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Abstract. In the last few years we have witnessed growing interest in Dynamic Finan-
cial Analysis (DFA) in the nonlife insurance industry. DFA combines many economic
and mathematical concepts and methods. It is almost impossible to identify and de-
scribe a unique DFA methodology. There are some DFA software products for nonlife
companies available in the market, each of them relying on its own approach to DFA.
Our goal is to give an introduction into this field by presenting a model framework com-
prising those components many DFA models have in common. By explicit reference to
mathematical language we introduce an up-and-running model that can easily be im-
plemented and adjusted to individual needs. An application of this model is presented
as well.

1. What is DFA

1.1. Background. In the last few years, nonlife insurance corporations in the US, Canada
and also in Europe have experienced, among other things, pricing cycles accompanied by
volatile insurance profits and increasing catastrophe losses contrasted by well performing
capital markets, which gave rise to higher realized capital gains. These developments
impacted shareholder value as well as the solvency position of many nonlife companies.
One of the key strategic objectives of a joint stock company is to satisfy its owners by
increasing shareholder value over time. In order to achieve this goal it is necessary to
get an understanding of the economic factors driving shareholder value and the cost of
capital. This does not only include identifying the factors but investigating their random
nature and interrelations to be able to quantify earnings volatility. Once this has been
done various business strategies can be tested in respect of meeting company objectives.
There are two primary techniques in use today to analyze financial effects of different

entrepreneurial strategies for nonlife insurance companies over a specific time horizon.
The first one – scenario testing – projects business results under selected deterministic
scenarios into the future. Results based on such a scenario are valid only for this spe-
cific scenario. Therefore, results obtained by scenario testing are useful only insofar as
the scenario was correct. Risks associated with a specific scenario can only roughly be
quantified. A technique overcoming this flaw is stochastic simulation, which is known
as Dynamic Financial Analysis (DFA) when applied to financial cash flow modelling of
a (nonlife) insurance company. Thousands of different scenarios are generated stochas-
tically allowing for the full probability distribution of important output variables, like
surplus, written premiums or loss ratios.
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1.2. Fixing the Time Period. The first step to compare different strategies is to fix
a time horizon they should apply to. On the one hand we would like to model over as
long a time period as possible in order to see the long-term effects of a chosen strategy.
In particular, effects concerning long-tail business only appear after some years and can
hardly be recognized in the first few years. On the other hand, simulated values become
more unreliable the longer the projection period, due to accumulation of process and
parameter risk over time. A projection period of five to ten years seems to be a reasonable
choice. Usually the time period is split into yearly, quarterly or monthly sub periods.

1.3. Comparison to ALM in Life Insurance. A DFA model is a stochastic model
of the main financial factors of an insurance company. A good model should simulate
stochastically the asset elements, the liability elements and also the relationships between
both types of random factors. Many traditional ALM-approaches (ALM=Asset-Liability
Management) in life insurance considered the liabilities as more or less deterministic
due to their low variability (see for example Wise [43] or Klett [25]). This approach
would be dangerous in nonlife where we are faced with much more volatile liability cash
flows. Nonlife companies are highly sensitive to inflation, macroeconomic conditions,
underwriting movements and court rulings, which complicate the modelling process while
simultaneously making results less certain than for life insurance companies. In nonlife
both the date of occurrence and the size of claims are uncertain. Claim costs in nonlife
are inflation sensitive, whereas they are expressed in nominal terms for many traditional
life insurance products. In order to cope with the stochastic nature of nonlife liabilities
and assets, their number and their complex interactions, we have to rely on stochastic
simulations.

1.4. Objectives of DFA. DFA is not an academic discipline per se. It borrows many
well-known concepts and methods from economics and statistics. It is part of the finan-
cial management of the firm. As such it is committed to management of profitability and
financial stability (risk control function of DFA). While the first task aims at maximiz-
ing shareholder value, the second one serves maintaining customer value. Within these
two seemingly conflicting coordinates DFA tries to facilitate and help justify or explain
strategic management decisions with respect to

• strategic asset allocation,
• capital allocation,
• performance measurement,
• market strategies,
• business mix,
• pricing decisions,
• product design,
• and others.

This listing suggests that DFA goes beyond designing an asset allocation strategy. In fact,
portfolio managers will be affected by DFA decisions as well as underwriters. Concrete
implementation and application of a DFA model depends on two fundamental and closely
related questions to be answered beforehand:

1. Who is the primary beneficiary of a DFA analysis (shareholder, management,
policyholders)?

2. What are the company individual objectives?
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Figure 1.1. Efficient frontier.

The answer to the first question determines specific accounting rules to be taken into
account as well as scope and detail of the model. For example, those companies only
interested in getting a tool for enhancing their asset allocation on very high aggregation
level will not necessarily target a model that emphasizes every detail of simulating liability
cash flows. Smith [39] has pointed out that making money for shareholders has not been
the primary motivation behind developments in ALM (or DFA). Furthermore, relying
on the Modigliani-Miller theorem (see Modigliani and Miller [34]) he put forward the
hypothesis that a cost benefit analysis of asset/liability studies might reveal that costs
fall on shareholders but benefits on management or customers. Our general conclusion
is that company individual objectives – in particular with respect to the target group –
have to be identified and formulated before starting the DFA analysis.

1.5. Analyzing DFA Results Through Efficient Frontiers. Before using a DFA
model, management has to choose a financial or economic measure in order to assess
particular strategies. The most common framework is the efficient frontier concept widely
used in modern portfolio theory going back to Markowitz [32]. First, a company has
to choose a return measure (e.g. expected surplus) and a risk measure (e.g. expected
policyholder deficit, see Lowe and Stanard [30], or worst conditional mean as a coherent
risk measure, see Artzner, Delbaen, Eber and Heath [2] and [3]). Then the measured
risk and return of each strategy can be plotted as shown in Figure 1.1. Each strategy
represents one spot in the risk-return diagram. A strategy is called efficient if there is no
other one with lower risk at the same level of return, or higher return at the same level
of risk. For each level of risk there is a maximal return that cannot be exceeded, giving
rise to an efficient frontier. But the exact position of the efficient frontier is unknown.
There is no absolute certainty whether a strategy is really efficient or not. DFA is not
necessarily a method to come up with an optimal strategy. DFA is predominantly a tool
to compare different strategies in terms of risk and return. Unfortunately, comparison
of strategies may lead to completely different results as we change the return or risk
measure. A different measure may lead to a different preferred strategy. This will be
illustrated in Section 4.
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Though efficient frontiers are a good means of communicating the results of DFA be-
cause they are well-known, some words of criticism are in place. Cumberworth, Hitchcox,
McConnell and Smith [10] have pointed out that there are pitfalls related to efficient fron-
tiers one has to be aware of. They criticize that typical efficient frontier uses risk measures
that mix together systematic risk (non-diversifiable by shareholders) and non-systematic
risk, which blurs the shareholder value perspective. In addition to that, efficient frontiers
might give misleading advice if they are used to address investment decisions once the
concept of systematic risk has been factored into the equation.

1.6. Solvency Testing. A concept closely related to DFA is solvency testing where the
financial position of the company is evaluated from the perspective of the customers.
The central idea is to quantify in probabilistic terms whether the company will be able
to meet its commitments in the future. This translates into determining the necessary
amount of capital given the level of risk the company is exposed to. For example, does
the company have enough capital to keep the probability of loosing α ·100% of its capital
below a certain level for the risks taken? DFA provides a whole probability distribution
of surplus. For each level α the probability of loosing α · 100% can be derived from this
distribution. Thus DFA serves as a solvency testing tool as well. More information about
solvency testing can be found in Schnieper [37] and [38].

1.7. Structure of a DFA Model. Most DFA models consist of three major parts, as
shown in Figure 1.2. The stochastic scenario generator produces realizations of random
variables representing the most important drivers of business results. A realization of a
random variable in the course of simulation corresponds to fixing a scenario. The second
data source consists of company specific input (e.g. mean severity of losses per line of
business and per accident year), assumptions regarding model parameters (e.g. long-term
mean rate in a mean reverting interest rate model), and strategic assumptions (e.g. in-
vestment strategy). The last part, the output provided by the DFA model, can then
be analyzed by management in order to improve the strategy, i.e. make new strategic
assumptions. This can be repeated until management is convinced by the superiority of
a certain strategy. As pointed out in Cumberworth, Hitchcox, McConnell and Smith [10]
interpretation of the output is an often neglected and non-appreciated part in DFA mod-
elling. For example, an efficient frontier leaves us still with a variety of equally desirable
strategies. At the end of the day management has to decide for only one of them and
selection of a strategy based on preference or utility functions does not seem to provide
a practical solution in every case.

