electricity prices behave the same way in
both, the real and the risk-neutral world. (Hul03) concludes this reasoning:
”The parameters [...] can therefore be estimated from historical data.”

We are aware of the fact that even if it can be justified as mentioned above,
the assumption of zero market price of risk is theoretically not completely cor-
rect. The correlation between the changes of electricity prices and returns on
the stock market are low, but not zero. Nevertheless, we decided to use the
SMaPS model due to several advantages.

First, compared to other models, it does not only model the spot price using
the spot price history, it also takes the grid load into account and models its
stochastic nature. This is essential for our aim to capture the risk arising from
deviation in the demand curve.

Second, the calibration of the model results in a very good fit on the cali-
bration data, as well as on other sample data. This good empirical fit is very
important to receive realistic results in our applications. Thus, the SMaPS
model is well suited for an applied work.

14



6 A Model for an Energy-RAROC

Now we want to develop a model to calculate the RAROC of an electricity
contract using a Monte Carlo Simulation based approach. In the first section
we discuss the appropriate risk measure for our situation. In the second section
we formulate the RAROC equation assuming a deterministic customer load.
This assumption is relaxed in the third section and we show how we can model
the systematic risk of one individual customer to get stochastic load paths. In
the last section, we will show how part of the risk can be hedged, using the EEX
future market and how we can reduce our exposure to risk by doing so.

6.1 The appropriate Risk Measure: VaR or CFaR?

As described, in banking business the Economic Capital is usually calculated
as VaR - the Value at Risk. However, in our case VaR is not an appropriate
measure of risk because, when using VaR, it is implicitly assumed that it is
possible to close the risky position at any time on the future or forward market.
In the energy business this cannot be done, because the market is not even close
to liquid. Hourly products can only be traded on the spot market (or OTC)
and even monthly contracts go only half a year ahead. Furthermore the amount
of energy traded on the future market is also very limited.

Thus, we will use a similar, but slightly different measure - the Cash Flow
at Risk, CFaR12. The difference to VaR is that we do not assume it is possible
to close ones position at any time, but we have to wait until the maturity day
is reached. If we do not have an own electricity production, we have to buy
the electricity at the spot market. Here the difference between VaR and CFaR
becomes clear: VaR is based on the future prices, CFaR on the spot prices.
Since there is no future market for products with a granularity of hours and
the OTC market for those products is not liquid, the usage of CFaR makes
more sense when dealing with those products, which will be our main topic.
Of course, VaR also has its applications in the electricity business, e.g. when
dealing with monthly or yearly contracts.

We do not want to conceal at this point that VaR and thus also CFaR, have
several drawbacks. The most important one is that the VaR (CFaR) is blind
for the developments in the tail. Everything happening beyond the quantile is
neglected. We discuss this issue in chapter 10 and also suggest another risk
measure, the Expected Tail Loss (ETL), which do not suffer from the same
problems as VaR (CFaR). The reason why we use CFaR in our first approach
is its wide acceptance and popularity not only in the business world, but also
on the regulatory side.

6.2 RAROC with deterministic Load

We now want to start developing a model to calculate the RAROC for the
electricity business with hourly granularity. In this section we assume a very

12In the literature it is also known as Earnings at Risk (EaR) or Profit at Risk (PaR).
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simple setting: We are an electricity trader, i.e. neither do we have any own
facilities to produce electricity nor do we have any usage for it.

Assume we have a customer who wants to buy electricity from us for a
fixed amount of money per unit. Furthermore assume in the beginning that his
demand load is fixed and known, i.e. deterministic (we will relax this assumption
in the next section).

Remember the original RAROC equation:

RAROC =
Expected Return

Economic Capital
(6.1)

In chapter 2 we described how this equation can be used considering credit risk.
Now the situation is different, thus, we want to explain how the numerator and
the denominator of this fraction can be determined.

First we will determine the numerator. The Expected Return can be calcu-
lated as the expected value of the cash flows in the future. Say, we agreed to
deliver energy for one year to our customer for a fixed retail price K, his (deter-

ministic) load curve is l̂t and the (stochastic) future spot price of one MWh at
time t is St. Then the profit13 of each hour is the difference between the retail
and the spot price per MWh times the amount of energy. This is the future
cash-flow in hour t CFt. Since St is stochastic, CFt is also stochastic.

