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Importance Sampling for Integrated Market and Credit Portfolio Models 

 
1 Introduction 

 

Standard credit portfolio models do not model market risk factors, such as risk-free interest 

rates or credit spreads, as stochastic variables. Even the Basel II proposals do not intend to 

regulate the interest rate risk of the banking book in a quantitative way, but only qualitatively 

under pillar II.1 For example in CreditMetrics, fixed income instruments, such as bonds or 

loans, are revalued at the risk horizon using currently observable forward rates for discounting 

future cash flows. Hence, the stochastic nature of the instrument�s value which results from 

changes in factors other than credit quality is neglected. An additional consequence is that 

correlations between changes of the credit quality of the debtors and changes of market risk 

factors and, hence, the exposure at default cannot be integrated into the credit portfolio model. 

This is especially a problem for market-driven instruments, such as interest rate derivatives. 

Finally, correlations between the exposures at default of different instruments, which depend 

on the same or correlated market risk factors, cannot be modeled, either. 

 

Various studies have documented that a severe underestimation of economic capital can be 

the consequence of the missing stochastic modeling of market risk factors, especially for high 

grade credit portfolios with a low stochastic dependence between the obligors� credit quality 

changes.2 However, integrating market risk factors into credit portfolio models increases the 

computational burden of calculating portfolio risk measures. Most standard credit portfolio 

models rely on Monte Carlo simulations for computing the probability distribution of the fu-

ture credit portfolio value, which can be quite time consuming already in the standard case, in 

particular when percentiles corresponding to high confidence levels are needed or when there 

are many obligors in the credit portfolio. 

 

Hence, when adding market risk factors to standard credit portfolio models, the need for effi-

cient methods for calculating credit risk measures is even more pressing than before. For 

                                                 
1  See Basel Committee on Banking Supervision (2004). 
2 Studies, which analyze the effect of integrating an additional risk factor, such as stochastic interest rates or 

stochastic credit spreads, into a credit portfolio model are from Kijima and Muromachi (2000), Barnhill and 
Maxwell (2002), Kiesel, Perraudin and Taylor (2003) and Grundke (2004, 2005b). There are also first at-
tempts to create an integrated market and credit risk portfolio framework for commercial credit portfolio 
models, for example that one developed by the risk management firm Algorithmics (see Iscoe, Kreinin and 
Rosen (1999)). 
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standard credit portfolio models, various efficiency enhancing computational approaches have 

been developed meanwhile. These can be broadly classified in four categories: First, ap-

proaches based on Monte Carlo simulations combined with variance reduction techniques 

have been presented. Most of these approaches employ importance sampling in order acceler-

ate the computation of credit risk measures. Examples are Xhiao (2001), Glasserman and Li 

(2003a, b), Kalkbrenner, Lotter and Overbeck (2004) and Merino and Nyfeler (2004). An ex-

ception is the paper of Tchistiakov, de Smet and Hoogbruin (2004) who work with control 

variables. Second, Fourier based approaches have been described, e.g. by Duffie and Pan 

(2001), Merino and Nyfeler (2002), Reiß (2003) or Grundke (2005a). With the exception of 

the work of Duffie and Pan all these approaches suffer from the fact that the unconditional 

characteristic function of the credit portfolio value needed for the Fourier inversion formula 

can not be calculated in closed-form, but has still to be simulated. This is a potential drawback 

of the method because, depending on the portfolio composition, this can be quite time-

consuming. Duffie and Pan can derive the unconditional characteristic function of the credit 

portfolio value in closed-form, but for this they need, among others, the assumption that a 

delta-gamma approximation of the credit portfolio value is sufficiently accurate which seems 

problematic for longer time horizons such as one year usually employed in the context of 

credit risk management. Third and fourth, computational approaches based on saddlepoint ap-

proximations (see e.g. Martin, Thompson and Browne (2001) or Barco (2004)) and granular-

ity adjustments (see e.g. Wilde (2001), Martin and Wilde (2002), Gordy (2003) or Pykhtin 

(2004)) have been presented. 

 

This paper fits best into the first category because it makes use of importance sampling as a 

special variance reduction technique when simulating the credit portfolio value at the risk ho-

rizon. The main contributions of this paper to the literature are twofold: First and most impor-

tant, two drawbacks of previous papers (see above) about applications of variance reduction 

techniques to Monte Carlo simulations are overcome: All these approaches suffer from the 

fact that they do not consider market risk factors as relevant risk factors during the revaluation 

of the defaultable instruments at the risk horizon. Furthermore, the application of the methods 

in these papers is restricted to pure default mode credit portfolio models. Second, in this paper 

it is analyzed whether importance sampling techniques originally developed for pure market 

risk portfolio models can be combined with techniques originally developed for pure (default 

mode) credit risk portfolio models in order to decrease the variance of risk measure estima-



 

 4

tors. The effectiveness of the importance sampling techniques applied to integrated market 

and credit portfolio models is tested by means of numerical experiments. 

 

The paper is structured as follows: In section 2 a framework for an integrated market and 

credit portfolio model is presented. Besides, a concrete specification of this general model is 

described which afterwards is used for the numerical experiments. Section 3 consists of the 

derivation of two importance sampling techniques for the general integrated market and credit 

portfolio model. The effectiveness of these approaches is tested by means of numerical ex-

periments in section 4. Finally, in section 5 the main results are summarized and possible 

extensions of this study are outlined. 

 

 

2 The Integrated Market and Credit Portfolio Model 

 

2.1 General Approach 

It is assumed that the credit portfolio consists of N  market and credit risk sensitive instru-

ments issued by N  different corporates. The risk horizon, usually one year, is denoted by H  

and P  is the real world probability measure. The possible credit qualities at the risk horizon 

are 1, , K…  where 1 denotes the best rating and K  is the default state. 

 

The central part of most standard credit portfolio models is the definition of the obligors� con-

ditional default and transition probabilities. Denoting by {1, , }n
H Kη ∈ …  the credit quality of 

obligor n  at the risk horizon H  and by 0
nη  the respective rating at 0t = , the conditional de-

fault (transition) probabilities are formally defined as: 

 ( )0 1 1 , , 1, , , : ( , , )n n
H C C n i k CP k i Z z Z z f z zη η= = = = =… …  (1) 

 with , , : [0,1]C
n i kf →" , {1, , }k K∈ … , {1, , 1}i K∈ −… , and {1, , }n N∈ … . 

The set of variables 1Z ( , , )T C
CZ Z F= … ∼  are systematic credit risk factors that might be 

thought of as changes in equity indices or macro-economic variables within the risk horizon. 

These risk factors influence the credit quality changes of all obligors within the risk horizon. 

This vector is assumed to evolve according to the multivariate distribution CF . Given the re-

alization 1 1( , , )C CZ z Z z= =…  of the systematic credit risk factors and hence of the condi-

tional default (transition) probabilities, credit quality changes of all obligors are assumed to be 
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stochastically independent. This is the classical �conditional independence�-framework for de-

scribing joint credit quality changes within a credit portfolio. Sampling from the N  discrete 

distributions (1), the credit quality of all obligors at the risk horizon can be simulated for a 

specific scenario 1 1( , , )C CZ z Z z= =… . 

 

The price of the instrument ni  (e.g. defaultable (zero) coupon bonds or options with counter-

party risk) at the risk horizon H , whose issuer n  has not already defaulted before H  and ex-

hibits the rating {1, , 1}n
H Kη ∈ −… , is denoted by 

 1 n( ; , , ;P )n
n H Mp X Xη … , (2) 

where the stochastic vector 1X ( , , )T M
MX X F= … ∼  represents the value of relevant market 

risk factors, such as e.g. risk-free interest rates, at the risk horizon. This vector is assumed to 

evolve according to the multivariate distribution MF . nP  denotes a vector of additional pa-

rameters relevant for the pricing of the respective instrument ni  at the risk horizon. Note that 

the set of systematic credit risk factors 1, , CZ Z…  and the set of market risk factors 1, , MX X…  

can overlap, e.g. if a risk-free interest rate is also a relevant credit risk driver. The joint distri-

bution of the stochastic vector 1 1( , , ; , , )T
C MZ Z X X… …  is denoted by F . 

 

If the issuer n  of the instrument ni  has already defaulted ( n
H Kη = ) before the risk horizon 

H , its value, in the case this value is positive, is set equal to a fraction δ  of the value the in-

strument would have at the risk horizon when its issuer would be free of default risk. If the 

market value of this instrument is negative, nothing is changed because the bank whose credit 

portfolio is considered is a debtor of the defaulted issuer. The shape of the distribution of the 

recovery rate δ  can vary with the seniority of a claim and the value of individual collaterals. 

For all defaulted issuers the recovery rate is drawn individually which ensures independence 

of the recovery rates across the different exposures. Usually, it is assumed that the recovery 

rate is beta-distributed and independent from all other stochastic variables of the respective 

model, such as the systematic credit risk drivers or the market risk factors, but it could also be 

a function of these risk factors.3 

 

Finally, the value ( )HΠ  of the entire portfolio at the risk horizon H  is just the sum over the 

individual values: 
                                                 
3  See for example Frye (2000, 2003) or Pykhtin (2003). 
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 1 n
1

( ) ( ; , , ;P )
N

n
n H M

n
H p X Xη

=
Π =∑ … . (3) 

 

2.2 A Special Case: CreditMetrics with Integrated Correlated Interest Rate Risk 

As a special case of the general integrated market and credit portfolio model described before, 

in this section the usual CreditMetrics framework is extended by interest rate risk which is 

correlated with transition risk. Then, this extended framework is applied to a homogeneous 

credit portfolio consisting of N  zero coupon bonds with identical face value F  and maturity 

date T  issued by N  different corporates. This specification of the general integrated model 

will be used in the numerical example of section 4. 