2. Stochastically Modelled Variables

A very important step in the process of building an appropriate model is to identify
the key random variables affecting asset and liability cash flows. Afterwards it has to
be decided whether and how to model each or only some of these factors and the re-
lationships between them. This decision is influenced by considerations of a trade-off
between improvement of accuracy versus increase in complexity which is often felt being
equivalent to a reduction of transparency.
The risks affecting the financial position of a nonlife insurer can be categorized in

various ways. For example, pure asset, pure liability and asset/liability risks. We believe
that a DFA model should at least address the following risks:

• pricing or underwriting risk (risk of inadequate premiums),
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Figure 1.2. Main structure of a DFA model.

• reserving risk (risk of insufficient reserves),
• investment risk (volatile investment returns and capital gains),
• catastrophes.

We could have also mentioned credit risk related to reinsurer default, currency risk and
some more. For a recent, detailed DFA discussion of the possible impact of exchange rates
on reinsurance contracts see Blum, Dacorogna, Embrechts, Neghaiwi and Niggli [5]. A
critical part of a DFA model are the interdependencies between different risk categories,
in particular between risks associated with the asset side and those belonging to liabilities.
The risk of company losses triggered by changes in interest rates is called interest rate
risk. We will come back to the question of modelling dependencies in Section 5.1. Our
choice of company relevant random variables is based on the categorization of risks shown
before.
A key module of a DFA model is an interest rate generator. Many models assume

that interest rates will drive the whole model as displayed for example in Figure 4.1. An
interest rate generator – or economic scenario generator as it is often called to emphasize
the far reaching economic impact of interest rates – is necessary in order to be able to
tackle the problem of evaluating interest rate risk. Moreover, nonlife insurance companies
are strongly exposed to interest rate behavior due to generally large investments in fixed
income assets. In our model implementation we assumed that interest rates were strongly
correlated with inflation, which itself influenced future changes in claim size and claim
frequency. On the other hand, both of these factors affected (future) premium rates.
Furthermore, we assumed correlation between interest rates and stock returns, which are
generally an important component of investment returns.
On the liability side, we explicitly considered four sources of randomness: non-catastro-

phe losses, catastrophe losses, underwriting cycles, and payment patterns. We simulated
catastrophes separately due to quite different statistical behaviour of catastrophe and
non-catastrophe losses. In general the volume of empirical data for non-catastrophe losses
is much bigger than for catastrophe losses. Separating the two led to more homogeneous
data for non-catastrophe losses, which made fitting the data by well-known (right skewed)
distributions easier. Also, our model implementation allowed for evaluating reinsurance
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programs. Testing different deductibles or limits is only possible if the model is able to
generate sufficiently large individual losses. In addition, we currently experience a rapid
development of a theory of distributions for extremal events (see Embrechts, Klüppelberg
and Mikosch [16], and McNeil [33]). Therefore, we considered the separate modelling of
catastrophe and non-catastrophe losses as most appropriate. For each of these two groups
the number and the severity of claims were modelled separately. Another approach
would have been to integrate the two kinds of losses by using heavy-tailed claim size
distributions.
Underwriting cycles are an important characteristic of nonlife companies. They reflect

market and macroeconomic conditions and they are one of the most important factors
affecting business results. Therefore, it is useful to have them included in a DFA model
set-up.
Losses are not only characterized by their (ultimate) size but also by their piecewise

payment over time. This property increases the uncertainties of the claims process by in-
troducing the time value of money and future inflation considerations. As a consequence,
it is necessary not only to model claim frequency and severity but the uncertainties in-
volved in the settlement process as well. In order to allow for reserving risk we used
stochastic payment patterns as a means of estimating loss reserves on a gross and on a
net basis.
In the abstract we pointed out that our intention was to present a DFA model frame-

work. In concrete terms, this means that we present a model implementation that we
found useful to achieve part of the goals outlined in Section 1.4. We do not claim that the
components introduced in the remaining part of the paper represent a high class standard
of DFA modelling. For each of the DFA components considered there are numerous alter-
natives, which might turn out to be more appropriate in particular situations. Providing
a model framework means to present our model as a kind of suggested reference point
that can be adjusted or improved individually.

2.1. Interest Rates. Following Daykin, Pentikäinen and Pesonen [15, p. 231] we assume
strong correlation between general inflation and interest rates. Our primary stochastic
driver is the (instantaneous) short-term interest rate. This variable determines bond
returns across all maturities as well as general inflation and superimposed inflation by
line of business.
An alternative to the modelling of interest and inflation rates as outlined in this section

and probably well-known to actuaries is the Wilkie model, see Wilkie [42], or Daykin,
Pentikäinen and Pesonen [15, pp. 242–250].

2.1.1. Short-Term Interest Rate. There are many different interest rate models used by
financial economists. Even the literature offering surveys of interest rate models has
grown considerably. The following references represent an arbitrary selection: Ahlgrim,
D’Arcy and Gorvett [1], Musiela and Rutkowski [35, pp. 281–302] and Björk [4]. The final
choice of a specific interest rate model is not straightforward, given the variety of existing
models. It might be helpful to post some general features of interest rate movements,
which we took from Ahlgrim, D’Arcy and Gorvett [1]:

1. Volatility of yields at different maturities varies.
2. Interest rates are mean-reverting.
3. Rates at different maturities are positively correlated.
4. Interest rates should not be allowed to become negative.
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5. The volatility of interest rates should be proportional to the level of the rate.

In addition to these characteristics there are some practical issues raised by Rogers [36].
According to Rogers an interest rate model should be

• flexible enough to cover most situations arising in practice,
• simple enough that one can compute answers in reasonable time,
• well-specified, in that required inputs can be observed or estimated,
• realistic, in that the model will not do silly things.

It is well-known that an interest rate model meeting all the criteria mentioned does
not exist. We decided to rely on the one-factor Cox–Ingersoll–Ross (CIR) model. CIR
belongs to the class of equilibrium based models where the instantaneous rate is modelled
as a special case of an Ornstein–Uhlenbeck process:

(2.1) dr = κ (θ − r) dt+ σ rγ dZ ,

By setting γ = 0.5 we arrive at CIR also known as the square root process

(2.2) drt = a (b− rt) dt+ s√rt dZt ,

where

rt = instantaneous short-term interest rate,

b = long-term mean,

a = constant that determines the speed of reversion

of the interest rate toward its long-run mean b,

s = volatility of the interest rate process,

(Zt) = standard Brownian motion.

CIR is a mean-reverting process where the short rate stays almost surely positive. More-
over, CIR allows for an affine model of the term structure making the model analytically
more tractable. Nevertheless, some studies have shown (see Rogers [36]) that one-factor
models in general do not satisfactorily fit empirical data and restrict term structure dy-
namics. Multifactor models like Brennan and Schwartz [6] or Longstaff and Schwartz [29]
or whole yield approaches like Heath–Jarrow–Morton [20] have proven to be more appro-
priate in this respect. But this comes at the price of being much more involved from
a theoretical and a practical implementation point of view. Our decision for CIR was
motivated by practical considerations. It is an easy to implement model that gave us
reasonable results when applied to US market data. Moreover, it is a standard model
and in widespread use, in particular in the US.
Actually, we are interested in simulating the short rate dynamics over the projection

period. Hence, we discretized the mean reverting model (2.2) leading to

(2.3) rt = rt−1 + a (b− rt−1) + s
√
rt−1 Zt ,

where

rt = the instantaneous short-term interest rate

at the beginning of year t,

Zt ∼ N (0, 1), Z1, Z2, . . . i.i.d.,

a, b, s as in (2.2).
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Cox, Ingersoll and Ross [9] have shown that rates modelled by (2.2) are positive almost
surely. Although it is hard for the short rate process to go negative in the discrete version
of the last equation the probability is not zero. To be sure we changed equation (2.3) to

(2.4) rt = rt−1 + a (b− rt−1) + s
√
rt−1

+ Zt .