E[CFt] = E[(K − St)l̂t] = Klt − E[St]l̂t (6.2)

To get the entire profit we just have to sum over all hours from the starting date
τ of the contract until the end date T and discount the cash flows to the actual
point in time, which we denote with t0. For simplicity we assume a constant
interest rate r with continuous compounding14.

E[Profit] = E

[

T
∑

t=τ

e−r(t−t0)CFt

]

=
T
∑

t=τ

e−r(t−t0)E

[

(K − St)l̂t

]

(6.3)

For each price path we can now calculate the profit (i.e. the sum of all cash
flows). Thus, our best estimate for the expected profit is the mean of all profit
realizations.

13Note that when talking about profit, we also include negative profits, i.e. losses.
14This assumption is made because the impact of the interest rate is not the core point

of our analysis. Using a non-constant interest rate model would rise the problem of even
more parameters to calibrate (we already have a three factor model with 10 parameters). The
hourly compounding is also a simplification since payments are not done hourly in the real
business world. Contracts at the EEX are settled daily, direct retail contracts with customers
are usually settled monthly. Since payments dates differ among customers one would have to
evaluate each contract differently.
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As described in chapter 2, the Economic Capital should be the amount of
money we can lose in a worst case scenario. We want to ensure that even under a
very bad development we will still have enough capital to ensure the survival of
the company. Therefore the Economic Capital should be invested in a risk free
asset, e.g. German government bonds, to cover unexpected losses. We explained
in section 5.1 that CFaRα rather than V aRα should be used to determine the
Economic Capital for a project with hourly granularity. We decided to use the
so-called relative CFaRα (see (Dow98))), which is defined as the difference be-
tween the mean and the α-quantile of the profit and loss distribution. Thus,
the RAROC of an energy project becomes:

RAROC =
ExpectedProfit

CFaRα

=
E[Profit]

E[Profit]− qα[Profit]

=

T
∑

t=τ

e−r(t−t0)E[(K − St)l̂t]

T
∑

t=τ

e−r(t−t0)E[(K − St)l̂t]− qα[
T
∑

t=τ

e−r(t−t0)(K − St)l̂t]

(6.4)

where qα denotes the α-quantile.

6.3 RAROC with stochastic load

6.3.1 Systematic vs. Unsystematic Risk

The load process of a full load contract customer is generally not, as assumed
before, deterministic. We do not know the future load process, however we are
able to estimate the load curve with the help of historical data. This estimation
can be used to compute an ex-ante RAROC as described in the previous section.
But how can we model the uncertainty of the load process?

Deviations from the estimated load curve l̂t can have various reasons. Sim-
ilar to the concepts known from modern capital market theory, we want to
distinguish between systematic and unsystematic reasons.

� Unsystematic reasons are caused by specific incidents at the customer and
do not have their source in the market (e.g. a malfunction of a big machine,
short-term variation in production activities, etc.).

� Systematic reasons, on the other hand, originate from variation in the
market which have an impact on all customers (e.g. a cold snap).

Written as formula this means for the load li of customer i:

li = l̂i + βiεsyst + εi (6.5)
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where εsyst is the systematic risk of the market, βi describing the intensity of
correlation between the customer an the systematic risk and εi is the unsystem-
atic risk of customer i. Note that by definition the unsystematic risk is only
related to the customer himself, there is no connection to other customers, i.e.
for any two customers i and j:

Cov(εi, εj) = 0 (6.6)

Furthermore, the unsystematic risk of each customer i is uncorrelated with the
systematic risk, i.e.:

Cov(εi, εsyst) = 0 (6.7)

An electricity trader with a big portfolio of customers can be regarded as well
diversified. That means the risk of variations due to unsystematic reasons (un-
systematic risk) of all customers together can be assumed to compensate each
other in average.

Hence, the only risk factor is the variation due to systematic reasons (sys-
tematic risk), which can be explained by variation in the entire grid load.

