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Abstract.
To verify whether an empirical distribution has a specific theoretical distribution, several tests

have been used, for example: Kolmogorov-Smirnov and Kuiper. These tests try to analyze if all
parts of the empirical distribution has a specific theoretical shape. But, in a Risk Management
framework, the focus of analysis is on the tails of the distributions, since we are interested on the
extreme returns of financial assets. This paper proposes a new goodness-of-fit hypothesis test with
focus on the tails of the distribution. The new test is based on the Conditional Value at Risk
measure. Three major exchange rates (JPY/USD, GBP/USD and CHF/USD) are used as examples
of a practical application of the test proposed. The new test, the Kolmogorov-Smirnov and Kuiper
tests were applied to verify if the empirical data has a Normal, Scaled-t, Hyperbolic, NIG or GH
distribution. For JPY currency, the Normal, Hyperbolic and scaled-t distributions were rejected
by the new test. For the CHF and GBP, only Normality was rejected. Results are the same for
CHF and GBP when using the other two tests. But for the JPY, the Scaled-t and the Hyperbolic
distributions are rejected on the new test, and not rejected for the other two tests. We conclude
that, for overall finance applications, we can use Scaled-t and Hyperbolic distributions for the JPY,
but for Risk Management applications, they are not adequate.

1. Introduction. The PhD thesis of Louis Bachelier in 1900 (see Courtault et al [2000]), was the
first to propose the use of a Normal distribution to model price movements in financial markets. On the
Bachelier thesis, the absolute price increments of financial assets were modeled by a Normal distribution.
But this model allows negative prices, so Osborne (1959) and Samuelson (1965) suggested the geometric
Brownian motion, where the price percentage returns follow a Normal distribution. This assumption of
Normality is widely used in risk models, like the RiskmetricsTM(1995, 1996), considered a benchmark
model on measuring market risk.

Nevertheless, the Normality assumption was later refuted by several empirical researches, starting
with Mandelbrot (1963) and Fama (1965). The actual distribution of financial assets has some differ-
ences from the normal distribution, as fat tails (positive excess of kurtosis) and asymmetry (see Rydberg
[1997] and Hull and White [1998]). Then researches tried to find which other distributions could replace
the Normal.

In the 1960’s, Mandelbrot (1963) and Fama (1965) were the pioneers in proposing alternative dis-
tributions to model financial data. They proposed that the Stable Paretian distribution. In the 1970’s,
Praetz (1972) and Blattberg and Gonedes (1974), proposed the scaled Student t distribution, and in
the 1980’s, Kon (1984) suggested the mixture of Normals as an alternative to model financial assets. In

∗∗ The views expressed in this work are those of the authors and do not reflect those of the Banco Central do Brasil or
its members.
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the 1990’s several papers analyzed the use of the Generalized Hyperbolic distribution to model financial
assets, starting with Eberlein and Keller (1995).

When choosing among different distributions to model financial assets, a common problem that arises
is to verify whether an empirical distribution has a specific distribution or not. Berkowitz (2002) sug-
gests the distributional test as one of the steps to assess a risk model. Several tests have been used,
for example: Kolmogorov-Smirnov, Likelihood Ratio and Kuiper. These tests try to analyze if all parts
of the empirical distribution has a Normal shape. But, in a Risk Management framework, the focus
of analysis is on the tails of the distributions, since we are interested on the extreme returns of finan-
cial assets. So, in a Risk Management framework, the goal of a goodness-of-fit test should be whether
the tails of the theoretical distribution are a good approximation to the tails of the empirical distribution.

In this way usual goodness-of-fit tests would assess the goodness-of-fit of a theoretical distribution
based on mismatch of all distribution, and not only the tails. Therefore, the main goal of this paper
is to propose a new goodness-of-fit hypothesis test with focus on the tails of the distribution, i.e., a
tail-goodness-of-fit test with focus on Risk Management. First, we propose a statistical distance based
on the Conditional Value at Risk (CVaR)1 of two distributions. Then we use Monte Carlo Simulation to
perform hypothesis tests based on the distance proposed, using data from three major exchange rates.
We test the hypothesis that the empirical distribution has a Normal, Scaled Student-t, Generalized Hy-
perbolic (GH), Normal Inverse Gaussian (NIG) and Hyperbolic distributions, based on the new distance
proposed on this paper.