A generalization of CIR is given by the following equation, where setting g = 0.5 yields
again CIR:

(2.5) rt = rt−1 + a (b− rt−1) + s (rt−1
+)g Zt .

This general version provides more flexibility in determining the degree of dependence
between conditional volatility of interest rate changes and the level of interest rates.
The question of what an appropriate level for g might be leads to the field of model

calibration which we will encounter at several places within DFA modelling. In fact, the
problem plays a dominant role in DFA tempting many practitioners to state that DFA
is all about calibration. Calibrating an interest rate model of the short rate refers to
determining parameters – a, b, s and g in equation (2.5) – so as to ensure that modelled
spot rates (based on the instantaneous rate) correspond to empirical term structures
derived from traded financial instruments. Björk [4] calls the procedure to achieve this
inversion of the yield curve. However, the parameters can not be uniquely determined
from an empirical term structure and term structure of volatilities resulting in a non-
perfect fit. This is a general feature of equilibrium interest rate models. Whereas this is
a critical point for valuing interest rate derivatives, the impact on long-term DFA results
may be limited.
With regard to calibrating the inflation model it should be mentioned that building

models of inflation based on historical data may be a feasible approach. But it is unclear
whether the future evolution of inflation will follow historical patterns: DFA output will
probably reflect the assumptions with regard to inflation dynamics. Consequently, some
attention needs to be paid to these assumptions. Neglecting this is a common pitfall of
DFA modelling. In order to allow for stress testing of parameter assumptions, the model
should not only rely on historical data but on economic reasoning and actuarial judgment
of future development as well.

2.1.2. Term Structure. Based on equation (2.2) we calculated the prices F (t, T, (rt)) being
in place at time t of zero-coupon bonds paying 1 monetary unit at time of maturity t+T ,
as

(2.6) F (t, T, (rt)) = EQ [e
− ∫ T

0 rt+s ds|rt] = elog AT −rt BT ,

where

AT =
( 2Ge(a+G) T/2

(a+G) (eGT − 1) + 2G

)2ab/s2

,

BT =
2(eGT − 1)

(a +G) (eGT − 1) + 2G
,

G =
√
a2 + 2s2 .

A proof of this result can be found in Lamberton and Lapeyre [27, pp. 129–133]. Note,
that the expectation operator is taken with respect to the martingale measure Q assuming
that equation (2.2) is set up under the martingale measure Q as well. The continuously
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compounded spot rates Rt,T at time t derived from equation (2.6) determine the modelled
term structure of zero-coupon yields at time t:

(2.7) Rt,T = − logF (t, T, (rt))

T
=
rtBT − logAT

T
,

where T is the time to maturity.

2.1.3. General Inflation. Modelling loss payments requires having regard to inflation.
Following our introductory remark to Section 2.1 we simulated general inflation it by
using the (annualized) short-term interest rate rt. We did this by using a linear regression
model on the short-term interest rate:

(2.8) it = a
I + bI rt + σ

I εIt ,

where

εIt ∼ N (0, 1), εI1, ε
I
2, . . . i.i.d.,

aI, bI, σI: parameters that can be estimated by

regression, based on historical data.

The index I stands for general inflation.

2.1.4. Change by Line of Business. Lines of business are affected differently by general
inflation. For example, car repair costs develop differently over time than business inter-
ruption costs. Claims costs for specific lines of business are strongly affected by legislative
and court decisions, e.g. product liability. This gives rise to so-called superimposed infla-
tion, adding to general inflation. More on this can be found in Daykin, Pentikäinen and
Pesonen [15, p. 215] and Walling, Hettinger, Emma and Ackerman [41].
To model the change in loss frequency δF

t (i.e. the ratio of number of losses divided by
number of written exposure units), the change in loss severity δX

t , and the combination
of both of them, δP

t , we used the following formulas:

δF
t = max (aF + bF it + σ

F εFt ,−1),(2.9)

δX
t = max (aX + bX it + σ

X εXt ,−1),(2.10)

δP
t = (1 + δF

t ) (1 + δ
X
t )− 1,(2.11)

where

εFt ∼ N (0, 1), εF1 , ε
F
2 , . . . i.i.d.,

εXt ∼ N (0, 1), εX1 , ε
X
2 , . . . i.i.d., ε

F
t1
, εXt2 independent ∀ t1, t2 ,

aF , bF , σF , aX , bX , σX: parameters that can be estimated by

regression, based on historical data.

The variable δP
t represents changes in loss trends triggered by changes in inflation rates.

δP
t is applied to premium rates as will be explained in Section 3, see (3.2). Its construction
through (2.11) ensures correlation of aggregate loss amounts and premium levels that can
be traced back to inflation dynamics.
The technical restriction of setting δF

t and δX
t to at least −1 was necessary to avoid

negative values for numbers of losses and loss severities.
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We modelled changes in loss frequency dependent on general inflation because empirical
observations revealed that under specific economic conditions (e.g. when inflation is high)
policyholders tend to report more claims in certain lines of business.
The corresponding cumulative changes δF,c

t and δX,c
t can be calculated by

δF,c
t =

t∏
s=t0+1

(1 + δF
s ),(2.12)

δX,c
t =

t∏
s=t0+1

(1 + δX
s ),(2.13)

where
t0 + 1 = first year to be modelled.

2.2. Stock Returns. The major asset classes of a nonlife insurance company comprise
fixed income type assets, stocks and real estate. Here, we confine ourselves to a description
of the model employed for stocks. Modelling stocks can start either with concentrating
on stock prices or stock returns (although both methods should turn out to be equivalent
in the end). We followed the last approach since we could rely on a well established
theory relating stock returns and the risk-free interest rate: the Capital Asset Pricing
Model (CAPM) going back to Sharpe–Lintner, see for example Ingersoll [22].
In order to apply CAPM we needed to model the return of a portfolio that is supposed

to represent the stock market as a whole, the market portfolio. Assuming a significant
correlation between stock and bond prices and taking into account multi-periodicity of a
DFA model we came up with the following linear model for the stock market return in
projection year t conditional on the one-year spot rate Rt,1 at time t.

(2.14) E [rM
t |Rt,1] = a

M + bM (eRt,1 − 1) ,

where

eRt,1−1 = risk-free return, see (2.7),

aM , bM = parameters that can be estimated by regression,

based on historical data and economic reasoning.

Since we modelled sub periods of length one year, we conditioned on the one-year spot
rate. Note that rM

t must not be confused with the instantaneous short-term interest
rate rt in CIR. Note also that a negative value of bM means that increasing interest rates
entail expected stock prices falling.
Now we can apply the CAPM formula to get the conditional expected return on an

arbitrary stock S:

(2.15) E [rS
t |Rt,1] = (eRt,1 − 1) + βS

t

(
E [rM

t |Rt,1]− (eRt,1 − 1)
)
,

where

eRt,1−1 = risk-free return,

rM
t = return on the market portfolio,

βS
t = β-coefficient of stock S

=
Cov (rS

t , r
M
t )

Var (rM
t )

.
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If we assume a geometric Brownian Motion for the stock price dynamics we get a lognor-
mal distribution for 1 + rS

t :

(2.16) 1 + rS
t ∼ lognormal (µt, σ

2), rS
1 , r

S
2 , . . . independent,

with µt chosen to yield

mt = e
µt+σ2/2,

where

mt = 1 + E [rS
t |Rt,1], see (2.15),

σ2 = estimated variance of logarithmic historical stock returns.

Again, we would like to emphasize that our method of modelling stock returns represents
only one out of many possible approaches.

2.3. Non-Catastrophe Losses. Usually, non-catastrophe losses of various lines of busi-
ness develop quite differently compared to catastrophe losses, see also the introductory
remarks of Section 2. Therefore, we modelled non-catastrophe and catastrophe losses
separately and per line of business. For simplicity’s sake, we will drop the index denoting
line of business in this section.
Experience shows that loss amounts depend also on the age of insurance contracts. The

aging phenomenon describes the fact that the loss ratio – i.e. the ratio of (estimated) total
loss divided by earned premiums – decreases when the age of policy increases. For this
reason we divided insurance business into three classes, as proposed by D’Arcy, Gorvett,
Herbers, Hettinger, Lehmann and Miller [13]:

• new business (superscript 0),
• renewal business – first renewal (superscript 1), and
• renewal business – second and subsequent renewals (superscript 2).