6.3.2 Modelling stochastic load paths

In this section we describe how we model stochastic load curves for each indi-
vidual customer. As described before the spot market simulation model SMaPS
developed by (BKMS04) is based on three stochastic processes. One of them is
the grid load process Lt which is based on the apporach

Lt = L̂t + L′
t (6.8)

where L̂t is the deterministic grid load forecast for Germany and L′
t is a SARIMA

time series model with 24h seasonality. Figure 3 shows three exemplary load
paths.

To use this process for generating simulations for the customer’s load process
we have to estimate the customer’s correlation with the entire grid load first.

To do so, we determine the impact of fluctuations of the grid load on the
customer load, precisely the portion of deviation of the customer load from
the estimated load which can be explained by the deviation of the German grid
load from the estimated grid load, i.e. we conduct a simple linear regression. Set

l̃t =
lt − l̂t

l̂t
(6.9)

and
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Figure 3: Cutout of three arbitrary load paths generated with SMaPS

L̃t =
Lt − L̂t

L̂t

(6.10)

then the regression model can be written as:

l̃t = β · L̃t + εt (6.11)

where
lt = actual customer load
l̂t = estimated customer load
Lt = actual entire grid load
L̂t = estimated entire grid load
β = regression coefficient
εt = error term (unsystematic risk)

The value of β can be computed by taking the covariance of l̃t and L̃t
15:

Cov(l̃t, L̃t) = Cov(βL̃t + εt, L̃t))

= Cov(βL̃t, L̃t) + Cov(εt, L̃t)

= β · V ar(L̃t) + 0 (6.12)

Thus we get for β:

15By definition L̃t is independent of εt
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β =
Cov(l̃t, L̃t)

V ar(L̃t)
= %l̃t,L̃t

σl̃t

σL̃t

(6.13)

where %l̃t,L̃t
denotes the correlation coefficient and σ the standard deviation of

l̃t and L̃t, respectivly.
To compute a customer’s beta we need L̃t and l̃t, the deviations of grid and

customer load. To get them we will use historical data to make a load estimation
for a year, for which we also have the realized load curve available. To do this
we classify each day according to the following scheme:

� Monday

� Tuesday, Wednesday or Thursday

� Friday

� Saturday

� Sunday

Tuesday, Wednesday and Thursday are put together into one group since the
load curves of them are historically very similar. We do this classification for
each month and additionally we distinguish holidays as Easter, 1st of May, 3rd
of October, Christmas holidays, etc. Doing this we get 82 classes of days. We
break this scheme down for each hour, so in the end we have 1968 classes.

Our best load estimation for the future load is the average of the values
in the same class in former years. To allow an easy computation we use the
regression function of a statistical software and the following model equation:

















l1
...
lt
...
lT

















=

















d1(1) · · · dk(1) · · · dK(1)
...

...
...

d1(t) · · · dk(t) · · · dK(t)
...

...
...

d1(T ) · · · dk(T ) · · · dK(T )

















·

















α1

...
αk

...
αK

















(6.14)

with

dk(t) =

{

1 , hour t is in class k
0 , else

(6.15)

l is a T-dimensional vector with the hourly load curve of the past and α a K-
dimensional vector which will contain the average values for each class of hour.
Having this, we can calculate the beta of each customer using (6.13).
Equipped with a beta for each customer we can generate stochastic load paths
depending on the systematic risk of each individual customer. For this we gen-
erate grid load paths according to (6.8) and compute the relative deviation λt
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from the mean L̂t for each path Li
t, i.e.:

λi
t =

Li
t − L̄t

L̄t

(6.16)

Having done this for each hour and each path we can now generate i different
load paths for the customer load by multiplying the estimated load path l̂t with
βλi

t and adding this deviation to the estimated load l̂t:

lit = l̂t + l̂t · β · λi
t (6.17)

The profit function is now depending on two sources of uncertainty: The spot
prices and the customer load curve. The expected value is given by:

E[Profit] =

T
∑

t=τ

e−r(t−t0)E [CFt]