 

It is assumed that the return nX  on firm n �s assets can be described by a normally distributed 

random variable, which is � without loss of generality � standardized: 

 2
, , 1n V r V r V r V nX Z Xρ ρ ρ ρ ε= − + + −    ( 2

,r V Vρ ρ≤ , {1, , }n N∈ … ), (4) 

where 1, , , ,r NZ X ε ε…  are mutually independent standard normally distributed stochastic 

variables. The stochastic variables Z  and rX  represent systematic credit risk, whereas the 

nε �s stand for idiosyncratic credit risk. 

 

The risk-free short rate is modeled for simplicity as a mean-reverting Ornstein-Uhlenbeck 

process introduced already by Vasicek (1977): 

 ( ) ( ( )) ( )r rdr t r t dt dW tκ θ σ= − + , (5) 

where , , rκ θ σ +∈ "  are positive constants and ( )rW t  is a standard Brownian motion under P . 

The solution of the stochastic differential equation (5) is: 

 ( )
2

2

[ ( )]

( ) ( (0) ) 1
2

P

t tr
r

E r t

r t r e e Xκ κσθ θ
κ

− −

=

= + − + −$%%&%%' , (6) 

where (0,1)rX N∼  enters the definition (4) of the firms� asset returns. As it can be easily 

seen, the definition (4) of the asset returns implies that all pairs of asset returns exhibit a cor-

relation parameter of Vρ  and that the asset returns nX  and the interest rate factor rX  (and 

hence the short rate ( )r H ) are correlated with parameter ,r Vρ . It is assumed that the correla-

tion Vρ  between each pair of asset returns as well as the correlation ,r Vρ  between each asset 

return and the risk-free short rate are identical. 
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As in the CreditMetrics methodology, the rating n
Hη  of the N  obligors at the risk horizon H  

is simulated by the N -variate normally distributed random vector 1( , , )NX X X= … , whose 

components exhibit means zero, variances one and equal pairwise correlations Vρ . An obligor 

n  with current rating i  is assumed to be in rating class k  at the risk horizon if the realization 

of nX  lies between two thresholds 1
i
kR +  and i

kR  with 1
i i
k kR R+ < . The thresholds i

kR  are de-

rived from an one-year transition matrix 1 1,1( )ik i K k KQ q ≤ ≤ − ≤ ≤= , whose elements ikq  specify the 

unconditional probability that an obligor migrates from the rating grade i  to the rating grade 

k  within one year. The thresholds i
kR  (1 1i K≤ ≤ − , 2 k K≤ ≤ ) are computed by ensuring 

that the probability for the realization of a standardized normally distributed random variable 

nX  to be in the interval 1[ , ]i i
k kR R+  coincides with the probability ikq  from the migration ma-

trix: 

 1
K

i
k il

l k
R q−

=

 = Φ  
 
∑ , (7) 

where 1( )−Φ ⋅  denotes the inverse of the cumulative density function of the standard normal 

distribution. For details concerning this procedure see Gupton, Finger and Bhatia (1997, pp. 

85). 

 

The price of a zero coupon bond at the risk horizon H , whose issuer n  has not already de-

faulted until H  and exhibits the rating {1, , 1}n
H Kη ∈ −… , is given by: 

 
( )( , , ) ( , )

( , , , )
r n

H
R X H T S H T T H

n
r Hv X H T Fe ηη

 − + − 
 = , (8) 

where ( , , )rR X H T  denotes the stochastic risk-free spot yield for the time interval [ , ]H T , and 

( , )n
H

S H T
η

 is the non-stochastic credit spread of the rating class n
Hη  for the time interval 

[ , ]H T . In the Vasicek model the stochastic risk-free spot yield ( , , )rR X H T  can easily be cal-

culated in closed-form and is a linear function of the risk factor rX  appearing in (6). 

 

If the issuer n  of a zero coupon bond has already defaulted ( n
H Kη = ) before the risk horizon 

H , the value of the bond is set equal to a constant fraction [0,1]δ ∈  of the value ( , , )rp X H T  

of a risk-free but otherwise identical zero coupon bond: 

 ( , , , ) ( , , )r rv X K H T p X H Tδ= ⋅ . (9) 
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The value ( )HΠ  of the entire portfolio of defaultable zero coupon bonds at the risk horizon 

H  is: 

 
1

{ } { }
1 1

( ) ( , , , ) 1 ( , , ) 1n n
H H

N K

r rk K
n k

H v X k H T p X H Tη ηδ
−

= =
= =

Π = ⋅ + ⋅ ⋅∑∑  (10) 

where the indicator function 
{ }

1 n
H kη =

 is one if obligor n  is in the rating class k  at H  and zero 

otherwise. 

 

The probability of migrating from rating class i  to {2, , 1}k K∈ −…  until the risk horizon H , 

conditional on the realizations of the systematic credit risk factors Z  and rX , is given by 

 ( ) ( ), 0 1( , ) : , , ,n n i i
i k r H r r k n k r rf z x P k i Z z X x P R X R Z z X xη η += = = = = = < ≤ = =  

 
2 2
, , 1 , ,

1 1

i i
k V r V r V r k V r V r V r

V V

R z x R z xρ ρ ρ ρ ρ ρ
ρ ρ

+
   − − − − − −
   = Φ −Φ
   − −   

. (11) 

The conditional default probability is 

 ( )
2
, ,

, ( , ) : ,
1

i
K V r V r V ri

i K r n K r r
V

R z x
f z x P X R Z z X x

ρ ρ ρ
ρ

 − − −
 = ≤ = = = Φ
 − 

, (12) 

and the conditional probability of being in the best rating class 1 equals 

 ( )
2

2 , ,
,1 2( , ) : , 1 .

1

i
V r V r V ri

i r n r r
V

R z x
f z x P X R Z z X x

ρ ρ ρ
ρ

 − − −
 = > = = = −Φ
 − 

 (13) 

 

 

3 Importance Sampling Techniques for the General Approach 

 

As tail events relevant for calculating Value-at-Risk or expected shortfall corresponding to 

high confidence levels are rare, usually a large number of Monte Carlo simulation runs is 

needed for computing these risk measures with sufficient accuracy. In this section, importance 

sampling (IS) is presented as a method to reduce the variance of the Monte Carlo estimators 

of these risk measures. The usage of this method leads to an improved convergence (in prob-

abilistic terms) of the risk measure estimators when increasing the number of simulation runs 

so that less simulation runs are necessary to achieve a required accuracy. 
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3.1 General Remarks about IS 

IS attempts to change the original probability measure in such a way that �important� scenar-

ios of a simulation get more weight so that they occur more frequently and the sampling effi-

ciency is increased. In the context of credit risk modelling �important� scenarios are those in 

which the portfolio loss is large. In order to make the central idea of IS, namely the change of 

measure, more clearly consider the following problem of estimating the mean of some func-

tion ( )h ⋅  of a real-valued random variable X  with probability density ( )f x :4 

 [ ]( ) ( ) ( ) ( )P
h X E h X h x f x dxµ

∞

−∞

= = ∫ , (14) 

where P  is the original probability measure. Having simulated D  independent draws 

1, , DX X…  of the random variable X  under P , the ordinary Monte Carlo (MC) estimator for 

this mean is: 

 ( )
1

1� ( )
D

h X d
d

h X
D

µ
=

= ∑ . (15) 

Next, assuming that the function ( )g x  is any other probability density on " , which is posi-

tive whenever ( )f x  is positive5, the mean ( )h Xµ  can alternatively represented by: 

 [ ]( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

P P
h X

f x f xE h X h x f x dx h x g x dx E h x
g x g x

µ
∞ ∞

−∞ −∞

 
≡ = = =  

 
∫ ∫

( , (16) 

where P(  is some new probability measure induced by the density ( )g x . The quotient in 

brackets is called the likelihood ratio or the Radon-Nikodým derivative of P  with respect to 

P( . Using this new probability measure the IS estimator of ( )h Xµ  is: 

 ( )
1

( )1� ( )
( )

D
P d
h X d

d d

f Xh X
D g X

µ
=

= ∑( , (17) 

when the independent realizations 1, , DX X…  of the random variable X  are sampled under 

P( . As we have 

 [ ]( ) ( )
1

( )1 ( )� ( ) ( ) ( )
( ) ( )

D
P P P P Pd

h X d h X
d d

f X f XE E h X E h X E h X
D g X g X

µ µ
=

     = = = =       
∑( ( ( ( , 

                                                 
4  See for the following remarks Glasserman (2004, pp. 255). 
5  This means that the original probability measure P  is absolutely continuous with respect to the new 

probability measure P(  which is induced by the density ( )g x . 
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the IS estimator ( )� P
h Xµ (  is an unbiased estimator of ( )h Xµ . The success of an IS algorithm de-

pends on the smart choice of the density ( )g x , which should decrease the variance of the es-

timator ( )� P
h Xµ ( , 

 ( ) [ ]( )
2

2

( )
( )� ( ) ( )
( )

P P P P
h X

f XVar E h X E h X
g X

µ
  

= −  
   

( ( ( , (18) 

compared to that one of the ordinary MC estimator, 

 ( ) ( ) [ ]( )22
( )� ( ) ( )P P P

h XVar E h X E h Xµ  = −  . (19) 

(18) and (19) show that ( ) ( )( ) ( )� �P P P
h X h XVar Varµ µ<( (  is true if and only if the second moment 

of ( )� P
h Xµ (  is smaller than the second moment of ( )�h Xµ . How can we find a density ( )g x  which 

decreases the second moment of the estimator ( )� P
h Xµ (  compared that one of ( )�h Xµ ? In order to 

get an intuition for finding an adequate density ( )g x  assume that ( ) 0h ⋅ ≥  from which 

( ) ( ) 0h x f x ≥  follows because ( )f x  is a probability density. Thus, the product ( ) ( )h x f x  

could also be normalized in order to represent a probability density: 

 ( ) ( )( ) :
( ) ( )

h x f xg x
h x f x dx

∞

−∞

=

∫
, (20) 

from which 

 ( ) ( )( ) ( )
( )

h x f xh x f x dx
g x

∞

−∞

=∫  

and hence 

 ( ) ( )( ) ( ) {1, , }
( )

d d

d

h X f Xconst h x f x dx d D
g X

∞

−∞

= = ∀ ∈∫ …  (21) 

follows. Consequently, employing the function ( )g x , as defined in (20), as the denominator 

in the likelihood ratio ( ) / ( )s sf X g X  would provide a zero-variance estimator ( )� P
h Xµ (  in (17). 