This paper is organized as follows: section two gives a brief overview of market risk models. Section
three reviews some goodness-of-fit tests. On section four we introduce the new goodness-of-fit test
proposed by this paper. Section five performs an empirical application of the new test, as well as other
tests. Section six concludes the paper with the final remarks and suggestions for further research.

2. Market Risk Models.

2.1. Market Risk Measures. In recent years, risk management became popular among researchers,
market practitioners and regulators. The Value at Risk (VaR) emerged as one of the benchmark measure
for market risk.

According to Basak and Shapiro (2001), “evidence abounds that in practice VaR estimates not only
serve as summary statistic for decision makers, but are also used as a tool to manage and control risk –
where economic agents struggle to maintain the VaR of their market exposure at a prespecified level”.

The VaR allows the market risk to be expressed in one number: the loss one expected to suffer with
a certain confidence level to a fixed holding period:

P [R < −V aR(α)] = 1− α

Where R is the random variable of the asset’s returns, and α is the confidence level with which the
VaR is being calculated.

The distribution of R can be an empirical non-continuous distribution, or a theoretical specified con-
tinuous distribution. The Value at Risk of an empirical distribution can also be viewed as the α quantile
of the distribution.

Although the intense use of VaR, researchers have criticized this risk measure. One question not
addressed by the concept of VaR is what is the magnitude of the loss when the VaR limit is exceeded.
Another issue on VaR pointed out by the article of Artzner, Delbaen, Eber and Heath (1999) is that

1See section 2 for discussion about risk measures and Conditional Value at Risk.
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it is not a “coherent” measure of risk. They say that a risk measure is a coherent measure of risk if it
satisfies the following four properties:

• Translation invariance: for a constant k, ρ(x + k) = ρ(x) + k

• Subadditivity: for all X and Y , ρ(X + Y ) ≤ ρ(X) + ρ(Y )

• Positive homogeneity: for a positive constant k, ρ(kx) = kρ(x)

• Monotonicity: For all X ≤ Y for each outcome, then ρ(X) ≤ ρ(Y )

The VaR is not considered a coherent measure of risk, because it fails to hold the subadditivity
property, i.e., the VaR of a two assets portfolio can be greater than the sum of the two individual VaR’s.

Also, Prause (1999) argues that to avoid bankruptcy one should forecast the distribution of the max-
imum expected loss. From this point of view regulators should use other risk measures than VaR. A
better incorporation of extreme events especially in view of nonlinear portfolios is desirable.

Therefore, a new measure of risk has emerged in the literature, the Conditional VaR2, that is the
expected value of the loss, given that it exceeds a certain level. The Conditional VaR (CVaR) can be
written as:

CV aR(R,α) = −E[R|R ≤ −V aR(α)]

Considering that distribution of R is known, we have:

CV aR(R, α) =

∫ −V aR(α)

−∞ xfR(x)dx

1− α

WherefR is the probability density function of R.
This measure, differently from VaR, satisfies the subadditivity property above mentioned, and ad-

dresses a question not answered by VaR: “How bad is bad?”. The VaR informs only if the loss is above
a certain level, but no information about the magnitude of the loss is given. So, the CVaR is used to
answer this question.

2.2. The Parametric Approach. Several approaches can be used to estimate the market risk mea-
sures. The choice will depend on the kind of portfolio, computational resources available and time
constraints. The main three approaches are: parametric, historical simulation and Monte-Carlo simula-
tion. This paper focuses on the parametric approach.