=

T
∑

t=τ

e−r(t−t0)E [(K − St)lt]

=

T
∑

t=τ

e−r(t−t0) (KE [lt]− E [St]E [lt]− Cov(St, lt)) (6.18)

Here, we see that in order to evaluate the expected value of the profit, we even
do not need to generate simulations for the customer load. Having the simulated
grid load paths is sufficient, since E[lt] = l̂t and using (6.11), (6.18) becomes:

E[Profit] = K

T
∑

t=τ

e−r(t−t0) l̂t −
T
∑

t=τ

e−r(t−t0)E[St]l̂t −
T
∑

t=τ

e−r(t−t0)Cov[lt, St]

= K

T
∑

t=τ

e−r(t−t0) l̂t −
T
∑

t=τ

e−r(t−t0)E[St]l̂t −
T
∑

t=τ

e−r(t−t0) l̂tCov(l̃t, St)

= K
T
∑

t=τ

e−r(t−t0) l̂t −
T
∑

t=τ

e−r(t−t0)E[St]l̂t −
T
∑

t=τ

e−r(t−t0) l̂tβCov(L̃t, St)

(6.19)

This result is very helpful when we want to compute the Covariance between
the spot price St and a customer load lt. We can do this by multiplying the
Covariance of spot price and grid load with the customer’s beta and the load
estimate l̂t. We will use this result in the next chapter.

Unfortunately if we want to compute the deal’s RAROC we still need to
generate load paths for the customer because not only the mean but also the
α-quantile enters the calculation.
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6.4 RAROC with the possibility of Hedging

6.4.1 Energetic Hedging

In the previous section we assumed that there is no future market and thus
no possibility to hedge the risk. This, however, is not true in reality. There is
a market for future contracts (in Germany the EEX and various brokers, see
chapter 3), but the justification to use CFaR and not VaR as a measure of risk
still holds. As described before, there are only monthly, quarterly and yearly
future contracts available, nevertheless we want to calculate RAROC on an
hourly basis. Thus, it is only possible to hedge some of the risk but not all of it.
Two different products can be used for hedging: Baseload and Peakload future
contracts. Remember that a Baseload contract means the constant delivery of
1 MW 24h hours a day, seven days a week. A Peakload contract includes the
delivery of 1 MW from 8:00am to 8:00pm Monday through Friday (including
holidays).

But which hedging strategy should we follow? One intuitive solution (and
physically meaningful) to this problem is to follow a so-called energetic hedge
strategy. This means we buy a future on the same amount of total energy we
are going to sell to our customer. When dealing with stochastic load paths, we
take the average values to compute the sum of energy.

Let η = (ηpeak, ηbase) denote the energetic hedge strategy where ηpeak and
ηbase denote the number of Peakload and Basleload contracts bought or sold,
respectively. This strategy can be calculated as following:

ηpeak =

T
∑

t=τ

lt1{t∈peak}

(T − τ)1{t∈peak}
(6.20)

and

ηbase =

T
∑

t=τ

lt −
T
∑

t=τ

lt1{t∈peak}

(T − τ)− (T − τ)1{t∈peak}
(6.21)

where 1{t∈peak} denotes the indicator function, i.e.:

1{t∈peak} =

{

1 , if t is a Peakhour
0 , else

(6.22)

Figure 4 shows an exemplary loadcurve and the energetic hedge position for it.
As we are short in the load and long in the hedge position, only the difference
remains as risky position. This new load curve is shown in figure 5. A negative
load means that we are going to sell the energy at the exchange. If πpeak and
πbase denote the prices of Peakload and Baseload future contracts, the profit
and loss function becomes:
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Figure 4: Energetic Hedge for a typical customer load

Profit = K
T
∑

t=τ

e−r(t−t0)lt −
T
∑

t=τ

e−r(t−t0)(ηbaseπbase + ηpeakπpeak1{t∈peak})

+

T
∑

t=τ

(e−r(t−t0)((ηbase + ηpeak1{t∈peak})− lt)St) (6.23)

where everything is known at time τ except of the price process St and the load
process lt. Plugging (6.23) into (6.4) we can compute the new RAROC.