Unfortunately, the normalizing integral in (20) is just [ ]( )PE h X , the term we are looking for, 

so that we can not determine the optimal (in the sense of variance minimizing) density ( )g x  

according to (20). However, these considerations indicate how an effective IS strategy might 

look like: Measuring the importance of a realization of the random variable ( )h X  by the 

product ( ) ( )h x f x  and ensuring that � in this sense � important realizations are sampled more 
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frequently by sampling according to a density ( )g x  which is proportional to the product 

( ) ( )h x f x . 

 

3.2 Application of IS to the General Integrated Market and Credit Portfolio Model 

In this section the IS technique is applied to the general integrated market and credit portfolio 

model described in section 2.1. As in Glasserman and Li (2003a) a two step-IS procedure is 

applied. First, the conditional transition probabilities ( )0 1 1, , ,n n
H C CP k i Z z Z zη η= = = =…  

, , 1( , , )n i k Cf z z= …  are modified in order to make defaults and downgrades more probable. Af-

terwards, the means of the systematic credit risk factors 1, , CZ Z…  and the market risk factors 

1, , MX X… , respectively, are shifted in order to make high credit portfolio losses more likely. 

 

For the first step, let us assume that the realizations of the systematic credit risk factors 

1Z ( , , )T
CZ Z= …  and the market risk factors 1X ( , , )T

MX X= …  are given. Conditional on the 

realizations of these random variables, the values of all instruments n( ;X;P )H
n np η  

( {1, , }n N∈ … ) are independent.6 Introducing some new transition probabilities 

( )0 , ,, Z, X (Z,X)n n
H n i kP k i hθ η η= = =( , we can write the probability that the credit portfolio loss 

at the risk horizon, defined as7 

 ( )0
n n

1 1
( ) : ( ) ( ; [X];P ) ( ;X;P )

N N
P H

n n n n n
n n

L H L H p E pη η
= =

= = −∑ ∑ , (22) 

is larger than some threshold y  in the following way: 

 ( )
{ }

0

0

1

, ,
{ ( ) }

1 1 , ,

(Z)
( ) Z,X 1 Z, X

(Z, X)

H kn

n

n

N K
n kP

L H y
n k n k

f
P L H y E

h

η

θ η

η

=

>
= =

    > =   
   

∏∏( , (23) 

                                                 
6  Of course, for this conditional independence assumption to be fulfilled, it has to be assumed that also the 

recovery rates of defaulted obligors are (conditional) independent. For the ease of exposition, in the follow-
ing, it is assumed that the recovery rate is a deterministic function of the systematic risk factors Z  and X  
so that � conditional on the realizations of these systematic risk factors � the recovery rate is a constant. If 
one also wants to integrate idiosyncratic recovery rate risk, the recovery rates nδ  would have to be consid-
ered as conditioning variables, for example in the definition of the new conditional transition probabilities 
or the conditional cumulant generating function. 

7  Other specifications of the portfolio loss variable (22) are imaginable: For example, instead of 
0

n( ; [X];P )P
n np Eη , the terms n( ;X;P )P H

n nE p η    or 0 0
n( ;X ;P )n np η , where 0 0 0

1X ( , , )T
MX X= …  

( {1, , }m M∈ … ) denotes the current value of the market risk factors in 0t = , could be employed. 
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where [ ]PE θ ⋅(  is the expectation operator under the new probability measure Pθ
( , and the 

product inside the expectation is the likelihood ratio which relates the original conditional 

transition probabilities to the new ones. From (23) follows that 

 
( ){( ) }

0

( )

0

1

, ,
{ ( ) }

1 1 1 , ,

(Z)1 1
(Z, X)

H d kn

n
d

n

N KD
n k

L H y
d n k n k

f

D h

η

η

η

=

>
= = =

 
 
 
 

∑ ∏∏  (24) 

is an unbiased estimator for ( )( ) Z, XP L H y>  when the transitions are sampled under the 

new measure Pθ
(  and D  is the number of samples. In order to make defaults and downgrades 

more probable, the following definition for the new transition probabilities , , (Z,X)n i kh  is used, 

which is motivated by the exponential twist modification of the default probabilities em-

ployed by Glasserman and Li (2003a) and in a similar way by Merino and Nyfeler (2004) in 

the context of pure default mode credit portfolio models: 

 
( )

( )

n n

n n

( ; [X];P ) ( ;X;P )
, ,

, ,
( ; [X];P ) ( ;X;P )

, ,
1

(Z)
(Z, X) :

(Z)

P
n n

P
n n

p i E p k
n i k

n i k K p i E p k
n i k

k

e f
h

e f

θ

θ

−

−

=

=
∑

. (25) 

For 0θ >  and ( )0
n n( ) ( ; [X];P ) ( ;X;P ) 0P H

n n n n nL H p E pη η= − >  the transition probabilities are 

increased, whereas for 0θ >  and ( ) 0nL H <  they are diminished. The absolute increase or 

decrease of the probabilities is larger the higher the individual losses or gains of obligor n �s 

instrument incurred by the respective rating change. For 0θ =  the original transition prob-

abilities are not altered. Hence, in general, the downgrade probabilities are increased and the 

upgrade probabilities are decreased. However, due to the integration of market risk, it is also 

possible that for example a downgrade probability is decreased, namely in a specific scenario 

in which a decrease of an instrument�s value caused by a downgrade of the issuer is overcom-

pensated by a value increase caused by a movement in the market risk factors. As it can be 

easily seen, (25) ensures that for all n  and i  the sum of the new transition probabilities over 

{1, , }k K∈ …  equals one. For the likelihood ratio in (23) we have the following identity: 

      
( ){ } 0

n n ( ) Z,X0
( ) Z,X 1

0

1
( ; [X];P ) ( ;X;P ) ( )( ) ( ), ,

1 1 , ,

(Z)

(Z,X)

NH k P Hn
n n n n L H

L Hn n

n

N K p E pL Hn k

n k n k

f
e e

h

η θ η η ψ θθ ψ θη

η

=

=

− − +− +

= =

  ∑
  = =
 
 

∏∏ , (26) 

where ( ) Z,X ( )L Hψ θ  is the (conditional) cumulant generating function of the credit portfolio 

loss ( )L H , which is the logarithm of the (conditional) moment generating function: 

       ( ) Z,X ( ) :L Hψ θ = ( )( )ln Z, XP L HE eθ  
( )0

n n
0

( ; [ ];P ) ( ;X;P )

, ,
1 1

ln (Z)
P

n n n

n

N K p E X p k

n k
n k

e fθ η

η

−

= =

 =  
 

∑ ∑ . (27) 



 

 13

The representation (23) of the excess probability ( )( ) Z, XP L H y>  is useless as long as an 

adequate parameter θ +∈ "  is not known. Usually, this parameter is chosen in order to mini-

mize the variance of the estimator (24) under the new probability measure Pθ
( , which is given 

by: 

      
{ }

0

0

1

, ,
{ ( ) }

1 1 , ,

(Z)
1 Z,X

(Z, X)

H kn

n

n

N K
n kP

L H y
n k n k

f
Var

h

η

θ η

η

=

>
= =

         
∏∏(   

      

( )

( ) Z,X ( ) Z,X

2

2 ( ) 2 ( ) ( ) ( )
{ ( ) } { ( ) }

( ) Z,X

1 Z, X 1 Z,XL H L HL H L HP P
L H y L H y

P L H y

E e E eθ θ
θ ψ θ θ ψ θ− + − +

> >

= >

 
    = −         
 

( (

$%%%%%%&%%%%%%'
. (28) 

Thus, as ( )( ) Z, XP L H y>  is independent from θ , minimizing the variance of the estimator 

(24) is equivalent to minimizing the second moment of this estimator. However, as the ran-

dom variable, whose second moment is intended to be minimized, as well as the respective 

probabilities depend on the unknown parameter θ , finding the optimal parameter value is 

complicated. That is why the same �trick� as already used by Glasserman and Li (2003a) and 

Merino and Nyfeler (2004) is employed here: Instead of minimizing the second moment of the 

estimator (24) the following upper boundary of the second moment is minimized by an ap-

propriate choice of the parameter θ : 

 ( ) Z,X ( ) Z,X2 ( ) 2 ( ) 2 ( ) 2 ( )
{ ( ) } { ( ) }1 Z, X 1 Z,XL H L HL HP P L H

L H y L H yE e e E eθ θ
θ ψ θ ψ θ θ− + −

> >
   =    

( (  

( ) Z,X ( ) Z,X2 ( ) 2( ( ))2

0
Z,X .L H L HyP ye E e eθ

ψ θ θ ψ θθ

θ

− −−

≥
 ≤ = 

(  (29) 

As 

 ( ) Z,X2( ( ))

0
min L Hye θ ψ θ

θ

− −

≥
 (30) 

is equivalent to 

 ( ) Z,X0
max ( )L Hy
θ

θ ψ θ
≥

−  (31) 

and the (conditional) cumulant generating function ( ) Z,X ( )L Hψ θ  is strictly convex in θ  with 

( ) Z,X (0) 0L Hψ = ,8 the � in the above sense � optimal parameter θ  is given by: 

                                                 
8  See Glasserman (2004, p. 261). 
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( ) ( )

( )
( ) Z,X ( ) Z,X

0

( ) Z,X
0

unique solution to ( )  for ( ) ,

0  for ( ) .