The parametric approach assumes that the asset returns have a specific probability distribution, (for
example, the Normal). The parameters of the distribution are estimated (for example, the volatility) and
so the risk measure is calculated based on the estimated distribution. So the risk measure depends on
the parameters used. The Normal distribution is the most used with this approach. The RiskMetrics?
model is the most popular market risk model, and used this approach, assuming that asset returns follow
a Normal distribution, with mean equal to zero, and volatility estimated by the EWMA (Exponential
Weighted Moving Average) method, using historical data. Various other methods to estimate the volatil-
ity have been tested to replace the EWMA, usually methods of the GARCH family. This approach is
usually called Conditional Normal methods, since we use a Normal distribution with the variance being
calculated by conditional methods.

As the Normal distribution has thinner tails than the empirical distributions, other distributions
different from the Normal have also been tested, such as student-t, mixture of Normals, Hyperbolic, etc.

2This measure has been used with many other names such as Expected Shortfall and Tail VaR.
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Hull and White (1998) used a mixture of two Normal distributions to assess the Value at Risk of
12 exchange rates from 1988 to 1997. The first half of data was used to estimate the parameters and
the second to assess the model. An EWMA was used to estimate the volatility. Results when each
currency has a separate estimation show the single currency model could be rejected for only four of the
currencies, using the chi-squared test with 95% confidence. When the same parameters are used for all
currencies, the model cannot be rejected with 95% confidence.

Bauer (2000) used a symmetric Hyperbolic distribution to perform VaR calculations, and used data
from German stocks and international stock indexes (DAX, Dow Jones and Nikkei) from 1987 to 1997.
His results showed that the model with Hyperbolic distribution outperformed Riskmetrics model.

Prause (1999) used the Generalized Hyperbolic distribution and its subclasses to fit German stocks,
U.S. stock indexes and exchange rates. He used several statistics to assess the goodness-of-fit such as
the Kolmogorov and Anderson-Darling distances, with the Normal being always the worst one. Also,
Prause performed VaR calculations with single assets and multi-assets portfolios.

Also Generalized Pareto distributions are good candidates to fit extreme event data, then we can use
these distributions to calculate VaR, for more details see Embrechts, Klueppelberg and Mikosch (1997).

The main advantage of the parametric approach is the speed of calculation. Also, when using some
conditional volatility estimation like EWMA or GARCH (conditional parametric methods), this method
captures better the market stresses situations. On the other hand, this method has limitations if applied
to portfolios with non-linear instruments, such as options.

3. Goodness-of-fit Tests. To test whether an empirical distribution has a specific distribution
(or not), several tests have been used. The most common is the Kolmogorov-Smirnov. The Kolmogorov
distance (see, for example, Massey[1951]) is defined as the greatest distance between empirical distribu-
tion and theoretical distribution, for all possible values:

DKol = max
x∈IR

|FEmp(x)− FTheo(x)|

where FEmp is the empirical cumulative function and FTheo is the continuous and completely specified
theoretical cumulative function. FEmp can be defined by:

FEmp(x) = (number of X ′
is ≤ x)/n

where X ′
is are the sample’s elements and n is the sample number of elements.

The Kuiper (1962) distance is similar to the Kolmogorov distance, but considers both directions of
the discrepancy adding the greatest distances upwards and downwards:

DKui = max
x∈IR

{FEmp(x)− FTheo(x)}+ max
x∈IR

{FTheo(x)− FEmp(x)}

These tests try to analyze if all parts of the empirical distribution has a Normal shape. But, in a Risk
Management framework, the analysis focus is on the tails of the distributions, since we are interested on
the extreme returns of financial assets.

One approach to give emphasis on the tails of a distribution is to use the Anderson and Darling (AD)
distance, proposed in a 1952’s paper. They propose a distance that would be viewed as Kolmogorov
distance with weight. Weighting can be defined giving special importance to tails, and so being especially
relevant to risk measures. The formula of this distance with tail emphasis is:

DAD = max
x∈IR

|FEmp(x)− FTheo(x)|√
FTheo(x)[1− FTheo(x)]
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Prause (1999) uses the AD distance to assess which theoretical distribution fits better the data of
German Stocks. The distributions assessed were Normal, Generalized Hyperbolic, Hyperbolic and Nor-
mal Inverse Gaussian. Nevertheless, he did not perform a hypothesis test, he just compared the AD
distance of the distributions, to find out which one is the best. According to Prause, the Normal distri-
bution is the worst one to his set of data.