We assume that the future prices given by the market are fair, i.e. they
reflect the average future spot prices. (We achieve this by adjusting the spot
price simulations by the actual future prices). If we also assume that there
are no transaction costs, especially no bid-ask spread, then we know that the
expected value of the profit given by (6.23) will not change with the hedging
strategy. Otherwise there would be an opportunity for arbitrage in the market.

Thus, the expected value will not change but the quantile of the distribution
will. The distribution will become denser and the quantile will lie much closer
to the mean. Unfortunately the liquidity of the future market is very limited
what makes hedging for big positions in reality often difficult.

6.4.2 Determining the optimal Hedging Strategy

As described before, the energetic hedge is the best strategy from an engineering
point of view. But since the price is not constant this does not have to be the
optimal strategy in the economic sense. If the maximization of the RAROC is
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Figure 5: Load after entering an energetic hedge position

our objective the optimization problem can be written as:

max
θ

F =
E[Profit]

E[Profit]− qα[Profit]
(6.24)

where θ stands for the hedging strategy (θpeak, θbase). θpeak and θbase are the
number of Peakload and Baseload future contracts to be bought or sold.

This problem cannot be solved with a closed formula but with the Monte
Carlo Simulation based approach described in the last section. We implemented
the optimization problem in MATLAB. Given the load curve shown in figure 6
the energetic hedge strategy is η = (19.00, 54.03) (using 6.20 and 6.21) and the
optimal hedge strategy is θ = (17.19, 57.40). Figure 6 shows an energetic and
an optimal hedge for a given customer load.

Having developed a model for an Energy-RAROC and also determined pos-
sible hedging strategies we want to continue in the next chapter with deriving
formulas for risk premiums for full load electricity contracts.
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Figure 6: Optimal Hedge for a typical customer load
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7 Risk Premiums of Full Load Contracts

We have stated in the beginning that our intention is to evaluate full load
contracts. Closing such a deal the supplier accepts to take over several types
of risks. As compensation he demands premiums in addition to the basic price.
The overall price is given by the sum of the basic price and three risk premiums,
thus we have four components:

� The basic price

� A risk premium for the hourly spot market price risk

� A risk premium for the volume risk

� A risk premium due to the price-volume correlation

Our focus are the risk premiums and not the price itself. In the following section
we will explain what types of risks are covered with each of the premiums. We
will then show how the framework developed in the previous section can be used
to compute these premiums.

7.1 Market Price Risk

The market price risk has its source in the volatile spot market. When entering
a delivery contract, we do not know the future spot prices, but we decide about
the retail price on the signing day. That means we accept to bear the risk
of hourly changing market prices on behalf of the customer. Part of this risk
we can hedge by buying opposite future contracts at the EEX. But since only
Baseload and Peakload contracts for months, quarters and years are available
and the customer load curve changes hourly one can only hedge part of the risk.
For the remaining risk we are accepting to bear for the customer we want to get
paid a risk premium. How much should this premium be?

To determine the market price risk premium, we use the same setting as
in the first part of the previous section: A deterministic load curve l̂t and a
stochastic spot price process St. Here the price process is the only source of
uncertainty. We will calculate the risk premium as the difference between a fair
retail price regarding the risky nature of the contract and the fair retail price
neglecting this risk.

The ”fair” retail price K per MWh without considering the market price
risk is the price of K such that the expected value of the P&L function becomes
zero. We denote this ”fair” price with K1. We use risk neutral valuation to
price the contract. It can be computed using (6.3):

E
∗[Profit] = 0⇔ K1 =

T
∑

t=τ

e−r(t−t0) l̂tE
∗[St]

T
∑

t=τ

e−r(t−t0) l̂t

(7.1)
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On the other hand, what price should we take if we take the market price risk
into consideration. As stated before, a project is valuable for us, i.e. adds eco-
nomic value, if its RAROC is higher than an internal hurdle rate. A RAROC
below the hurdle rate would destroy economic value and thus would not be de-
sirable for the company. Using this RAROC-based approach we can calculate a
retail price K2 which results in a RAROC equal to our hurdle rate. If µ denotes
the internal hurdle rate, we compute K2 using the condition:

RAROC = µ (7.2)

Plugging in (6.4) we get:

K2

T
∑

t=τ

e−r(t−t0) l̂t −
T
∑

t=τ

e−r(t−t0)E
∗[St]l̂t

K2

T
∑

t=τ

e−r(t−t0) l̂t −
T
∑

t=τ

e−r(t−t0)E∗[St]l̂t − q∗α[K2

T
∑

t=τ

e−r(t−t0) l̂t −
T
∑

t=τ

e−r(t−t0)St l̂t]

= µ

(7.3)

Solving for K2 this leads us to:

K2 =

µ

(

q∗1−α

[

T
∑

t=τ

e−r(t−t0)St l̂t

]

−
T
∑

t=τ

e−r(t−t0) l̂tE
∗[St]

)

+
T
∑

t=τ

e−r(t−t0) l̂tE
∗ [St]

T
∑

t=τ

e−r(t−t0) l̂t

(7.4)

The value K2 gives us the fair price if we require the internal hurdle rate µ.
Thus we can determine the premium we want to receive per MWh due to our
exposure to spot market price risk pm as:

pm = K2 −K1

=

µ

(

q∗1−α

[

T
∑

t=τ

e−r(t−t0)St l̂t

]

−
T
∑

t=τ

e−r(t−t0) l̂tE
∗[St]

)

T
∑

t=τ

e−r(t−t0) l̂t

(7.5)

This is exactly the same as the Economic Capital multiplied by µ and divided by
the total amount of energy what makes perfect sense: We demand as premium
the return of µ on the capital we need to put aside due to the risky nature
of the deal. Dividing by the total amount of energy just standardize the total
premium for the contract to the premium per MWh so that we are able to
compare contracts with different amounts of energy.
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7.2 Volume Risk

When entering a full load contract one do not only take over market price risk,
but also volume risk, since one allows the customer to use as much energy as he
wants. To determine the premium for this risk, we follow the same approach as
in the previous section, but we use stochastic load curves. The price K3 is the
price leading to a zero expected profit, i.e.:

E
∗[Profit] = 0⇔ K3 =

T
∑

t=τ

e−r(t−t0)E
∗[Stlt]

T
∑

t=τ

e−r(t−t0)E∗[lt]

(7.6)

K3 is the fair price disregarding market price and volume risk. If we take them
into consideration, we can determine a price K4, which leads to a RAROC equal
to the hurdle rate, i.e. we require:

K4

T
∑

t=τ

e−r(t−t0)E
∗ [lt]−

T
∑

t=τ

e−r(t−t0)E
∗ [Stlt]

K4

T
∑

t=τ

e−r(t−t0)E∗ [lt]−
T
∑

t=τ

e−r(t−t0)E∗ [Stlt]− q∗α

[

K4

T
∑

t=τ

e−r(t−t0)lt −
T
∑

t=τ

e−r(t−t0)Stlt

] = µ

(7.7)

Unfortunately, this equation cannot be solved analytically for K4, so we have
to use numerical methods to compute a value for K4. Having done this using
numerical procedures of MATLAB, we can determine the risk premium for the
volume risk. The difference between K4 and K3 captures both, the volume as
well as the market price risk. Subtracting the market risk premium we get the
volume risk premium pv:

pv = K4 −K3 − pm (7.8)

7.3 Price-Volume Correlation Risk

The last component is the risk premium for the correlation of price and volume
of the customer demand. Typical customers tend to have an increasing demand
at times when prices are high. The reason for this is clear: Both processes are
driven by the same underlying factor.

Of course also the opposite is possible. A customer could control his demand
load such that it is lower than the average when the overall grid load is higher.
Given that he as a full load contract with a fixed price, this seems very unlikely.