L H L H

y

L H

y y

y

θ

θ

ψ θ ψ θ
θ θ

θ
ψ θ

θ

=

=

 ∂ ∂= > ∂ ∂= 
∂ ≤

 ∂

 (32) 

 

The first derivative of the (conditional) cumulant generating function is equal to: 

 ( )( ) Z,X ( )L Hψ θ
θ
∂
∂

( )0
n n

0

( ; [X];P ) ( ;X;P )

, ,
1 1
ln (Z)

P
n n n

n

N K p E p k

n k
n k

e fθ η

ηθ
−

= =

 ∂  =   ∂   
∑ ∑  

 
( ) ( )

( )

0
n n

0

0
n n

0

( ; [X];P ) ( ;X;P )0
n n , ,

1

( ; [X];P ) ( ;X;P )1
, ,

1

( ; [X];P ) ( ;X;P ) (Z)

(Z)

P
n n n

n

P
n n n

n

K p E p kP
n n nN n k

k
K p E p kn

n k
k

p E p k e f

e f

θ η

η

θ η

η

η −

=

−=

=

−
=

∑
∑

∑
. (33) 

 

From the (conditional) cumulant generating function ( ) Z,X ( )L Hψ θ  important informations 

about the probability measures Pθ
(  can be read off. In particular, the first derivative of 

( ) Z,X ( )L Hψ θ  with respect to θ  corresponds to the mean of the random variable 
Z,X

( )L H  un-

der Pθ
( :9 

 ( )( ) Z,X ( ) ( ) Z, XP
L H E L Hθψ θ

θ
∂ =   ∂

( . (34) 

Thus, as 0P Pθ== ( , the first case in (32) corresponds to 

( ) 0
( ) Z,X

0

( ) ( ) Z,X ( ) Z, XP P
L Hy E L H E L Hθ

θ

ψ θ
θ

=

=

∂> =   =     ∂
( , (35) 

and with the optimal choice of the parameter yθ  we have: 

 ( )( ) Z,X ( ) ( ) Z, Xy

y

P

L Hy E L Hθ

θ θ

ψ θ
θ =

∂= =   ∂
(

. (36) 

This means that under the �optimal� importance sampling measure 
y

Pθ
(  the mean of the (condi-

tional) credit portfolio loss equals some value y  in the upper tail of the random variable 

Z,X
( )L H . Thus, events which were rare under the original measure P  are expected events 

under the new measure 
y

Pθ
( . 

 

                                                 
9  See Glasserman (2004, p. 261). 
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For the second step, the means of the systematic credit risk factors 1, , CZ Z…  and the market 

risk factors 1, , MX X…  respectively are shifted in order to make high losses more likely.10 Fur 

this purpose, we adapt a technique presented by Glasserman and Li (2003a) for a pure default 

mode credit risk model to the general integrated market and credit portfolio model of section 

2.1.11 Previously, this technique has also been used in the context of pricing path-dependent 

options.12 

 

The remaining problem in the second step is to speed up the estimation of the expectation: 

 ( ) ( )( ) ( ) Z, XPP L H y E P L H y > = >  . (37) 

As described before in section 3.1, a good IS strategy might be to sample Z  and X  according 

to a density which is proportional to the product ( )( ) Z z,X xP L H y> = = ⋅ (z, x)f , where 

(z, x)f  with : C Mf +× →" " "  is the probability density of the ( )C M+ -dimensional ran-

dom vector (Z, X)  under the original probability measure P . For the ease of exposition, it is 

assumed that each component of the random vector (Z, X)  is standard normally distributed 

and that the individual components are not correlated.13 Hence, the function (z, x)g  in the de-

nominator of the likelihood ratio in (17) should be proportional to: 

 ( )
2 2

1 1

0.5

( ) Z z,X x

C M

c m
c m

z x

P L H y e = =

 
 − + 
 
∑ ∑

> = = . (38) 

However, the problem in finding the optimal14 density (z, x)g  consists in finding the propor-

tionality constant which would also be the normalization constant making (20) to be a density 

function. In order to overcome this problem, Glasserman and Li (2003a) follow a proposal of 

Glasserman, Heidelberger and Shahabuddin (1999), which was used by these authors in the 

                                                 
10  In the context of the original CreditMetrics model the idea of this IS strategy has been first, albeit in an 

informal way, described by Xiao (2001). 
11  For an alternative technique see Kalkbrenner, Lotter and Overbeck (2004). Within the framework of the de-

fault mode CreditMetrics model these authors try to find optimal means of the systematic credit risk factors 
under the IS distribution by approximating the original inhomogeneous, finite portfolio by a homogeneous, 
infinitely granular portfolio. Of course, this approximation procedure is not unique. Then, they calculate the 
mean of the systematic credit risk factor which minimizes the variance of the estimator of the desired risk 
measure in a one-factor model of that homogeneous, infinitely granular portfolio. Finally, they �lift� this 
one-dimensional optimal mean to a M -dimensional mean vector. An approximation of the original portfo-
lio by an infinitely granular, homogeneous portfolio is also used by Tchistiakov, de Smet and Hoogbruin 
(2004) in order to reduce the variance of the risk measure estimator. However, they employ this approxima-
tion as a control variable. 

12  See Glasserman, Heidelberger and Shahabuddin (1999). 
13  If the joint distribution of the random vector (Z,X)  is a multivariate normal distribution, this assumption is 

without loss of generality, because a set of correlated normally distributed random variables can always be 
represented by a linear combination of orthogonal standard normally distributed random variables. 

14  The density (z, x)g  would be optimal if it would provide a zero variance IS estimator (see section 3.1). 
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context of option pricing: In this approach, the function (z, x)g  is assumed to be the density 

function of a multivariate normal distribution with mean vector C+Mµ ∈ "  and a covariance 

matrix equal to the identity matrix ( ) ( )I C M C M+ × +∈ " . The mean vector µ  is chosen as the mode 

of the optimal density, which equals the mode of (38):15 

       ( )
2 2

1 1

1 1

0.5

, , , , ,
µ arg max ( ) Z z, X x

C M

c m
c m

C M

z x

z z x x
P L H y e = =

 
 − + 
 

∈

∑ ∑
= > = =

… … "
 

         
2 2

( z ,x ) ( ) Z z ,X x 1 1

1 1

0.5
(z,x ) ( ) ( (z,x))

{ ( ) }
, , , , ,
arg max 1 Z z,X x

C M

c m
y yL Hy c m

C M

z xP L H
L H y

z z x x
E e eθ θ ψ θ= = = =

 
 − + − +  

>
∈

∑ ∑ = = =  
(

… … "
. (39) 

In the above representation the dependence of the parameter yθ  on the realizations Z z=  and 

X x=  is expressed by the notation (z, x)y yθ θ= . In order to simplify the optimization prob-

lem (39), a similar approximation as before is used: 

       ( z,x ) ( ) Z z ,X x(z,x) ( ) ( (z,x ))
{ ( ) }1 Z z,X xy yL HyP L H

L H yE eθ θ ψ θ= =− +
>

 = =  
(

( ) Z z ,X x

: ( z ,x )

(z,x) ( (z,x))y yL H

Fy

y

e
θ ψ θ= =

=

− +

≤
$%%%%%%%&%%%%%%%'

. (40) 

The conditional probability ( )( ) Z z,X xP L H y> = =  is substituted by the upper boundary 

(40) in the optimization problem (39). This yields: 

 
1 1

2 2

, , , , , 1 1
µ arg max (z, x) 0.5

C M

C M

y c m
z z x x c m

F z x
∈ = =

 = − + 
 
∑ ∑

… … "
. (41) 

Thus, the mean vector µ  of (z, x)g  is given by the solution of the following equations: 

2 2

1 1
(z, x) 0.5

C M

y c m
c mc

F z x
z = =

 ∂  − +  ∂   
∑ ∑  

( ) Z z,X x ( ) Z z,X x( (z, x)) ( (z, x))(z, x) (z, x)
0

( {1, , }),

y yL H L Hy y
c

c c y c

y z
z z z

c C

ψ θ ψ θθ θ
θ

= = = =∂ ∂∂ ∂
= − + + − =

∂ ∂ ∂ ∂

∈ …
 (42) 

and, analogously, 

2 2

1 1
(z, x) 0.5

C M

y c m
c mm

F z x
x = =

 ∂  − +  ∂   
∑ ∑  

( ) Z z,X x ( ) Z z,X x( (z, x)) ( (z, x))(z, x) (z, x)
0

( {1, , }).

y yL H L Hy y
m

m m y m

y x
x x x

m M

ψ θ ψ θθ θ
θ

= = = =∂ ∂∂ ∂
= − + + − =

∂ ∂ ∂ ∂

∈ …
 (43) 

                                                 
15  As the optimal density is proportional to (38), the mode of the optimal density coincides with the mode of 

(38). If there are several modes, the one which delivers the highest maximum should be chosen. However, 
in the numerical example of section 4 this problem does not appear. 
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For { }(z, x) ( ) Z z,X xC M Py E L H+∈ >  = =  " , due to (32) and (35), these equations can be 

simplified to: 

 ( ) Z z,X x ( (z, x))(z, x) (z, x)yL Hy y
c

c c c

y y z
z z z

ψ θθ θ= =∂∂ ∂
− + + −

∂ ∂ ∂
 

 ( ) Z z,X x ( (z, x))
0,yL H

c
c

z
z

ψ θ= =∂
= − =

∂
 (44) 

and 

 ( ) Z z,X x ( (z, x))
0.yL H

m
m

x
x

ψ θ= =∂
− =

∂
 (45) 

For { }(z, x) ( ) Z z,X xC M Py E L H+∈ ≤  = =  "  (32) and (35) yield the same representation 

of the necessary conditions for a maximum: 

 