There are other kinds of distances and tests that give emphasis on the tail, like the ones proposed
in Crnkovic and Drachman (1996) and Farias, Ornelas and Fajardo (2003)3. Both use distances similar
to the Kuiper, but with greater weights on the tails. The FOF distance uses the weight function of the
AD distance.

4. Tail-Goodness-of-fit Test Considering CVaR. In this paper, we propose a new dis-
tance to test the goodness-of-fit of a theoretical distribution to an empirical distribution.

The distance proposed here gives emphasis on the tails of the distribution (like the AD, CD and
FOF tests) and so is more adequate to risk measures than the Kolmogorov distance. Our distance
gives special emphasis on a specific risk measure – the Conditional Value at Risk (CVaR), and it is
the absolute difference between the empirical and the theoretical CVaR for a given significance level.
Intuitively, we are calculating the error of the theoretical distribution in estimating the CVaR of the
empirical distribution. Mathematically:

DCV (X,α) = |CV aRTheo(X, α)− CV aREmp(X, α)|

=
1

1− α

∣∣∣∣∣

(∫ V aREmp

−∞
x fEmp(x) dx

)
−

(∫ V aRT heo

−∞
x fTheo(x) dx

)∣∣∣∣∣
Where:

• X is the random variable representing the returns of the asset;

• VaREmp is the Value at Risk calculated using the Empirical distribution with a confidence level
α;

• VaRTheo is the Value at Risk calculated using the Theoretical with a confidence level α.;

• Femp is the probability density function of the empirical distribution and

• Ftheo is the probability density function of the theoretical distribution.

Differently from the Kolmogorov, AD, CD, FOF and other distances analyzed on this paper, the
distance proposed is not based on a Maximum operator over the cumulative probability distribution,
but it is a sum over the density probability functions. This has the purpose to fit in a better way the
CVaR measure, which is also a sum.

Note that the distance has a parameter α besides the two distributions (empirical and theoretical).
This is the level of confidence of the VaR beyond which the distance works. So, if one is interested on
both tails of the distribution4, it is necessary to define a bi-caudal distance BCV (Bi-caudal Conditional
Value at Risk):

DBCV (X,α) = |CV aRTheo(X, α)− CV aREmp(X, α)|+ |CV aRTheo(−X, α)− CV aREmp(−X,α)|
Based on this distance, we can perform a hypothesis test with the null hypothesis that the empirical

distribution is equal to the theoretical distribution. As our distance focus on the tails of the distribution,
we can say this is a “tail-goodness-of-fit” test.

3We will call them CD distance and FOF distance, respectively.
4This is important when short positions on the asset are frequent.
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5. An Empirical Application. In this section, data from three major exchange rates are used
to exemplify the tail-goodness-of-fit test proposed on last section. We will use data from three major
exchange rates, and test 5 distributions: Normal, Scaled-t, GH, NIG and Hyperbolic.

5.1. Data Description. The three exchange rates used are Japanese Yen (JPY) per U.S. Dollar, Swiss
Franc (CHF) per U.S. Dollar and U.S. Dollar per Great Britain Pound (GBP). It was used daily close
bid prices from January 1st 1987 to August 29th 2002. The returns used were logarithmic, according to
the following formula:

Rt = ln
[

CloseBidt

CloseBidt−1

]

Where Rt is the return from day t, CloseBid t is close bid price from day t, and Ln is neperian
logarithmic.