The risk due to price-volume correlation can be calculated by comparing K3

and K1. If we evaluate the expected value in equation (7.6) we get:
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K3 =

T
∑

t=τ

e−r(t−t0)E
∗[St]E

∗[lt] +
T
∑

t=τ

e−r(t−t0)Cov∗(lt, St)

T
∑

t=τ

e−r(t−t0)E∗[lt]

(7.9)

Subtracting (7.1) we get the change in price due to the systematic correlation
between the load lt and the spot price St. This is the risk premium pc:

pc = K3 −K1

=

T
∑

t=τ

e−r(t−t0)E
∗[St]E

∗[lt] +
T
∑

t=τ

e−r(t−t0)Cov∗(lt, St)

T
∑

t=τ

e−r(t−t0)E∗[lt]

−

T
∑

t=τ

e−r(t−t0) l̂tE
∗[St]

T
∑

t=τ

e−r(t−t0) l̂t

=

T
∑

t=τ

e−r(t−t0)Cov∗(lt, St)

T
∑

t=τ

e−r(t−t0) l̂t

(7.10)

Using the same substitution as in 6.19 we can write:

pc =

β
T
∑

t=τ

e−r(t−t0) l̂tCov∗(L̃t, St)

T
∑

t=τ

e−r(t−t0) l̂t

(7.11)

Note that the premium pc is different to the premiums pm and pv. To compute
pc we do not need the RAROC approach as risk measure like for the other two
premiums. We just compare two average values using the deterministic and the
stochastic load curves. Neither do we need the internal hurdle rate µ nor the
quantile of the profit and loss distribution. Thus even if we decide to calculate
our premiums in a different framework, (7.10) will stay the same.

7.4 Overview over the Risk Premiums

In the previous sections we have shown how the three risk premiums for market
price risk, volume risk and price-volume correlation risk can be computed. We
want to summarize the results in the following overview. The entire risk pre-
mium pR is given by:

pR = pm + pv + pc (7.12)

and the single premiums can be computed as:
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pm = K2 −K1 (7.13)

pv = K4 −K3 −K2 +K1 (7.14)

pc = K3 −K1 (7.15)

hence

pR = K4 −K1 (7.16)

The premium pR is the amount of money per load unit we should charge our
customer additionally to our production costs and profit margins to compensate
us for the risk we have taken with the obligation to deliver as much energy as
the customer wants for a fixed price.

Note that there are also other kinds of risks involved which we did not
consider. These are, for example, model risk, operational risk and risk related
to reserve energy.
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8 Model Improvement: ETL

8.1 Drawbacks of VaR and CFaR

Although VaR and CFaR have become popular in the financial industry because
they are easy to employ and provide a single number to measure the entire risk,
the drawbacks of using VaR (CFaR) are often overseen. There are many prob-
lems when using VaR (CFaR) as risk measure:

First, the usage of VaR (CFaR) neglects what is happening behind the α-
quantile in the tail of the distribution. If the distribution is heavy-tailed (lep-
tocurtic) this can lead to severe underestimations of the exposure to risk. When
decreasing the VaR (CFaR) it is possible that the mean beyond the quantile,
i.e. the expected loss, given a loss bigger than VaR is increasing.

Another problem dealing with VaR (CFaR) is that it is not subadditive, i.e.

V aR(X + Y ) ≤ V aR(X) + V aR(Y ) (8.1)

is not true in general. From an economic point of view this does not make
sense. It means that it is possible that the sum of two single portfolios has
a lower risk than the two portfolios together. To see how this can happen
consider the following example: We are holding two independent securities A
and B with the same maturity date. At the maturity, A pays 100 Euro with
96% probability and 0 Euro with 4% probability. Security B pays 100 Euro
with 97% probability and 0 Euro with 3%. For both securities the VaR at the
5% level is 0, i.e. V aR(A) = 0 and V aR(B) = 0. On the other hand the VaR
of both securities together is higher than zero, since the probability that both
securities do pay 100 Euro back is only 93.12%.

Third, optimizing a portfolio with respect to its VaR (CFaR) is a non-convex
optimization problem. The optimization function has multiple local minima
why one would have to use time-consuming optimization algorithms to find the
global optimum.

Especially when dealing with heavy-tailed distributions the drawbacks of
VaR become significant. Thus we suggest another risk measure in the next
section, known as Expected Tail Loss, short ETL.