0 0

( ) Z z,X x ( ) Z z,X x

0 0

( (z, x)) ( (z, x))(z, x) (z, x)

y y

y yL H L Hy y
c

c c y c

y z
z z z

θ θ

ψ θ ψ θθ θ
θ

= =

= = = =

= =

∂ ∂∂ ∂
− + + −

∂ ∂ ∂ ∂$%&%' $%&%'
 

 ( ) Z z,X x ( (z, x))
0,yL H

c
c

z
z

ψ θ= =∂
= − =

∂
 (46) 

and 

 ( ) Z z,X x ( (z, x))
0.yL H

m
m

x
x

ψ θ= =∂
− =

∂
 (47) 

The first derivative of the (conditional) cumulant generating function ( ) Z z,X x ( (z, x))yL Hψ θ= =∂  

with respect to cz  and mx , respectively, are given by: 

 ( )0
n n

0

(z,x) ( ; [X];P ) ( ;x;P )

, ,
1 1
ln (z)

P
y n n n

n

N K p E p k

n k
n kc

e f
z

θ η

η

−

= =

 ∂  
  ∂   
∑ ∑  

 

( )

( )

0 0
n n

0
n n

0

(z,x) ( ; [X];P ) ( ;x;P ) , ,

1

(z,x ) ( ; [X];P ) ( ;x;P )1
, ,

1

(z)

( {1, , })
(z)

P
y n n n n

P
y n n n

n

K p E p k n k
N

k c
K p E p kn

n k
k

f
e

z c C
e f

θ η η

θ η

η

−

=

−=

=

∂

∂= ∈
∑

∑
∑

… , (48) 

and 

 ( )0
n n

0

(z,x ) ( ; [X];P ) ( ;x;P )

, ,
1 1
ln (z)

P
y n n n

n

N K p E p k

n k
n km

e f
x

θ η

η

−

= =

 ∂  
  ∂   
∑ ∑  
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( )

( )

0
n n

0

0
n n

0

(z,x) ( ; [X];P ) ( ;x;P )n
, ,

1

(z,x) ( ; [X];P ) ( ;x;P )1
, ,

1

( ; x;P )(z, x) (z)
( {1, , }).

(z)

P
y n n n

n

P
y n n n

n

K p E p kn
yN n k

k m
K p E p kn

n k
k

p k e f
x m M

e f

θ η

η

θ η

η

θ −

=

−=

=

∂−
∂= ∈

∑
∑

∑
…  (49) 

If (some of) the market risk factors X  have also explanatory power for the original transition 

probabilities16, these last M  equations have to be modified to: 

 ( )0
n n

0

(z,x) ( ; [X];P ) ( ;x;P )

, ,
1 1
ln (z, x)

P
y n n n

n

N K p E p k

n k
n km

e f
x

θ η

η

−

= =

 ∂  
  ∂   
∑ ∑  

     

( )

( )

0 0
n n

0

0
n n

0

(z,x) ( ; [X];P ) ( ;x;P ) , , n
, ,

1

(z,x) ( ; [X];P ) ( ;x;P )1
, ,

1

(z, x) ( ; x;P )(z, x) (z, x)
.

(z, x)

P
y n n n n

n

P
y n n n

n

K p E p k n k n
y n kN k m m

K p E p kn
n k

k

f p ke f
x x

e f

θ η η
η

θ η

η

θ−

=

−=

=

∂ ∂−  ∂ ∂ =
∑

∑
∑

 (50) 

 

Having determined the mean vector µ  of the density (z, x)g , the whole IS estimator for the 

excess probability ( ( ) )P L H y> , combining both steps described before, is finally: 

( ( ) )P L H y> ( )( ) Z, XPE P L H y = > 

{ }
0

( Z,X )

0

1

, ,
{ ( ) }

1 1 , ,

(Z)
1 Z,X

(Z)

H kn

y n

n

N KP n kP
L H y

n k n k

f
E E

h

η

θ η

η

=

>
= =

      =    
     

∏∏
(

 

( ) ( )( ) 2 ( ) 2( ) ( ) ( ) ( ) ( )
( ) ( )( ) Z ,X 1 1

( )

0.5 0.5(Z ,X ) ( ) ( (Z ,X ))

{ ( ) }
1

1 1 ,

C M
d dd d d d d c c c m m my d d yL H c m

d

D Z XL H

L H y
d

e e
D

µ µ µ µθ ψ θ
= =

− − − −− +

>
=

∑ ∑
≈ ∑  (51) 

where (Z, X) (µ, I)N∼ , D  is the number of draws of the systematic risk factors Z  and X , 

(Z,X)yθ  is given by (32) and � conditional on the realization of (Z, X)  � the credit portfolio 

loss ( )L H  is sampled according to the modified transition probabilities , , (Z, X)n i kh  (see (25)). 

 

When we are not interested in the Value-at-Risk and, hence, in the calculation of excess prob-

abilities and percentiles of the loss variable ( )L H , but prefer the expected shortfall as a meas-

ure of the risk of the credit portfolio, then 

( Z,X ) ( ) Z,X(Z,X) ( ) ( (Z,X))
{ ( ) }

1( ) ( ) ( ) 1 Z, X
1

y yL HyP L HP P
L H yE L H L H y E E L H e

p
θ θ ψ θ− +

>
   >  = ⋅      −

(
 

has to be estimated. In this case, for determining an appropriate parameter θ , the upper 

boundary (29) is replaced by:17 

                                                 
16  This is the case in the example of an integrated market and credit portfolio model described in section 2.2, 

which is also employed for the numerical example in section 4. 
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 ( ) Z,X2 ( ) 2 ( )2
{ ( ) }( ) 1 Z,XL HL HP

L H yE L H eθ
θ ψ θ− +

>
 ⋅  

( ( ) Z,X2( ( )) 2

0
( ) Z,XL Hy Pe E L Hθ

θ ψ θ

θ

− −

≥
 ≤  

(  

 ( ) ( )( ) Z,X

22
2( ( ))

( ) Z,X ( ) Z,X2 ( ) ( )L Hy
L H L He θ ψ θ ψ θ ψ θ

θ θ
− −  ∂ ∂ = +   ∂ ∂  

, 

and θ  is given by the solution of the optimization problem: 

 ( ) ( )( ) Z,X

22
2( ( ))

( ) Z,X ( ) Z,X2
0

(Z,X) arg max ( ) ( )L Hy
y L H L He θ ψ θ

θ
θ ψ θ ψ θ

θ θ
− −

≥

 ∂ ∂ = +   ∂ ∂  
, 

which has to be solved for each realization of the systematic risk factors. Similarly, the IS 

mean C Mµ +∈ "  of the systematic risk factors is given as the solution of the optimization prob-

lem: 

2 2

( z ,x ) ( ) Z z,X x 1 1

1 1

0.5
(z,x) ( ) ( (z,x))

{ ( ) }
, , , , ,

µ arg max ( ) 1 Z z, X x .

C M

c m
y yL Hy c m

C M

z xP L H
L H y

z z x x
E L H e eθ θ ψ θ= = = =

 
 − + − +  

>
∈

∑ ∑ = ⋅ = =  
(

… … "
 

As these modified optimization problem are more complex and, hence, it is more time-

consuming to solve them, in the numerical example of section 4 it is analyzed which variance 

reduction can be achieved when for expected shortfall estimations simply the same parame-

ters θ  and µ  are used as before for the computation of excess probabilities. Because of the 

relation ( Z,X ) ( ) Z, XyPy E L Hθ=   
(

 (see 36)), it is obvious that this procedure can not be opti-

mal; the IS approach for the estimation of the expectation of all realizations of the loss vari-

able ( )L H  which are larger than some threshold y  would be certainly more effective when 

the mean of the (conditional) credit portfolio loss is larger than y  under the IS measure 

(Z,X)y
Pθ
( . However, the numerical experiments in section 4 show that a significant variance re-

duction can be achieved even with the use of the suboptimal parameters θ  and µ . 

 

3.3 Modification: Insertion of a Third Step 

As we deal here with an integrated market and credit portfolio model, it might suggest itself to 

employ also IS techniques originally developed for pure market risk portfolio models and to 

combine these with those techniques originally developed for pure credit risk portfolio mod-

els. This is what we want to try next. As a result we get a three step-IS algorithm, where the 

additional step can either inserted before or after the second step described in section 3.2. In-

stead of considering the optimization problem (39) for finding variance reducing means of 

                                                                                                                                                         
17  For the last transformation it is used that the second derivative of the CGF evaluated at θ  equals the vari-

ance of the random variable under the probability measure Pθ
( . 
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both kinds of systematic risk factors, now, this procedure is only carried out for the systematic 

credit risk factors 1, , CZ Z… , whereas the IS distribution for the market risk factors 1, , MX X…  

is determined in an intermediate step. For finding the IS distribution of the market risk factors 

it is assumed that the credit portfolio is default risk-free and that all obligors remain in their 

initial rating class until the risk horizon. With this assumption the approach of Glasserman, 

Heidelberger and Shahabuddin (2000) developed for pure market risk portfolio models can be 

applied. Their method employs a delta-gamma approximation of the portfolio value at the risk 

horizon in order to find a variance reducing IS distribution for the market risk factors, whose 

changes over the risk horizon are assumed to be multivariate normally distributed.18 It has to 

be stressed that the assumption that all obligors remain in their initial rating class is only used 

for finding an effective IS distribution for the market risk factors, but, of course, not as a real 

approximation of the credit portfolio value. 