More information about the aging phenomenon can be found in D’Arcy and Doherty [11]
and [12], Feldblum [19], and in Woll [44].
Disregarding the time of incremental loss payment for the moment, the two main

stochastic factors affecting total claim amount are: number of losses and severity of
losses, see for instance Daykin, Pentikäinen and Pesonen [15]. The choice of a specific
claim number and claim size distribution depends on the line of business and is the result
of fitting distributions to empirical data requiring foregoing adjustments of historical
loss data. In this section we shall demonstrate our model of non-catastrophe losses by
referring to a negative binomial (claim number) and a gamma (claim size) distribution.

To simulate loss numbers N j
t and mean loss severities Xj

t = 1

Nj
t

∑Nj
t

i=1X
j
t (i) for period t

and renewal category j we utilized mean values µF,j, µX,j and standard deviations σF,j,
σX,j of historical data for loss frequencies and mean loss severities. We took also into
account inflation and written exposure units. Because loss frequencies behave more stable
than loss numbers, we used estimations of loss frequencies instead of relying on estimates
of loss numbers.
As an example of a distribution for claim numbers N j

t we consider the negative binomial
distribution with mean mN,j

t and variance vN,j
t . Generally, we reserved the variables m

and v for mean and variance of different factors. These factors were referred by attaching
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a superscript (N,X, Y, . . . ) to m or v:

N j
t ∼ NB (a, p), j = 0, 1, 2 ,

N j
1 , N

j
2 , . . . independent,

(2.17)

with a and p chosen to yield

mN,j
t = E [N j

t ] =
a (1− p)
p

,

vN,j
t = Var (N j

t ) =
a (1− p)
p2

,

(2.18)

where

mN,j
t = wj

t µ
F,j δF,c

t ,

vN,j
t = (wj

t σ
F,j δF,c

t )2,

wj
t = written exposure units; introduced in more detail

and modelled in (3.3),

µF,j = estimated frequency, based on historical data,

σF,j = estimated standard deviation of frequency,

based on historical data,

δF,c
t = cumulative change in loss frequency, see (2.12).

Negative binomial distributed variables N exhibit over-dispersion: Var(N ) ≥ E[N ]. Con-

sequently, this distribution yields a reasonable model only if vN,j
t ≥ mN,j

t .
Historical data are a good basis to calibrate this model as long as there had been no

significant structural changes within a line of business in prior years. Otherwise, explicit
consideration of exposure data may be a better basis for calibrating the claims process.
In the following we will present an example of a claim size distribution for high fre-

quency, low severity losses. Due to the fact that the density function of the gamma
distribution decreases exponentially under appropriate choice of parameters it is a distri-
bution serving our purposes well:

Xj
t ∼ Gamma(α, θ), j = 0, 1, 2 ,

Xj
1 , X

j
2 , . . . independent,

(2.19)

with α and θ chosen to yield

mX,j
t = E [Xj

t ] = α θ ,

vX,j
t = Var (Xj

t ) = α θ
2,
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where

mX,j
t = µX,j δX,c

t ,

vX,j
t = (σX,j δX,c

t )2/δF,c
t ,

µX,j = estimated mean severity, based on historical data,

σX,j = estimated standard deviation, based on historical data,

δX,c
t = cumulative change in loss severity, see (2.13),

δF,c
t = cumulative change in loss frequency, see (2.12).

By multiplying the number of losses with the mean severity, we got the total (non-
catastrophic) loss amount in respect of a certain line of business:

∑2
j=0N

j
t X

j
t .

2.4. Catastrophes. We are turning now to losses triggered by catastrophic events like
windstorm, flood, hurricane, earthquake, etc. In Section 2 we mentioned that we could
have integrated non-catastrophic and catastrophic losses by using heavy-tailed distri-
butions, see Embrechts, Klüppelberg and Mikosch [16]. Nevertheless, we decided for
separate modelling, see our reasons given in Section 2.
There are different ways of modelling the number of catastrophes, e.g. negative bino-

mial, poisson, or binomial distribution with mean mM and variance vM . We assumed
that there were no trends in the number of catastrophes:

Mt ∼ NB, Pois, Bin, . . . (mean mM , variance vM),

M1,M2, . . . i.i.d.,
(2.20)

where

mM = estimated number of catastrophes, based on historical data,

vM = estimated variance, based on historical data.

Contrary to the modelling of non-catastrophe losses, we simulated the total (economic)
loss (i.e. not only the part the insurance company in consideration has to pay) for each
catastrophic event i ∈ {1, . . . ,Mt} separately. Again, there are different probability
distributions, which prove to be adequate for this purpose, in particular GPD (generalized
Pareto distribution) Gξ,β. GPD’s play an important role in Extreme Value Theory, where
Gξ,β appears as the limit distribution of scaled excesses over high thresholds, see for
instance Embrechts, Klüppelberg and Mikosch [16, p. 165]. In the following equation
Y i

t describes the total economic loss caused by catastrophic event i ∈ {1, . . . ,Mt} in
projection period t.

Yt,i ∼ lognormal, Pareto, GPD, . . . (mean mY
t , variance v

Y
t ),

Yt,1, Yt,2, . . . i.i.d.,

Yt1,i1 , Yt2,i2 independent ∀ (t1, i1) �= (t2, i2),

(2.21)
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where

mY
t = µY δX,c

t ,

vY
t = (σY δX,c

t )2,

µY = estimated loss severity, based on historical data,

σY = estimated standard deviation, based on historical data,

δX,c
t = cumulative change in loss severity, see (2.13).

After having generated Y i
t we split it into pieces reflecting the loss portions of different

lines of business:

(2.22) Y k
t,i = a

k
t,i Yt,i , k = 1, . . . , l ,

where

k = line of business,

l = total number of lines considered,

∀ i ∈ {1, . . . ,Mt}: (a1
t,i, . . . , a

l
t,i) ∈ {x ∈ [0, 1]l, ‖x‖1 = 1} ⊂ Rl is a

random convex combination, whose probability distribution within

the (l - 1) dimensional tetraeder can be arbitrarily specified.

Simulating the percentages ak
t,i stochastically over time varies the impact of catastrophes

on different lines favoring those companies, which are well diversified in terms of number
of lines written.
Knowing the market share of the nonlife insurer and its reinsurance structure permits

calculation of loss payments allowing as well for catastrophes. Although random vari-
ables were generated independently our model introduced differing degrees of dependence
between aggregate losses of different lines by ensuring that they were affected by same
catastrophic events (although to different degrees).

2.5. Underwriting Cycles. More or less irregular cycles of underwriting results sev-
eral years in length are an intrinsic characteristic of the (deregulated) nonlife insurance
industry. Cycles can vary significantly between countries, markets and lines of business.
Sometimes their appearance is masked by smoothing of published results. There are prob-
ably many potential background factors, varying from period to period, causing cycles.
Among others we mention

• time lag effect of the pricing procedure,
• trends, cycles and short-term variations of claims,
• fluctuations in interest rate and market values of assets.

Besides having introduced cyclical variation driven by interest rate movements – remem-
ber that short-term interest rates are the main factor affecting all other variables in the
model – we added a sub-model concerned with premium cycles induced by competitive
strategies. In this section we shall describe this approach.
We used a homogeneous Markov chain model (in discrete time) similar to D’Arcy,

Gorvett, Hettinger and Walling [14]: We assign one of the following states to each line of
business for each projection year:

1 weak competition,
2 average competition,
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3 strong competition.

In state 1 (weak competition) the insurance company demands high premiums being
aware that it can most likely increase its market share. In state 3 (strong competition) the
insurance company has to accept low premiums in order to at least keep its current market
share. Assuming a stable claim environment, high premiums are equivalent to high profit
margin over pure premium, and low premiums equal low profit margin. Changing from
one state to another might cause significant changes in premiums.
The transition probabilities pij, i, j ∈ {1, 2, 3}, which denote the probability of chang-

ing from state i to state j from one year to the next are assumed to be equal for each
projection year. This means that the Markov chain is homogeneous. The pij ’s form a
matrix T :

T =

 p11 p12 p13
p21 p22 p23
p31 p32 p33

 .
There are many different possibilities to set these transition probabilities pij, i, j ∈

{1, 2, 3}. It is possible to model the pij ’s depending on current market conditions appli-
cable to each line of business separately. If the company writes l lines of business this
will imply 3l states of the world. Because business cycles of different lines of business
are strongly correlated, only few of the 3l states are attainable. Consequently, we have
to model L � 3l states, where the transition probabilities pij , i, j ∈ {1, . . . , L} remain
constant over time. It is possible that some of them are zero, because there may exist
some states that cannot be attained directly from certain other states. When L states
are attainable, the matrix T has dimension L× L:

T =


p11 p12 . . . p1L

p21 p22 . . . p2L
...