8.2 Expected Tail Loss (ETL)

The Expected Tail Loss (ETL), also known as Conditional VaR (CVaR) or Ex-
pected Shortfall (ES), was invented to correct the above mentioned drawbacks
of VaR. It is defined as the expected value of the tail, i.e. the distribution be-
yond VaR. In contrast to VaR, it fulfills the subadditivity. More important, it
is not blind for the ”events” in the tail of the profit and loss distribution. If the
distribution of the tail changes, the ETL also changes in the correct way (i.e.
if higher losses in the tail become more likely, ETL increases and vice versa).
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VaR ETL

Sub-Additivity No Yes
Convex Portfolio Optimization No Yes

Blind in the Tail Yes No

Table 1: Comparison of VaR and ETL

Formally ETL is defined as:

ETL(Profit)α = E[−Profit| − Profit > V aRα(Profit)] (8.2)

ETL is not only subadditive but also fulfills the other conditions of a coherent
risk measure as defined by (ADEH99). The coherence of ETL (CVaR, ES) was
proven by (Pfl00). Besides the coherence (RU00) show that the ETL is, in
contrast to the VaR, a smooth, convex function what allows them to use linear
programming technique to optimize a portfolio. Thus, using ETL instead of VaR
(CFaR) enables us two improve our model in three ways: First, the optimization
problem to find the optimal hedging strategy can be solved unambiguously.
Second, a portfolio approach can be taken without facing the problem of non-
subadditivity of the VaR (CFaR). Finally, and perhaps most important, the risk
management will be improved since one do not neglect the information given by
the tail of the profit and loss distribution. Table 1 summarizes the superiority
of ETL over VaR.

8.3 The improved Model

Having discussed the disadvantages of VaR (CFaR) compared to ETL, we want
to improve our model. To do so we will use ETL as the new measure of risk. As
before we will use the cash-flow-based value rather than the future-based one.
That means we have to substitute V aRα in (8.3) by CFaRα. We denote this
new quantity with CFETLα

CFETL(Profit)α = E [−Profit| − Profit > CFaRα(Profit)] (8.3)

The RAROC based on the CFETL rather than on the CFaR becomes:

RAROC =
E[Profit]

CFETLα[Profit]− E[Profit]
(8.4)

Basically we can keep our formulas the same, we just have to substitute CFaRα

by CFETLα. Having done this substitution in our MATLAB algorithms we
can compute the new risk premiums based on CFETLα.
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9 Conclusion and Final Remarks

The aim of this thesis has been to use the RAROC framework developed in the
banking business to evaluate electricity contracts (mainly full load contracts)
and to calculate risk premiums the supplier should charge the customers as
compensation for the risks related to them.

We showed how a Monte Carlo Simulation based approach can be taken to
calculate premiums related to the risks of hourly changing market prices, chang-
ing load volumes and price-volume correlation. The market price risk premium
has been calculated as difference between two selling prices. First the ”fair”
price, resulting in an expected payoff of zero, second the price resulting in a
RAROC equal to an internal hurdle rate. Fort the volume risk and the price-
volume correlation we needed load simulations for each customer. To get them,
we estimated the systematic risk of a customer by computing the correlation
between the customer’s load and the grid load. Having the correlation between
the two load processes and simulation paths for the grid load, we were able to
generate simulation paths for the customer’s load, reflecting only the system-
atic risk. Unsystematic risk was assumed to be diversified, since an electricity
supplier has a big portfolio of many customers.

We explained, why the risk measure we used so far is not the best one, even if
it is well-established in the industry. We proposed to use another risk measure,
the Expected Tail Loss and explained why it is superior to the Value at Risk
(Cash Flow at Risk).

In the last section, we showed that also other spot price models can be used.
Price models based on the α-stable distribution provide a good fit not only
in financial but also in electricity price modelling. Unfortunately the α-stable
model did not provide load simulations so only the market price premium could
be calculated. Further work has to be done on this field, e.g. by modelling the
error terms of the SARIMA models of SMaPS with the α-stable instead of the
gaussian distribution.
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