 

The random variable representing the credit portfolio loss which is only due to movements in 

the market risk factors over the risk horizon is defined as:19 

 
1

(X, ) : (X, )
N

wtr wtr
n

n
L H L H

=
=∑ ( )0 0

n n
1

( ; [X];P ) ( ;X;P )
N

P
n n n n

n
p E pη η

=
= −∑ , (52) 

where the upper index wtr  indicates that this is the loss without transition risk. For this ran-

dom variable a specific quadratic approximation, the so-called delta-gamma approximation, is 

introduced: 

 , ,(X, ) (X, )wtr wtrL H L H∆ Γ≈  

 
T

T T

: X : X: X

( [X], ) δ (X [X]) 0.5(X [X]) (X [X]) ,wtr P P P PL E H E E E
= ∆ = ∆= ∆

= + − + − Γ −$%&%' $%%&%%' $%&%'  (53) 

where the column vector XX (0, )N∆ Σ∼  is the multivariate normally distributed20 difference 

between the realized values of the market risk factors at H  and their expected values21, the 

                                                 
18  Glasserman, Heidelberger and Shahabuddin (2000) show that when the delta-gamma approximation is ex-

act, their IS technique is �asymptotically optimal� for estimating exceedance probabilities ( )P L y>  for 
large y , where �asymptotic optimality� means that the second moment of the IS estimator for ( )P L y>  
decreases at the fastest possible exponential rate as y  increases. Besides, Glasserman, Heidelberger and 
Shahabuddin (2000) use stratified sampling as an additional variance reduction technique. For an applica-
tion of the delta-gamma approximation as a control variate see Glasserman (2004, pp. 493). For IS com-
bined with stratified sampling under the assumption of multivariate t -distributed risk factors see Glasser-
man, Heidelberger and Shahabuddin (2002). 

19  Note that both terms depend on the current rating 0
nη . 

20  In spite of having assumed X (0,I)N∼  in the previous section, we use the above multivariate normal 
assumption for the market risk factors in order to follow the original presentation of this approach more 
closely. 

21  In the case that the market risk factors are modelled by a lognormal distribution, a quadratic approximation 
of the kind (53) is still possible. In this case the market risk factors have the representation 0 m m mc d X

m mY Y e +=  
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column vector 1( )m m Mδ δ ≤ ≤=  contains the first derivatives of (X, )wtrL H  with respect to the 

market risk factors: 

 
0

n

1X [X] X [X]

( ;X;P )(X, ) ( {1, , })
P P

wtr N
n n

m
nm mE E

pL H m M
X X

ηδ
== =

∂∂= = − ∈
∂ ∂∑ … , (54) 

and the matrix , 1 ,( )m n m n M≤ ≤Γ = Γ  is the Hessian matrix with the second derivatives of 

(X, )wtrL H  with respect to the market risk factors: 

 
2 02

n
,

1X [X] X [X]

( ;X;P )(X, ) ( , {1, , })
P P

wtr N
n n

m n
nm n m nE E

pL H m n M
X X X X

η
== =

∂∂Γ = = − ∈
∂ ∂ ∂ ∂∑ … . (55) 

Hence, (53) is just a second order Taylor series expansion of the credit portfolio loss 

(X, )wtrL H  around the expected market risk factors at the risk horizon. 

 

Next, a more convenient expression for the quadratic approximation (53) is derived.22 For 

this, let C M M×∈( "  be a quadratic matrix which fulfils T
XCC = Σ( (  (the matrix C(  can be ob-

tained for example from the Cholesky decomposition of XΣ ). Then, the matrix T0.5C CΓ( (  is 

diagonalized which is always possible because this is a real-valued symmetric matrix. Thus, 

the following representation is possible: 

 T T0.5C C=U UΓ Λ( ( , (56) 

where 

 
1 0

Λ
0 M

λ

λ

 
 =  
 
 

)  (57) 

is a diagonal matrix containing the eigenvalues of T0.5C CΓ( (  and U  is an orthogonal matrix 

whose columns are the eigenvectors of T0.5C CΓ( ( . Defining C CU= (  and T
1S ( , , )MS S= …  as a 

vector of independent standard normally distributed random variables, X CS∆ =  has a 

X(0,Σ )N  distribution because 

 T T T T T
XCC CU(CU) CUU C CC Σ= = = =( ( ( ( ( ( . (58) 

Finally, observing that 

 ( ) ( )T T T T T T0.5C C 0.5(CU) (CU) U 0.5C C U U U U UΓ = Γ = Γ = Λ = Λ( ( ( ( , (59) 

                                                                                                                                                         
with ,m mc d ∈ "  and 1 X XX ( , , ) (µ ,Σ )T

MX X N= … ∼  and, applying the chain rule, an approximation of 
(X, )wtrL H , which is quadratic in X , could still be derived (see Glasserman, Heidelberger and Shahabud-

din (2000, p. 1351)). 
22  See Glasserman (2004, pp. 486) and Glasserman, Heidelberger and Shahabuddin (2000, p. 1351). 
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(53) can be written as 
, ,(X, ) (X, )wtr wtrL H L H∆ Γ≈ T T

:

( [X], ) δ X 0.5 X Xwtr P

a

L E H
=

= + ∆ + ∆ Γ∆$%%&%%'  

T Tδ CS 0.5(CS) CSa= + + Γ *
T T T

: b =

δ CS S 0.5C CSa
= Λ

= + + Γ$%&%'  

 ( )2

1
: (S).

M

m m m m
m

a b S S a Qλ
=

= + + = +∑  (60) 

 

In the next step, the approximation (X, ) (S)wtrL H a Q≈ +  is used for finding an IS distribution 

for the market risk factors under which large values of the portfolio loss are generated with an 

higher probability than under the original distribution. Considering (60) one can see that large 

values of (S)a Q+  are more likely, when23 

•  those random variables mS  for which 0mb >  have a positive mean, 

•  those random variables mS  for which 0mb <  have a negative mean and 

•  those random variables mS  for which 0mλ >  have a large variance. 

Any effective IS distribution for the market risk factors should consider these effects. It is as-

sumed that the IS distribution is multivariate normal again, but with modified mean vector 

and modified covariance matrix. Then the likelihood ratio (S)l  is: 

 

T

T -1

1S S
2

1 1(S µ( )) ( ) (S µ( ))
2 2

(S)
det( ( ))

wtr wtr wtr
wtr

el
e

θ θ θ
θ

−

− − − Σ −
=

Σ
. (61) 

The entries of the mean vector µ( )wtrθ  and the covariance matrix ( )wtrθΣ  are chosen as fol-

lows:24 

 ( ) ( {1, , })
1 2

wtr
wtr m

m wtr
m

b m Mθµ θ
θ λ

= ∈
−

… , (62) 

 2

1 ( )
1 2( ) ( , {1, , }),
0 ( )

wtrwtr
mmn

m n
m n M

m n
θ λσ θ

 = −= ∈
 ≠

…  (63) 

where 

 
1

10,
max 2

wtr

mm M

θ
λ

≤ ≤

 
∈
 

 (64) 

                                                 
23  See Glasserman (2004, p. 495). 
24  See Glasserman, Heidelberger and Shahabuddin (2000, p. 1352). 
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is required for the parameter wtrθ  if 
1
max 0mm M

λ
≤ ≤

> . With this choice of the IS distribution the 

likelihood ratio (61) simplifies to: 

 (S) ( )(S)
wtr wtr

QQl e θ ψ θ− += , (65) 

where25 

 ( ) ( )
2 2

(S)

1

( )1( ) ln ln 1 2
2 1 2

wtr
wtrM

wtr P Q wtrm
Q mwtr

m m

bE eθ θψ θ θ λ
θ λ=

  ≡ = − −   − 
∑  (66) 

is the cumulant moment generating function of the random variable (S)Q . The identity (65) 

shows that employing (62) and (63) corresponds to an exponential change of measure for the 

quadratic form (S)Q . With this specific choice of the IS distribution the random variables mS  

( {1, , }m M∈ … ) still remain independent. Furthermore, the above mentioned aspects which 

should be reflected by any IS distribution of the market risk factors are indeed considered. 

 

In a final step, the parameter wtrθ  has to be determined. For this, the approximation 

( ( ) *)wtrP L H y> ( (S) *)P a Q y≈ + >  is used and a parameter wtrθ  which is effective for esti-

mating the probability on the right-hand side is computed, hoping that it is also effective for 

estimating the probability on the left-hand side.26 First, as in the first step of the IS technique 

described in section 3.2, an upper boundary for the second moment of the IS estimator for 

( (S) *)P a Q y+ >  is determined: 

       ( )2

{ (S) * }1 (S)wtrP
Q y aE lθ

> −
 
  

( 2 (S) 2 ( )
{ (S) * }1

wtr wtr
wtr QP Q

Q y aE eθ θ ψ θ− +
> −

 =
 

( ( )2 ( * ) ( )

0
.

wtr wtr
Qy ae θ ψ θ

θ

− − −

≥
≤  (67) 

As minimizing the second moment of the IS estimator is difficult, instead, wtrθ  is chosen in 

order to minimize the upper boundary (67). Analogously to section 3.2, this yields: 

  
( ) ( )

( )
0

*

0

unique solution to ( ) *  for * ( ) ,

0  for * ( ) ,

wtr

wtr

wtr wtr
Q Qwtr wtr
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y a y a

y a

θ
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ψ θ ψ θ
θ θ

θ
ψ θ

θ

=

=

 ∂ ∂= − − > ∂ ∂= 
∂ − ≤

 ∂

 (68) 

where the first derivative of the cumulant generating function is given by: 

 ( )( )wtr
Qwtr ψ θ

θ
∂

∂

2

2
1

(1 ) .
(1 2 ) 1 2

wtr wtrM
m m m

wtr wtr
m m m

bθ θ λ λ
θ λ θ λ=

 −= + − − 
∑  (69) 

                                                 
25  See Glasserman (2004, p. 487). 
26  In the following, we differ between the two figures y  and *y : y  is the initial guess of the percentile of 

the credit portfolio loss distribution which we are looking for, whereas *y  is the initial guess of a percen-
tile of the loss distribution when we only consider market risk but no transition risk. Especially for portfo-
lios with a low credit quality these figures differ significantly, even if the percentiles correspond to the same 
confidence level. 
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As in section 3.2, under the IS distribution 
*

wtr
y

Pθ
(  the mean of the random variable (S)a Q+  is 

equal to *y , so that { ( ) *} { (S) *}wtrL H y a Q y> ≈ + >  is no longer a rare event under the new 

sampling distribution: 

 [ ] ( )*
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(S) ( ) *
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θ θ

ψ θ
θ =
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(
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0
( )

(S) * for * ( ) .
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wtr

P
wtr

Qwtr

L H

E a Q y y aθ

θ

ψ θ
θ =

≈

∂⇔ + = − >
∂

(

$%&%'  (70) 

 

3.4 Combination of the Three Steps 

Finally, there are several possibilities how to combine the two steps of section 3.2 and the one 

described in this section in order to build a complete IS estimator for the excess probability 

( ( ) )P L H y> . These are discussed in the following. 