...
. . .

...
pL1 pL2 . . . pLL

 .
In order to fix the transition probabilities pij in any of the above mentioned cases
each state i should be treated separately and probabilities assigned to the variables
pi1, . . . , piL such that

∑L
j=1 pij = 1 ∀i. Afterwards, the stationary probability distribu-

tion π has to be considered which the chosen probability distribution generally converges
to, irrespective of the selected starting point, given that the Markov chain is irreducible
and positive recurrent. We took advantage of the fact that π = π T to check whether
the estimated values for the transition probabilities are reasonable because it is easier to
estimate the stationary probability distribution π than to find suitable values for the pij ’s.
Since it is extremely delicate to estimate the transition probabilities in an appropriate
way, one should not only rely on historical data but use experience based knowledge as
well.
It is crucial to set the initial market conditions correctly in order to produce realistic

financial projections of the insurance entity.

2.6. Payment Patterns. So far we have been focusing on claim numbers and severities.
This section is dedicated to explaining how we managed to model the uncertainties of the
claim settlement process, i.e. the random time to payment, as indicated in Section 2. We
considered a whole loss portfolio belonging to a specific line of business and its aggregate
yearly loss payments in different calendar years (or development periods). The piecewise
(or incremental) payment of aggregate losses stemming from one and the same accident
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Figure 2.1. Paid losses (upper left triangle), outstanding loss payments
and future loss payments.

year forms a payment pattern. An (incremental) payment pattern is a vector with length
equal to an assumed number of development periods. The i-th vector component describes
the percentage of estimated ultimate loss amount (on aggregate portfolio level) to be paid
out in the (i−1)-st development year. If we consider yearly loss payments pertaining to
a specific accident year t then the i-th development year refers to calendar year t+ i.
In the following we will denote accident years by t1 and development years by t2. For

simplicity’s sake, we will drop the index representing line of business for the most part
of this section.
Very often one finds payment patterns treated as being deterministic in DFA models.

This will be justified by pointing out that payment patterns do not change significantly
from one year to the next. We believe that in order to account for reserving risk in a
DFA model properly one has to have a stochastic model for the timing of loss payments
as well.
Generally, for each prior accident year considered, the loss amounts which have been

paid to date are known. Figure 2.1 displays this in graphical format. The triangle
formed by the area on the left hand side of the bold line – the loss triangle – represents
empirical, i.e. known, loss payments whereas the remaining parts represent outstanding
and future loss payments, which are unknown. For example, if we assume to be at the
end of calendar year 2000 (t0 = 2000) considering accident year 1996 (= t0 −4), we know
the loss amounts pertaining to accident year 1996, which have been paid out in calendar
years 1996, 1997, . . . , 2000. But we do not know the amounts that will be paid in calendar
year 2001 and later. Some very popular actuarial techniques for estimating outstanding
loss payments – which are characterized by those cell entries (t1, t2), t1 ≤ t0, belonging to
the right hand side of the bold line – are based on deriving an average payment pattern
from loss payments represented by the loss triangle.
In the simplified model description of this section we will not take into account the

empirical fact that payment patterns of single large losses differ from those of aggregate
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losses. We will also disregard changes in future claim inflation, although it might have a
strong impact on certain lines of business.
For each line we assumed an ultimate development year τ when all claims arising from

an accident year would be paid completely. Incremental claim payments denoted by Zt1,t2

are known for previous years t1 + t2 ≤ t0. Ultimate loss amounts Zult
t1

:=
∑τ

t=0 Zt1,t vary
by accident year t1. In order to determine loss reserves taking into account reserving risk
we first had to simulate random loss payments Zt1,t2 . As a second step we needed to have
a procedure for estimating ultimate loss amounts Zult

t1
at each future time.

We distinguished two cases. First we will explain the modelling of outstanding loss
payments pertaining to previous accident years followed by a description to model loss
payments in respect of future accident years.
For previous accident years (t1 ≤ t0) payments Zt1,t2 , with t1 + t2 ≤ t0 are known.

We used them as a basis for predicting outstanding payments. We used a chain-ladder
type procedure (for the chain-ladder method, see Mack [31]), i.e. we applied ratios to
cumulative payments per accident year. The following type of loss development factor
was defined

(2.23) dt1,t2 :=
Zt1,t2∑t2−1
t=0 Zt1,t

, t2 ≥ 1.

Note that this ratio is not a typical chain-ladder link ratio. When mentioning loss devel-
opment factors in this section we are always referring to factors defined by (2.23).
Since a lognormal distribution usually provides a good fit to historical loss development

factors, we used the following model for outstanding loss payments in calendar years
t1 + t2 ≥ t0 + 1 for accident years t1 ≤ t0:

(2.24) Zt1,t2 = dt1,t2 ·
t2−1∑
t=0

Zt1,t ,

where

dt1,t2 ∼ lognormal(µt2, σ
2
t2),

µt2 = estimated logarithmic loss development factor for

development year t2, based on historical data,

σt2 = estimated logarithmic standard deviation of loss

development factors, based on historical data.

This loss payment model is able to provide realistic loss payments as long as there have
been no significant structural changes in the loss history. However, if for an accident year
t1 ≤ t0 a high percentage of ultimate claim amount had been paid out in one of the first
development years t2 ≤ t0 − t1, this approach would increase the reserve due to higher
development factors leading to overestimation of outstanding payments. Consequently,
single large losses should be treated separately. Sometimes changes in law affect insurance
companies seriously. Such unpredictable structural changes are an important risk. A well-
known example are health problems caused by buildings contaminated with asbestos.
These were responsible for major losses in liability insurance. Such extreme cases should
perhaps be modelled by separate scenarios.
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Ultimate loss amounts for accident years t1 ≤ t0 were calculated as

(2.25) Zult
t1

=
τ∑

t=0

Zt1,t.

The second type of loss payments are due to future accident years t1 ≥ t0 + 1. The
components determining total loss amounts in respect of these accident years have already
been explained in Sections 2.3 and 2.4:

(2.26) Zult
t1
(k) =

2∑
j=0

N j
t1(k) X

j
t1(k) + bt1(k)

Mt1∑
i=1

Y k
t1,i − Rt1(k) ,

where

N j
t1(k) = number of non-catastrophe losses in accident year t1 for

line of business k and renewal class j, see (2.17),

Xj
t1(k) = severity of non-catastrophe losses in accident year t1 for

line of business k and renewal class j, see (2.19),

bt1(k) = market share of the company in year t1 for line of business k,

Mt1 = number of catastrophes in accident year t1, see (2.20),

Y k
t1,i = severity of catastrophe i in line of business k in accident

year t1, see (2.22),

Rt1(k) = reinsurance recoverables; a function of the Y k
t1,i’s, depending

on the company’s reinsurance program.

It remains to model the incremental payments of these ultimate loss amounts over the
development periods. Therefore, we simulated incremental percentages At1,t2 of ultimate
loss amount by using a beta probability distribution with parameters based on payment
patterns of previous calendar years:

(2.27) At1,t2 =

{
Bt1,0 for t2 = 0,

Bt1,t2

(
1−∑t2−1

t=0 At1,t

)
for t2 ≥ 1,

where

Bt1,t2 = incremental loss payment due to accident year t1 in development

year t2 in relation to the sum of remaining incremental loss

payments pertaining to the same accident year

∼ beta(α, β), α, β > −1.