In table I, we have the main information about the return sample used:

Table I: Sample Return Statistics

Japanese Yen Great Britain Pound Swiss Franc
Mean -0.0070% 0.0011% -0.0019%
Standard Deviation 0.727% 0.616% 0.739%
Kurtosis 5.16530 3.21694 1.81152
Asymmetry (0.49884) (0.19496) (0.09836)
Range 10.99% 7.69% 7.39%
Minimum -6.95% -4.39% -3.55%
Maximum 4.04% 3.30% 3.84%
Number of Observations 4,083 4,083 4,083

We can see on graphs I to III that the tails of the empirical histogram are heavier than the Normal
distribution estimated, for all three currencies. The density around the mean is also higher in the
empirical distribution.

5.2. Estimation of the parameters. Before performing the hypothesis test, we need first to estimate
the parameters of the theoretical distributions. The parameters of Scaled-t, GH, NIG and Hyperbolic
were estimated using maximum log-likelihood. Estimated parameters are on table II. The density func-
tions of these distributions are on Appendix A.

5.3. Goodness-of-fit Tests of Major Exchange Rates. After estimating the parameters, the next
step to perform the test is to calculate the critical values and the p-values to each set of parameters,
considering the sample size of 4,083.

The critical values were obtained after 10.000 Monte Carlo (MC) Simulations runs for our sample
size. For each MC run, we do the following two steps:

Generate a sample of the size proposed, using the distribution and parameters proposed;

Calculate the Bi-caudal CvaR (BCV) distance between the sample generated on step 1, with the
theoretical distribution;

At the end of the 10.000 runs, we will have 10.000 BCV distances that will be ordered. So the critical
value for the significance level S will be the percentile (1 −S) of the ordered BCV distance sequence.
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Graph I: Histogram - Japanese Yen x U.S. Dollar Returns

Table II: Estimated Parameters

Alfa Beta Delta Mi Lambda LogL.
GH GBP 1.82E+02 -4.49E+00 4.30E-03 1.81E-04 4.90E-02 15,235

CHF 2.46E+02 -6.12E+00 2.81E-03 3.14E-04 1.51E+00 14,364
JPY 7.36E+01 -1.58E+01 9.69E-03 7.47E-04 -1.59E+00 14,571

NIG GBP 1.46E+02 -4.53E+00 5.56E-03 1.83E-04 -5.00E-01 15,234
CHF 1.63E+02 -7.43E+00 8.91E-03 3.88E-04 -5.00E-01 14,363
JPY 1.39E+02 -1.65E+01 7.07E-03 7.74E-04 -5.00E-01 14,569

Hyperb GBP 2.46E+02 -4.36E+00 1.82E-03 1.73E-04 1.00E+00 15,233
CHF 2.25E+02 -6.54E+00 4.74E-03 3.38E-04 1.00E+00 14,364
JPY 2.17E+02 9.00E-03 3.02E-03 1.51E-04 1.00E+00 14,555

Mi Sigma DoF LogL.
Scaled-t GBP 6.43E-05 6.40E-03 3.81 15,226

CHF 5.36E-05 7.46E-03 5.46 14,359
JPY 1.33E-04 7.35E-03 4.21 14,564

Then, to obtain the p-value, we have just the find the significance level corresponding to the BCV
distance calculated between the empirical and theoretical distribution, using the parameters from Table
II.

Then we can compare the p-value to a certain significance level (we choose 1%), to assess the null
hypothesis that the empirical distribution is equal to the theoretical distribution.
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Graph II: Histogram - Great Britain Pound x U.S. Dollar Returns

These results are shown on table III:

Table III: BCV Hypothesis Tests Results

JPY GBP CHF
BCV Dist. p-value BCV Dist. p-value BCV Dist. p-value

Normal 3.08E-03 0.000% 3.16E-03 0.000% 2.73E-03 0.000%
Scaled-t 2.53E-03 0.970% 5.82E-04 69.97% 1.10E-03 23.07%
NIG 5.37E-04 68.14% 3.32E-04 84.21% 2.97E-04 87.74%
Hyperbolic 2.90E-03 0.000% 5.72E-04 50.30% 4.77E-04 69.07%
GH 3.16E-04 89.00% 4.46E-04 71.69% 5.32E-04 62.17%

As expected, results from table III had rejected normality of all three exchange rates tested, corrob-
orating previous empirical studies. For the CHF and GBP, all the others distribution have been not
rejected on the BCV hypothesis test, but for the JPY, only the NIG and GH were not rejected with 1%
confidence level, although the scaled-t is very near the confidence level.