 

One possibility would be the following approach: 

( ( ) )P L H y> ( )( ) Z, XPE P L H y = >   
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where ( ,CS)y Zθ  is given by (32) and � conditional on the realization of (Z,S)  � the credit 

portfolio loss ( )L H  is sampled according to the modified transition probabilities , , (Z,CS)n i kh  

(see (25)), *
wtr
yθ  is given by (68) and the vector of transformed market risk factors S  is sam-

pled according to * *(µ( ), ( ))wtr wtr
y yN θ θΣ  (see (62) and (63)) and the vector of systematic credit 

risk factors Z  is sampled according to (µ, I)N , where the C -dimensional mean vector µ  is 

determined analogously to step 2 in section 3.2 as: 

2
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  (72) 
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This optimization problem can be simplified by substituting the inner expectation by its upper 

boundary ( ) z ,CS(z,CS) ( (z,CS))y yL Hye θ ψ θ− + , which yields for (72): 

 
2

* *( ) z ,CS* 1

1

0.5(z,CS) ( (z,CS)) (S) ( )

, ,
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y y y Q yL Hy c
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∈
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(

… "
. (73) 

However, even this simplified optimization problem would be rather involved because there 

are usually many market risk factors which are relevant for the value of a portfolio and, 

hence, a multi-dimensional integral would have to be solved numerically many times in this 

optimization problem. 

 

In order to circumvent this drawback an alternative might be to change the order in which the 

conditional expectations are computed: 

( ( ) )P L H y> ( )( ) Z, XPE P L H y = >   
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  (74) 

where (S)Pµ  is the multivariate normal distribution with mean vector µ(S)  and the identity 

matrix I as covariance matrix. The C -dimensional IS mean vector µ µ(S)=  of the systematic 

credit risk factors Z , which now depends on the realization of the market risk factors S , can 

be determined as the solution of the following optimization problem: 
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which is approximated by the solution of the following simplified optimization problem: 
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Unfortunately, this optimization problem has the serious disadvantage that it has to be solved 

for every scenario of the market risk factors S , which makes this approach computational ex-

pensive, too, and, hence, slow. 

 

A third possibility to combine all three steps, which could be called a �quick and dirty� ap-

proach, might be to assume for the determination of the IS means of the systematic credit risk 

factors Z  that the market risk factors S  equal there IS means *
*[ ] µ( )

wtr
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yE Sθ θ=
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estimator would be given by: 
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where again (Z,CS)yθ  is given by (32), conditional on the realization of (Z,S)  the credit 

portfolio loss ( )L H  is sampled according to the modified transition probabilities , , (Z,CS)n i kh  

(see (25)), *
wtr
yθ  is given by (68) and the vector of transformed market risk factors S  is sam-

pled according to * *(µ( ), ( ))wtr wtr
y yN θ θΣ  (see (62) and (63)) and the vector of systematic credit 

risk factors Z  is sampled according to (µ, I)N , where the C -dimensional mean vector µ  is 

now determined as: 
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The effectiveness of this approach is tested within the numerical example in the next section. 
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4 Numerical Example 

 

Next, the effectiveness of the IS techniques derived in the previous section is analysed by 

means of numerical experiments. For this, the �working example� of an integrated market and 

credit portfolio model as described in section 2.2 is employed. 

 

4.1 Parameters 

It is assumed that the credit portfolio consists of 500N =  defaultable zero coupon bonds, 

which are issued by N  different obligors, but are otherwise identical. The face value is cho-

sen to be 1F =  and the maturity date is 3T = , implying a remaining time to maturity of two 

years at the risk horizon. The simulations are done for the initial ratings 0 {Aa, Baa, B}η ∈ . As 

typical parameters for the Vasicek term structure model 0.4κ =  and 0.01rσ =  are chosen. 

The mean level θ  and the initial short rate (0)r  are set equal to 0.06. As market price of in-

terest rate risk λ  a value of 0.5 is taken.27 The recovery rate is set equal to 53.80% , which is 

the mean of the recovery rate of senior unsecured bonds during 1970 to 1995 reported by 

Moody�s.28 The employed transition matrix is also from Moody�s.29 The values of the correla-

tion parameter Vρ  of the asset returns are chosen as 0.1 and 0.4. The parameter ,r Vρ , which 

determines the correlation between the firms� asset returns and the term structure of interest 

rates, is set equal to , 0.05r Vρ = −= −= −= − . This value lies within the range of correlation parameters 

estimated in recent empirical studies of structural credit risk models.30 The credit spreads are 

set equal to the credit spread means determined by Kiesel, Perraudin and Taylor (2003).31 

 

4.2 Results 

In the following the percentiles ( ( ))p L Hα  of the credit portfolio loss variable ( )L H  as de-

fined in (22) are computed for {95%,99%,99.9%,99.98%}p ∈ . In each case, this is done with 
                                                 
27  For example Barnhill and Maxwell (2002) estimate a short rate volatility of 0.007, whereas Lehrbass (1997) 

finds 0.029rσ =  and Huang and Huang (2003) even work with 0.0468rσ = . With regard to the mean re-
version parameter and the market price of interest rate risk, Lehrbass finds 1.169κ =  and absolute values 
of 0.59, 0.808 and 1.232 for the parameter λ , whereas Huang and Huang choose 0.226κ =  and an abso-
lute value of 0.248 for λ . 

28  See Moody’s Investors Service (1996). However, using Moody�s estimate of the mean ignores the fact that 
the rating agency defines the recovery rate as a percentage of par and not as a percentage of a risk-free but 
otherwise identical zero coupon bond. 

29  See Moody’s Investors Service (2002, p. 31). The probabilities are average values of all corporates in the 
period 1970-2001. The category �rating withdrawn� has been eliminated by distributing its probability mass 
among all other categories, corresponding to their individual weights. 

30  See Eom, Helwege and Huang (2004, table 1, p. 505) and Lyden and Saraniti (2000, table 6, p. 38). 
31  See Kiesel, Perraudin and Taylor (2003, table 1, p. 10, table 2, p. 18, appendix, p. 32). 
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and without an application of the IS technique.32 Repeating these computations fifty times al-

lows to calculate the standard error of the percentile estimators. Based on these standard er-

rors, the ratio of the standard error of the percentile estimator without an application of IS and 

the respective standard error of the percentile estimator with IS is computed. These ratios al-

low to evaluate the effectiveness of the IS technique. 

 

As an initial guess for the percentiles y  which we are looking for the percentiles resulting 

from a crude pre-Monte Carlo simulation with a very low number of simulation runs (10,000) 

are used. These figures enter the IS estimators (51) and (77), respectively, for the excess 

probabilities ( ( ) )P L H y> . The exact percentiles are calculated from these excess probabili-

ties by a simple bisection method. For this, in each iterative step the arguments in the indica-

tor functions in (51) and (77), respectively, are modified until the excess probability estimator 

equals one minus the confidence level with the desired precision. However, the y , on which 

the parameter (Z,X)yθ  and the IS means of the systematic risk factors depend, are not altered 

during the iteration. Of course, the simulation of the credit portfolio loss variable also has to 

be done only once. 

 

In the case that the third step as described in section 3.3 is also employed an additional pre 

simulation is carried out and the resulting guesses *y  for the percentiles are used for calculat-

ing the IS means and IS variances of the market risk factors (see (62), (63) and (68)). For this 

second pre-simulation the future ratings of the obligors are set equal to their current ratings so 

that portfolio losses are only due to changes in the market risk factors. 

 

Table 1 shows the standard error ratios for the base case parameters described in section 4.1 

when the two step-estimator (51) is employed. The most important observation is that the two 

step-IS technique is capable of reducing the standard error of the percentile estimators signifi-

cantly and that, as expected, in general the reduction is larger the higher the confidence level 

of the percentile, even if there is no strict monotony. However, concerning the dependence of 

the standard error reduction on the credit quality or the asset return correlation no clear state-

ments are possible because the results are rather mixed. Table 1 also shows the relative impor-

tance of IS for the systematic credit risk factor Z  and the interest rate factor rX : For high 

quality portfolios with a low stochastic dependence between the credit quality changes of the 
                                                 
32  Not using the IS technique corresponds to setting the IS means and the (conditional) twisting parameter (32) 

equal to zero and the IS standard deviations equal to one. 
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obligors IS for the interest rate factor rX  is more important, whereas for low credit qualities 

and/or high asset return correlations IS for the systematic credit risk factor Z  is essential. 

These results are consistent with the findings of Grundke (2005b) who also observes that for 

high quality credit portfolios interest rate risk contributes most to the Value-at-Risk estimates, 

whereas for lower credit qualities, as expected, transition risk is more important. 

 

In table 1 also the standard error ratios for estimators of the expected shortfall 

( ) ( )PE L H L H y >    with ( ( ))py L Hα=  ( {95%,99%,99.9%,99.98%}p ∈ ) can be seen. In 

general, the standard error reduction is strengthened for this risk measure although the subop-

timal parameter ( , )y rZ Xθ  and the suboptimal IS means of the systematic risk factors Z  and 

rX  originally calculated for the estimation of excess probabilities are used (see section 3.2). 