Here α and β are chosen to yield

mt1,t2 = E [Bt1,t2 ] =
α + 1

α + β + 2
,

vt1,t2 = Var (Bt1,t2) =
(α + 1) (β + 1)

(α + β + 2)2 (α+ β + 3)
,

(2.28)
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where

mt1,t2 = estimated mean value of incremental loss payment due to accident

year t1 in development year t2 in relation to the sum of remaining

incremental loss payments pertaining to the same accident year,

based on
At1−1,t2∑τ
t=t2

At1−1,t
,

At1−2,t2∑τ
t=t2
At1−2,t

, . . . ,

vt1,t2 = estimated variance, based on the same historical data.

It can happen that α>−1, β >−1 satisfying (2.28) do not exist. This means that the
estimated variance reaches or exceeds the maximum variance mt1,t2(1−mt1,t2) possible for
a beta distribution with mean mt1,t2 . In this case, we resorted to a Bernoulli distribution
for Bt1,t2 because the Bernoulli distribution marks a limiting case of the beta distribution:

Bt1,t2 ∼ Be(mt1,t2).

This approach limited the maximum variance to mt1,t2(1−mt1,t2).
For each future accident year (t1 ≥ t0) we finally calculated loss payments in develop-

ment year t2 by:

(2.29) Zt1,t2 = At1,t2 Z
ult
t1 .

So far we have been dealing with the simulation of incremental claim payments due to
an accident year. We still have to explain how we arrived at reserve estimates at each
time during the projection period. For each accident year t1 we estimated the ultimate
claim amount in each development year t2 through:

(2.30) Ẑult
t1,t2 =

τ∏
t=t2+1

(1 + eµt)

t2∑
t=0

Zt1,t ,

where

µt = estimated logarithmic loss development factor for

development year t, based on historical data,

Zt1,t = simulated losses for accident year t1, to be paid in

development year t, see (2.24) and (2.29).

Note that (2.30) is an estimate at the end of calendar year t1+t2, whereas (2.26) represents
the real future value. Reserves in respect of accident year t1 at the end of calendar year
t1 + t2 are determined by the difference between estimated ultimate claim amount Ẑult

t1,t2
and paid to date losses in respect of accident year t1. Reserving risk materializes through
variations of the difference between the simulated (real) ultimate claim amounts and the
estimated values.
Similarly, at the end of calendar year t1+ t2 we got an estimate for discounted ultimate

losses for each accident year t1. Note that only future loss payments are discounted
whereas paid to date losses are taken at face value:

(2.31) Ẑult,disc
t1,t2 =

(
1 + e−Rt1+t2,1eµt2+1 +

τ∑
s=t2+2

e−Rt1+t2,s−t2eµs

s−1∏
t=t2+1

(1 + eµt)

) t2∑
t=0

Zt1,t ,
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where

Rt,T = T year spot rate at time t, see (2.7),

µt = estimated logarithmic loss development factor for

development year t, based on historical data,

Zt1,t = simulated losses for accident year t1, paid in

development year t, see (2.24) and (2.29).

Interesting references on stochastic models in loss reserving are Christofides [8] and
Taylor [40].

3. The Corporate Model: From Simulations to Financial Statements

As pointed out in Section 1.4, DFA is an approach to facilitate and help justify manage-
ment decisions. These are driven by a variety of considerations: maximizing shareholder
value, constraints imposed by regulators, tax optimization and rankings by rating agencies
and analysts. Parties outside the company rely on financial reports in making decisions
regarding their relationship with the company. Therefore, a DFA model has to bridge
the gap between stochastic simulation of cash flows and financial statements (pro forma
balance sheets and income statements). The accounting process helps organize cash flow
simulations into a readily understood and consistent financial structure. This requires
a substantial number of accrual items to be generated in order to develop accounting
entries for the model’s financial statements.
A DFA model has to allow for a statutory accounting framework if it wants to address

solvency requirements imposed by regulators thoroughly. If the focus is on shareholder
value the model should predominantly be concerned with economic values, implying, for
example, assets being marked-to-market and all policy liabilities being discounted. While
statutory accounting focuses on solvency and balance sheet, generally accepted accounting
principles (GAAP) emphasize income statements and comparability between entities of
different nature. Consequently, a perfect DFA model should, among other things, include
different accounting frameworks (i.e. statutory, GAAP and economic). This increases
implementation costs substantially. A less burdensome approach would be to concentrate
on GAAP accounting taking into account solvency requirements by introducing them as
constraints to the model where appropriate. Our DFA implementation focused on an
economic perspective.
In order to keep the exposition simple and within reasonable size we will mention only

some key relationships of the corporate model. A much more comprehensive description
is given in Kaufmann [24].
One of the fundamental variables is (economic) surplus Ut, defined as the difference be-

tween the market value of assets and the market value of liabilities (derived by discounting
loss reserves and unearned premium reserves). The amount of available surplus reflects
the financial strength of an insurance company and serves as a measure for shareholder
value. We consider a company as being insolvent once Ut < 0.
Change in surplus is determined by the following cash flows:

(3.1) ∆Ut = Pt + (It − It−1) + (Ct − Ct−1)− Zt − Et − (Rt − Rt−1)− Tt,
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where

Pt = earned premiums,

It = market value of assets (including realized capital gains in year t),

Ct = equity capital,

Zt = losses paid in calendar year t,

Et = expenses,

Rt = (discounted) loss reserves,

Tt = taxes.

Note that Ct − Ct−1 describes the result of capital measures like issuance of new equity
capital or capital reduction.
We derived earned from written premiums. For each line of business, written premiums

P j
t for renewal class j should depend on change in loss trends, the position in the under-

writing cycle and on the number of written exposures. This leads to written premium P̃ j
t

of

(3.2) P̃ j
t = (1 + δP

t ) (1 + cmt−1,mt)
wj

t

wj
t−1

P̃ j
t−1 , j = 0, 1, 2 ,

where

δP
t = change in loss trends, see remarks after (2.11),

mt = market condition in year t, see Section 2.5,

cA,B = constant that describes how premiums develop when

changing from market condition A to B; cA,B can be

estimated based on historical data,

w0
t = written exposure units for new business,

w1
t = written exposure units for renewal business, first renewal,

w2
t = written exposure units for renewal business, second and

subsequent renewals.

Description of the calculation of initial values P̃ j
t0 in (3.2) will be deferred to the paragraph

subsequent to equation (3.4). Variables cA,B have to be available as input parameters
at the start of the DFA analysis. When estimating the percentage change of premiums
implied by changing from market condition A to B it seems plausible to assume that the
final impact is zero if market conditions change back from B to A. This translates into
(1+cA,B)(1+cB,A) = 1. Also, the impact on premium changes triggered by changing from
market condition A to B and from B to C afterwards should be the same as changing
from A to C directly: (1 + cA,B)(1 + cB,C) = (1 + cA,C). We assumed an autoregressive
process of order 1, AR(1), for the modelling of exposure unit development:

(3.3) wj
t = (aj + bj wj

t−1 + ε
j
t )

+, j = 0, 1, 2 ,

where

εjt ∼ N (0, (σj)2), εj1, ε
j
2, . . . i.i.d.,

aj , bj , σj = parameters that can be estimated based on historical data.
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The initial values wj
t0 are known since they represent the current number of exposure

units. Choosing parameter bj < 1 ensures stationarity of the AR(1) process (3.3). When
deriving parameters aj and bj , prior adjustments to historical data might be necessary
if jumps in number of exposure units had occurred caused by acquisition or transfer of
loss portfolios. We found it helpful to admit deterministic modelling of exposure growth
as well in order to allow for these effects, which are mostly anticipated before changes in
the composition of the portfolio become effective.
Setting premium rates based on knowledge of past loss experience and exposure growth

as expressed in (3.2) leaves us still with substantial uncertainties with regard to the ade-
quacy of premiums. These uncertainties are conveyed in the term underwriting risk. Note
that written premiums represented by equation (3.2) would come close to be adequate

if the realizations of all random variables referring to projection year t (δP
t , cmt−1,mt , w

j
t )

were known in advance and assuming adequacy of current premiums P̃ j
t0 . Unfortunately,

premiums to be charged in year t have to be determined prior to the beginning of year t.
Therefore, random variables in (3.2) have to be replaced by estimations in order to model
written premiums P j

t , which would be charged in projection year t.