The best distribution according to the minimum BCV distance criteria is the NIG for GBP and
CHF, and the GH for the JPY. Using the Maximum LogLikelihood (MLL) criteria, the GH is the best
one for all currencies, but it is expected, since it is a general case of the others (see Appendix A),
and the estimation procedure tried to maximize the LogLikelihood function. Since the BCV distance
has focus on the tails of the distribution and the estimation used here (MLL) considers all parts of the
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Graph III: Histogram - Swiss Franc x U.S. Dollar Returns

distribution, even with the GH being a general case, it will not have necessarily the lowest BCV distance.

To provide a comparison to classical tests, the Kolmogorov-Smirnov and Kuiper tests were also
performed on the same data as can be seen on tables IV and V:

Table IV: Kolmogorov-Smirnov Hypothesis Test Results

JPY GBP CHF
Distance p-value Distance p-value Distance p-value

Normal 5.60E-02 0.000% 5.60E-02 0.000% 4.40E-02 0.000%
Scaled-t 1.28E-02 51.44% 1.25E-02 54.76% 1.19E-02 60.96%
NIG 6.92E-03 98.95% 9.13E-03 88.38% 9.81E-03 82.48%
Hyperbolic 1.15E-02 64.83% 9.11E-03 88.60% 9.06E-03 88.97%
GH 8.58E-03 92.37% 9.13E-03 88.45% 8.85E-03 90.49%

The classical tests also rejected Normality as was expected, with the all other distributions being not
rejected. Note that for the CHF and GBP, test results are the same of the BCV, but for the JPY, the
Scaled-t and the Hyperbolic that were rejected on the BCV test, now are being not rejected. So we can
say that, for overall applications, we can use Scaled-t and Hyperbolic distributions for the JPY, but for
Risk Management applications, they are not adequate.

Results about the best distribution for these criteria are mixed: for the JPY currency, the NIG was
the best distribution on both Kolmogorov and Kuiper distances. For the GBP and CHF, Hyperbolic
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Table V: Kuiper Hypothesis Test Results

JPY GBP CHF
Distance p-value Distance p-value Distance p-value

Normal 1.04E-01 0.000% 1.11E-01 0.000% 7.80E-02 0.000%
Scaled-t 2.41E-02 14.63% 2.12E-02 31.96% 2.31E-02 19.59%
NIG 1.32E-02 95.75% 1.65E-02 74.45% 1.76E-02 64.09%
Hyperbolic 2.05E-02 37.15% 1.76E-02 64.83% 1.59E-02 79.73%
GH 1.70E-02 70.31% 1.58E-02 81.01% 1.62E-02 77.36%

and GH were the best distribution depending on the criteria (Kolmogorov or Kuiper).

6. Conclusion and Suggestions. In this paper we proposed a way to test the goodness-of-fit
of theoretical distributions to empirical data with focus on the CVaR risk measure. The JPY, GBP and
CHF exchange rates were used as examples of a practical application of the test proposed. These tests
were done considering Normal, Scaled-t, Hyperbolic, NIG and GH distributions, and three distances
criteria, Kolmogorov, Kuiper and the BCV distance.

For JPY currency, Normal, Hyperbolic and scaled-t distributions were rejected by the BCV test. For
the CHF and GBP, only Normality was rejected. When using classical tests (Kolmogorov-Smirnov and
Kuiper) test results are the same for CHF and GBP. But for the JPY, the Scaled-t and the Hyperbolic
are rejected on the BCV test, and not rejected for the other two tests. We may conclude that, for
overall finance applications, we can use Scaled-t and Hyperbolic distributions for the JPY, but for Risk
Management applications, they are not adequate.