� insert table 1 about here � 

 

Next, the influence of the model parameterization and the homogeneity assumptions on the 

variance reduction effect has been tested. As table 2 shows, the standard error ratios are rather 

robust with respect to changes in the amount of interest rate risk, the number of obligors, the 

correlation between the asset returns and the risk-free interest rates or the degree of homoge-

neity of the portfolio33. Some standard error ratios are higher than in the base case setting (see 

table 1), other are lower, but no systematic difference can be observed. 

� insert table 2 about here � 

 

Finally, the three step-IS estimator (77) has been implemented, where the IS mean of the sys-

tematic credit risk factor Z  is calculated according to (78) and the computation of the IS 

mean and IS variance of the interest rate factor rX  is based on (62), (63) and (68). As the sec-

ond derivative 
2

2
[ ] 0

( , )
( ) P

r r

wtr
r

r X E X

L X H
X

= =

∂
∂

 is very small, the parameter 1λ  is nearly zero and, 

hence, the IS variance (63) remains, compared to the original probability measure, nearly un-

changed one. Table 3 shows that for almost all considered credit qualities, asset return corre-

lations and confidence levels the three step-IS technique yields worse standard error reduc-

tions than the two step-IS approach. Probably, one reason for this worse performance of the 

                                                 
33  In the case of an �inhomogeneous portfolio composition�, instead of assuming that all obligors have the 

same initial rating, the credit quality distribution of an �average� credit portfolio, based on Gordy (2000, p. 
132), is employed. Furthermore, inhomogeneous exposures of {0.1, 0.4, 0.9, 1.6, 2.5}, which are equally 
distributed in each rating grade, are assumed. 
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three step-IS technique is that the approach for computing the optimal parameter theta (see 

(32)) when calculating the IS mean of Z  is not identical with the approach for computing this 

parameter during each of the simulation runs. In the former case, the interest rate factor is 

non-stochastic and set equal to its IS mean (see (78)), whereas in the latter case theta is cho-

sen as a function of the realizations of the systematic risk factor Z  and rX , which can both 

vary in a free manner according their probability distribution. Hence, when determining the 

optimal IS mean of Z  only a sub-optimal parameter theta (and not the optimal value charac-

terized by 32)) is employed, from which the sub-optimality of the computed IS mean of Z  

follows. 

� insert table 3 about here � 

 

 

5 Conclusions 

 

Standard credit portfolio models do not model market risk factors, such as risk-free interest 

rates or credit spreads, as stochastic variables. Various studies have documented that a severe 

underestimation of economic capital can be the consequence. However, integrating market 

risk factors into credit portfolio models increases the computational burden of computing 

credit portfolio risk measures, which makes the necessity of developing efficient computa-

tional methods for this type of credit portfolio model even more obvious. 

 

In this paper, the application of various importance sampling techniques to an integrated mar-

ket and credit portfolio model are presented and the effectiveness of these approaches for es-

timating percentiles of the credit portfolio loss variable, which are needed for Value-at-Risk 

calculations, as well as expected shortfalls is tested by means of numerical experiments. The 

main result is that importance sampling can reduce the dispersion of the estimators, but it is 

rather difficult to make statements about when the IS approach is especially effective. Only 

the fact that in general, as expected, the standard error reduction is larger the higher the confi-

dence level of the percentile is obvious. Besides, it can be observed that the combination of 

importance sampling techniques originally developed for pure market risk portfolio models 

with techniques originally developed for pure default mode credit risk portfolio models is less 

effective than simpler two step-IS approaches. 
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Extensions of the study presented in this paper should for example check the robustness of the 

IS technique to altered portfolio compositions (for example other instrument types, e.g. op-

tions with counterparty risk) or the number of systematic risk factors. Furthermore, the effec-

tiveness of the IS technique for calculating risk measures in the context of integrated market 

and credit portfolio models should be compared with that one of non-probabilistic approaches, 

such as e.g. Fourier based methods. 
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TABLES 
 
Table 1: 
Standard error ratios for percentile and expected shortfall estimators with the two step-
IS technique 
 

 Aa Baa B 
confidence 

level 
0.1Vρ =  0.4Vρ =  0.1Vρ =  0.4Vρ =  0.1Vρ =  0.4Vρ =  

percentile estimators     
IS means for Z  and rX  optimally chosen 

99.98% 38.4 5.4 22.5 27.6 50.0 31.1 
99.9% 11.8 0.5 14.5 14.8 11.7 21.0 

99% 4.5 2.2 6.2 1.5 5.7 7.4 
95% 2.7 3.2 3.1 2.1 2.8 3.9 

       
no IS for Z  

99.98% 30.3 1.9 3.8 0.8 1.7 1.2 
99.9% 14.4 2.8 4.2 1.2 0.8 1.1 

99% 5.3 1.3 2.2 1.2 1.1 1.2 
95% 3.1 2.5 3.1 1.1 0.9 1.1 

       
no IS for rX  

99.98% 0.6 3.6 1.5 27.4 22.7 25.7 
99.9% 0.6 0.4 1.3 12.4 10.2 12.2 

99% 0.8 0.9 1.2 0.4 4.3 6.2 
95% 1.0 1.2 1.3 0.6 2.0 3.7 

       
expected shortfall estimators     

99.98% 216.8 1.1 25.0 75.6 138.1 300.8 
99.9% 40.6 1.3 20.1 52.5 42.3 49.9 

99% 10.2 1.0 6.3 10.3 11.2 8.7 
95% 5.6 1.9 4.9 2.2 5.8 4.6 

 
Notes: Standard error ratios, defined as the standard error of the percentile estimator of the loss variable ( )L H  
(expected shortfall estimator ( )( ) ( ) ( )P

pE L H L H L Hα >  ) without an application of IS divided by the stan-
dard error of the respective estimator with IS, are shown. The computations of the standard errors are based on 
fifty repetitions of the simulations (with and without IS), where each simulation consists of 10,000 simulation 
runs. Notation: ρV : asset return correlation. Parameters: 500=N , 1F = , 3T = , 1H = , , 0.05ρ = −r V , 

0.538δ = , 0.4κ = , 0.06θ = , 0.01rσ = , 0.5λ = , (0) 0.06r = . 
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Table 2: 
Standard error ratios for percentile estimators with the two step-IS technique for vary-
ing parameterizations and portfolio compositions 
 

 Aa Baa B 
confidence 

level 
0.1Vρ =  0.4Vρ =  0.1Vρ =  0.4Vρ =  0.1Vρ =  0.4Vρ =  

0rσ =  (no interest rate risk) 
99.98% 36.5 39.7 40.5 38.3 43.4 19.5 

99.9% 18.2 14.3 14.3 15.6 15.9 14.4 
99% 7.4 6.1 5.7 5.8 6.6 4.6 
95% 3.4 3.0 2.9 3.7 3.8 2.7 

       
, 0.25r Vρ = −  (increased negative correlation between asset returns and interest rates) 

99.98% 34.2 31.3 35.1 50.4 34.1 27.4 
99.9% 18.9 7.3 12.8 15.7 18.8 19.6 

99% 7.2 2.4 6.8 5.8 5.5 5.4 
95% 4.1 3.0 2.8 2.7 2.8 3.1 

       
50N =  (reduced number of obligors) 
99.98% 40.8 2.0 26.6 59.6 33.6 37.4 

99.9% 13.5 2.6 12.3 21.4 14.2 21.5 
99% 6.9 3.0 5.7 4.0 6.8 7.5 
95% 3.6 3.0 3.2 1.8 3.4 3.5 

       
inhomogeneous portfolio composition    

99.98% 23.2 20.8     
99.9% 25.4 12.7     

99% 7.0 4.5     
95% 2.2 5.5     

 
Notes: Standard error ratios, defined as the standard error of the respective percentile estimator of the loss vari-
able ( )L H  without an application of IS divided by the respective standard error of the percentile estimator with 
IS, are shown. The computations of the standard errors are based on fifty repetitions of the simulations (with and 
without IS), where each simulation consists of 10,000 simulation runs. In the case of an �inhomogeneous portfo-
lio composition�, instead of assuming that all obligors have the same initial rating, the credit quality distribution 
of an �average� credit portfolio, based on Gordy (2000, p. 132), is employed. Furthermore, inhomogeneous expo-
sures of {0.1, 0.4, 0.9, 1.6, 2.5}, which are equally distributed in each rating grade, are assumed. Notation: ρV : 
asset return correlation. Parameters (as far as not otherwise indicated): 500=N , 1F = , 3T = , 1H = , 

, 0.05ρ = −r V , 0.538δ = , 0.4κ = , 0.06θ = , 0.01rσ = , 0.5λ = , (0) 0.06r = . 
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Table 3: 
Standard error ratios for percentile estimators with the three step-IS technique 
 

 Aa Baa B 
confidence 

level 
0.1Vρ =  0.4Vρ =  0.1Vρ =  0.4Vρ =  0.1Vρ =  0.4Vρ =  

99.98% 22.0 1.1 9.2 0.8 3.6 1.8 
99.9% 4.5 1.8 5.5 0.8 1.6 0.9 

99% 3.8 2.7 6.0 1.4 1.5 0.8 
95% 3.0 2.8 3.4 2.0 1.4 1.0 

 
Notes: Standard error ratios, defined as the standard error of the respective percentile estimator of the loss vari-
able ( )L H  without an application of IS divided by the respective standard error of the percentile estimator with 
IS, are shown. The computations of the standard errors are based on fifty repetitions of the simulations (with and 
without IS), where each simulation consists of 10,000 simulation runs. The IS means of the systematic credit risk 
factor Z  are calculated according to (78), whereas the computations of the IS means and variances of the inter-
est rate factor rX  are based on (62), (63) and (68). Notation: ρV : asset return correlation. Parameters: 

500=N , 1F = , 3T = , 1H = , , 0.05ρ = −r V , 0.538δ = , 0.4κ = , 0.06θ = , 0.01rσ = , 0.5λ = , (0) 0.06r = . 
 
 
 
 