(3.4) P j
t = (1 + δ̂P

t ) (1 + ĉmt−1,mt)
ŵj

t

wj
t−1

P̃ j
t−1 , j = 0, 1, 2 ,

where we got the estimates via their expected values:

δ̂P
t = [1+ aX+bX(aI+bI(ab+(1−a)rt−1))][1+a

F+bF (aI+bI(ab+(1−a)rt−1))]−1,

see (2.11), (2.10), (2.9), (2.8) and (2.4).

ĉmt−1,mt =

l(k)∑
m=1

pmt−1,m cmt−1,m ,

l(k) = number of states for line of business k, see Section 2.5,

pmt−1,m = transition probability, see Section 2.5.

ŵj
t = a

j + bj wj
t−1, see (3.3).

While (3.2) represents a random variable that describes (almost) adequate premiums,
(3.4) is the expected value of this random variable representing actually written premiums.
Note that the time index t = t0 refers to the year prior to the first projection year. By
combining (3.2) and (3.4) we deduce that the initial values P̃ j

t0 can be calculated via P j
t0 :

(3.5) P̃ j
t0 =

1 + δP
t0

1 + δ̂P
t0

1 + cmt0−1,mt0

1 + ĉmt0−1,mt0

wj
t0

ŵj
t0

P j
t0 , j = 0, 1, 2 .

P j
t0 represent written premiums charged for the last year and still valid just before the

start of the first projection year. We assumed that premiums P j
t0 were adequate and

based on established premium principles allowing for the cost of capital to be earned.
An alternative of setting starting values according to (3.5) would be to use business plan
data instead. This is an approach applicable at several places of the model.
By using written premiums P j

t (k) as given in (3.4) where the index k denotes line
of business, we got the following expression for total earned premiums of all lines and
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renewal classes (see explanation in Section 2.3) combined:

(3.6) Pt =

l∑
k=1

2∑
j=0

aj
t (k)P

j
t (k) +

(
1− aj

t−1(k)
)
P j

t−1(k) ,

where

aj
t (k) = percentage of premiums earned in year written,

estimated based on historical data.

We restricted ourselves to modelling only the most important asset classes, i.e. fixed
income type investments (e.g. bonds, policy loans, cash), stocks, and real estate. Mod-
elling of stock returns has already been mentioned in Section 2.2, future prices of fixed
income investments can be derived from the generated term structure explained in Sec-
tion 2.1. Our approach of modelling real estate was very similar to the stock return model
of Section 2.2.
Future investment profits depend not only on the development of market values of assets

currently on the balance sheet but also on decisions how new funds will be reinvested.
In order to build a DFA model that really deserves to be called dynamic we should
account for potential changes of asset allocation in future years compared to a pure static
approach that keeps the asset allocation unchanged. This requires defining investment
rules depending on specific economic conditions.
Capital measures ∆Ct = Ct − Ct−1 were modelled as additions or deductions from

surplus depending on a target reserves-to-surplus ratio. A purely deterministic approach
that increased or decreased equity capital by a certain amount at specific times would
have been an alternative.
Aggregate loss payments in projection year t were calculated based on variables defined

in Section 2.6:

(3.7) Zt =
l∑

k=1

τ(k)∑
t2=0

Zt−t2,t2(k),

where

Zt−t2,t2(k) = losses for accident year t− t2, paid in development

year t2; see (2.24) and (2.29),

τ(k) = ultimate development year for this line of business,

k = line of business.

We used a simple approach for modelling general expenses Et. They were calculated
as a constant plus a multiple of written exposure units wj

t (k). The appropriate intercept
aE(k) and slope bE(k) were determined by linear regression:

(3.8) Et =

l∑
k=1

(
aE(k) + bE(k)

2∑
j=0

wj
t (k)

)
.

For loss reserves Rt we got

(3.9) Rt =
l∑

k=1

τ(k)∑
t2=0

(
Ẑult,disc

t−t2,t2 (k)−
t2∑

s=0

Zt−t2,s(k)

)
,
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Figure 4.1. Schematic description of the modelling process: stochastic
and deterministic influences on surplus.

where

Ẑult,disc
t−t2,t2 (k) = estimation in calendar year t for discounted ultimate

losses in accident year t− t2; see (2.31),
Zt−t2,s(k) = losses for accident year t− t2, paid in development

year s; see (2.24) and (2.29),

τ(k) = ultimate development year,

k = line of business.

An important variable to be considered are taxes, Tt, because many management deci-
sions are tax driven. The proper treatment of taxes depends on the accounting framework.
We used a rather simple tax model allowing for current income taxes only, i.e. neglecting
the possibility of deferred income taxes for GAAP accounting.

4. DFA in Action

The aim of this section is to give an example of potential applications of DFA. Figure 4.1
displays the model logic of the approach introduced in this paper in graphical format. By
providing a simple example we will show how to analyze surplus and ruin probabilities.
It was not intended to describe a specific effect when using the parameters given below.
The parameters were made up, i.e. they were not based on a real case.

Simplifying assumptions

• Only one line of business.
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• New business and renewal business are not modelled separately.
• Payment patterns are assumed to be deterministic.
• No transaction costs.
• No taxes.
• No dividends paid.

Model choices

• Number of non-catastrophe losses ∼ NB (154, 0.025).
• Mean severity of non-catastrophe losses ∼ Gamma (9.091, 242), inflation-adjusted.
• Number of catastrophes ∼ Pois (18).
• Severity of individual catastrophes ∼ lognormal (13, 1.52), inflation-adjusted.
• Optional excess of loss reinsurance with deductible 500 000 (inflation-adjusted),
and cover ∞.

• Underwriting cycles: 1 = weak, 2 = average, 3 = strong. State in year 0:
1 (weak). Transition probabilities: p11 = 60%, p12 = 25%, p13 = 15%,
p21 = 25%, p22 = 55%, p23 = 20%, p31 = 10%, p32 = 25%, p33 = 65%.

• All liquidity is reinvested. There are only two investment possibilities:
1) buy a risk-free bond with maturity one year,
2) buy an equity portfolio with a fixed beta.

• Market valuation: assets and liabilities are stated at market value, i.e. assets are
stated at their current market values, liabilities are discounted at the appropriate
term spot rate determined by the model.

Model parameters

• Interest rates, see (2.4): a = 0.25, b = 5%, s = 0.1, r1 = 2%.
• General inflation, see (2.8): aI = 0%, bI = 0.75, σI = 0.025.
• No inflation impacting the number of claims.
• Inflation impacting severity of claims, see (2.10):
aX = 3.5%, bX = 0.5, σX = 0.02.

• Stock returns, see (2.14), (2.15) and (2.15):
aM = 4%, bM = 0.5, βS

t ≡ 0.5, σ = 0.15.
• Market share: 5%.
• Expenses: 28.5% of written premiums.
• Premiums for reinsurance: 175 000 p.a. (inflation-adjusted).

Historical data

• Written premiums in the last year: 20 million.
• Initial surplus: 12 million.

Strategies considered

• Should the company buy reinsurance coverage or not?
• How should the reinvestment of excess liquidity be split between fixed income
instruments and stocks?

Projection period

• 10 years (yearly intervals).

Risk and return measures

• Return measure: expected surplus E[U10].
• Risk measure: ruin probability, defined as P[U10 < 0].
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a b

with without
reinsurance reinsurance

1 100% bonds 23.17mio. 23.29mio.
0% stocks 0.49% 1.15%

2 50% bonds 25.28mio. 25.51mio.
50% stocks 2.14% 2.48%

3 0% bonds 27.17mio. 27.70mio.
100% stocks 9.69% 10.13%

4 ≤ 5mio. bonds 26.48mio. 26.79mio.
rest stocks 6.08% 6.52%

5 ≤10mio. bonds 25.74mio. 26.06mio.
rest stocks 3.64% 4.49%

6 ≤20mio. bonds 24.62mio. 24.95mio.
rest stocks 0.90% 1.65%

Figure 4.2. Simulated expected surplus and ruin probability for the eval-
uated strategies.