The test proposed on this article can be easily applied to other kinds of distributions and assets,
including portfolios, since it needs only the series of returns and the expression for the distribution’s
density. So, as suggestion for further researches, another kinds of distributions may be also tested, to-
gether with other classes of assets.

It is worth to mention that the test proposed here assesses the unconditional distribution of returns,
but most of the risk management approaches use conditional distributions approaches. Anyway, as sug-
gested by Berkowitz (2002, figure 1), one of the steps to check the validity of a risk model is to test the
distribution used, and this would be done by the CVaR test proposed on this paper.

Also the CVaR-focuses distance proposed can be used to estimate the parameters of distributions,
through minimization of this distance. For example, Prause (1999) uses an estimation method that
minimizes the Anderson-Darling distance. Then, with an estimation focused on the tails of the distri-
bution, the CVaR measure is expected to be more reliable. After the distance minimization estimation,
a conditional volatility model may be used to re-scale the distribution to get the volatility forecasted by
the model. Backtests would then assess the validity of this approach.
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Appendix A

A.1 Stable Paretian distributions Characteristic function of the Stable Paretian distribution is the
following:

φx(t) = exp {−γα|t|α (1− iβsign(t) tg(πα/2)) + itδ} for α 6= 1

and

φx(t) = exp {−γ|t| (1 + 2iβsign(t) ln(|t|)) /π + itδ} forα = 1

Where δ is the location parameter, γ is the scale/dispersion parameter, β is the asymmetry parameter
and α is the stability index.

A.2 Scaled Student t distribution The density function of the scaled Student t distribution is the
following:

f(x; µ, σ, ν) =
Γ(ν+1

2 )

Γ(ν/2)
√

π(ν − 2)σ2

[
1 +

(x− µ)2

(ν − 2)σ2

]−(ν+1)/2

Where v is the degrees of freedom parameter, µ is the location parameter and σ the dispersion
parameter.

When v →∞ the Student t converges to the Normal Distribution.

A.3 Mixture of Normals Density function of the returns is a weighted average of several Normal
densities:

f(x; µ1, . . . , µn, σ1, . . . , σn, λ1, . . . , λn−1) =
n∑

i=1

λiN(µi, σi)

Where µi and σi are respectively the mean and standard deviation of each Normal distribution, and
λ is the weight of each Normal. As the sum of the weights must be one, the last λ is completely defined
by the others.

A.4 Generalized Hyperbolic Distribution The density probability function of one-dimensional GH
distribution is defined by the following equation:

GH(x; λ, α, β, δ, µ) = a(λ, α, β, δ)
(
δ2 + (x− µ)2

)(λ−1/2)/2 ×
Kλ−1/2

(
α
√

δ2 + (x− µ)2
)

e(β(x−µ))

where Kx is the modified Bessel function of third kind and

a(λ, α, β, δ) =

(
α2 − β2

)λ/2

√
2παλ−0.5δλKλ

(
δ
√

α2 − β2
)

The parameters are real numbers with the following restrictions (see Prause[1999]):

δ ≥ 0, |β| < α if λ > 0
δ > 0, |β| < α if λ = 0
δ > 0, |β| ≤ α if λ < 0

The parameter δ is a scale factor, compared to the σ of a Normal distribution, and µ is a location
parameter. Parameters α and β determine the distribution shape and λ defines the subclasses of GH and
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is directly related to tail fatness (Barndor-Nielsen and Blæsild [1981]). The function a(.) is introduced
to guarantee that the cumulative distribution has values between zero and one.

The GH has several subclasses, among them the Hyperbolic and Normal Inverse Gaussian(NIG).
Setting λ = -1/2, we get the NIG, and with λ = 1, we get the Hyperbolic distribution. The Gaussian is
a limiting distribution of GH, when δ → ∞ and δ/α → σ2.
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