We ran this model 10 000 times for the twelve strategies summarized in Figure 4.2. The
first three rows represent a fixed asset allocation. The remaining ones are characterized
by an upper limit for the amount of money allowed to be invested in bonds. The amount
exceeding this limit is invested in stocks. For each strategy we evaluated the expected
surplus and the probability of ruin. Figure 4.3 rules out only one strategy definitely,
based on the selected risk and return measures: strategy 1b has lower return but higher
risk than strategy 6a.
If we replace the return measure “expected surplus” by the median surplus, and eval-

uate the same twelve strategies, we get a completely different picture. Figure 4.4 shows
that by choosing the median surplus as return measure and ruin probability as risk mea-
sure all six strategies with a ruin probability above 3% (i.e. strategies 3a, 3b, 4a, 4b, 5a
and 5b) are clearly outperformed by the strategies 2a and 2b, where half of the money is
invested in bonds and the other half in stocks.
An advantage of median surplus is the fact that one can easily calculate confidence

intervals for this return measure. In Figure 4.5 we plotted confidence intervals, based on
the 10 000 simulations performed. These intervals should be interpreted as 95% confidence
intervals for ruin probability given a specific strategy and 95% confidence intervals for
median surplus given a specific strategy. Note that Figure 4.5 does not attempt to
give joint confidence areas. Furthermore it is important to be aware of the fact that a
95% confidence interval for median surplus does not mean that 95% of the simulations at
the end of the projection period result in an amount of surplus that lies in this interval.
The correct interpretation is that given our observed sample of 10 000 simulations, the
probability for median surplus lying in this interval is 95%.
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Figure 4.3. Graphical comparison of ruin probabilities and expected sur-
plus for selected business strategies.
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plus for selected business strategies.
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Figure 4.5. 95% confidence intervals for ruin probability and median sur-
plus, based on 10 000 simulations for each strategy.

5. Some Remarks on DFA

5.1. Discussion Points. This introductory paper discussed only the most relevant issues
related to DFA modelling. Therefore, we would like to mention briefly some additional
points without necessarily being exhaustive.

5.1.1. Deterministic Scenario Testing. In Section 1 we mentioned the superiority of DFA
compared to deterministic scenario testing. This does not imply that the latter method
is useless at all. On the contrary, deterministic scenario testing is a very useful thing, in
particular when it comes to assess the impact of extreme events at pre-defined dates or
when specific macroeconomic influences are to be evaluated. It is a very useful feature of
a DFA tool being able to switch off stochasticity and return to deterministic scenarios.

5.1.2. Macroeconomic Environment. In life insurance financial modelling interest rates
are often considered to be the only macroeconomic factor affecting the values of assets
and liabilities. Hodes, Feldblum and Neghaiwi [21] have pointed out that in nonlife
insurance, interest rates are only one of various other factors affecting liability values.
In Worker’s Compensation in the US, for instance, unemployment rates and industrial
capacity utilization have greater effects on loss costs than interest rates have, while third-
party motor claims are correlated with total volume of traffic and with sales of new cars.
Although rarely done it might be worthwhile modelling specific macroeconomic drivers
like industrial capacity utilization or traffic volume separately. This would require a
foregoing econometric analysis of the dynamics of particular factors.
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5.1.3. Correlations. DFA is able to allow for dependencies between different stochastic
variables. Before starting to implement these dependencies one should have a sound
understanding of existing dependencies within an insurance enterprise. Estimating cor-
relations from historical (loss) data is often not feasible due to aggregate figures and
structural changes in the past, e.g. varying deductibles, changing policy conditions, acqui-
sitions, spin-offs, etc. Furthermore, recent research, see for example Embrechts, McNeil
and Straumann [17] and [18], and Lindskog [28], suggests that linear correlation is not
appropriate to model dependencies between heavy-tailed and skewed risks.
We suggest modelling dependencies implicitly, as a result of a number of contributory

influences, for example, catastrophes that impact more than one line of business or interest
rate changes affecting only specific lines. The majority of these relations should be
implemented based on economic and actuarial wisdom, see for instance Kreps [26].

5.1.4. Separate Modelling of New and Renewal Business. In the model outlined in this
paper we allowed for separate modelling of new and renewal business, see Section 2.3.
Hodes, Feldblum and Neghaiwi [21] pointed out that this makes perfectly sense due to
different stochastic behavior of the respective loss portfolios. Furthermore, having this
split allows a deeper analysis of value drivers within the portfolio and marks an important
step towards determining an appraised value for a nonlife insurance company.

5.1.5. Model Validation. What is finally a good DFA model and what is not? Experience,
knowledge and intuition of users from actuarial, economic and management side play a
dominant role in evaluating a DFA model. A danger in this respect might be that non-
intuitive results could be blamed on a bad model instead of wrong assumptions. A further
possibility to evaluate a model is to test results coming out of the DFA model against
empirical results. This will only be feasible in very few restricted cases because it would
require keeping track of data for several years. However, model validation should deserve
more attention. This needs to be recommended in particular to those practitioners dealing
with software vendors of DFA tools who do not intend to justify their decision of buying
an expensive DFA product by referring to the software design only.

5.1.6. Model Calibration. We have already touched on this at several places and pointed
to its importance within a DFA analysis. However sophisticated a DFA tool or model
might be, it has to be fed with data and parameter values. Studies have shown that the
major part of a DFA analysis had been devoted to this exercise. Usually, the calibration
part is an ongoing process during the course of an analysis in order to fine-tune the model.

5.1.7. Interpretation of Output. We mentioned in Section 1.5 that the interpretation pro-
cess of DFA output follows very often traditional patterns, e.g. efficient frontier analysis,
which might lead to false or at least questionable conclusions, see Cumberworth, Hitch-
cox, McConnell and Smith [10]. Another example showing how critical interpretation
of results can be is this: A net present value (NPV) analysis applied to model office
cash flows can generate or destroy a huge amount of shareholder value by making slight
changes to CAPM assumptions, which are often used for determining the discount rate.
A way to keep feet on sound economic ground and simultaneously remove a great deal of
arbitrariness is through resorting to deflators, see Jarvis, Southall and Varnell [23]. The
use of this concept, originating in the work of Arrow and Debreu, has been promoted by
Smith [39] and is further discussed in Bühlmann, Delbaen, Embrechts and Shiryaev [7].
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The cited references might be evidence for growing awareness that our toolbox for inter-
preting and understanding DFA results needs to be renovated in order to enhance the
use of DFA.

5.2. Strength and Weaknesses of DFA. DFA models provide generally deeper in-
sight into risks and potential rewards of business strategies than scenario testing can
do. DFA marks a milestone towards evaluating business strategies when compared to
old-style analysis of considering only key ratios. DFA is virtually the only feasible way to
model an entire nonlife operation on a cash flow basis. It allows for a high degree of detail
including analysis of the reinsurance program, modelling of catastrophic events, depen-
dencies between random elements, etc. DFA can meet different objectives and address
different management units (underwriting, investments, planning, actuarial, etc.).
Nevertheless, it is worth mentioning that a DFA model will never be able to capture

the complexity of the real-life business environment. Necessarily, one has to restrict
attention during the model building process to certain features the model is supposed to
reflect. However, the number of parameters which have to be estimated beforehand and
the number of random variables to be modelled even within medium-sized DFA models
contribute a big deal of process and parameter risk to a DFA model. Furthermore one has
to be aware that results will strongly depend on the assumptions used in the model set-up.
A critical question is: How big and sophisticated should a DFA model be? Everything
comes at a price and a simple model that can produce reasonable results will probably
be preferred by many users due to growing reluctance of using non-transparent “black
boxes”. In addition, smaller models tend to be more in line with intuition, and make
it easier to assess the impact of specific variables. A good understanding and control of
uncertainties and approximations is vital to the usefulness of a DFA model.

5.3. Closing Remarks. We wanted to give an introduction into DFA by hinting to pit-
falls and emphasizing important issues to be taken into account in the modelling process.
Our intention was to provide the uninformed reader with a simple DFA approach enabling
these readers to implement DFA using our approach as a kind of reference model. Many
commercial DFA tools are roughly structured as the model outlined in this paper. Spe-
cific concepts and concrete implementation of the model components are often different.
We are absolutely aware that there are numerous alternatives to each of the sub-models
introduced in this paper. Some of them might be much more powerful or flexible than
our approach. We wanted to provide a framework leaving it up to the reader to complete
the DFA house by making adjustments or amendments at his/her discretion. Although
we did not necessarily target the DFA experts our exposition might have also served to
give an impression of the complexity of a fully fledged DFA model.
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[15] Daykin C.D., Pentikäinen T. and Pesonen M. (1994) Practical Risk Theory for Actuaries, Chapman
& Hall, London.
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