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Abstract: 

We place the asset value credit portfolio model in the larger context of generalized correlation 

models where the normal distribution assumption of asset returns is replaced by an abstract 

elliptical distribution.  

Based on closed-form solutions for homogenous portfolios, we show in particular that the 

classical asset value model is not robust against misspecifications of the assumed asset return 

distribution, that it further systematically underestimates portfolio risk, if the asset return dis-

tribution is non-normal, and that it may also induce insufficient supply of economic capital to 

cover credit portfolio risk in the world’s financial institutions. 
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1. Introduction 

A crucial step in the construction of a credit portfolio model is the description of dependen-

cies between clients. One of the most widespread credit portfolio risk models in the banking 

industry world wide is the so called asset value model which goes back to an article by Robert 

Merton of 19741 and was then further developed by Oldrich Vasicek and Stephen Kealhofer 

of KMV Corporation2 in the mid 1990’s and by Mickey Bhatia, Christopher Finger and Greg 

Gupton under the name of Credit Metrics in 19973. 

The asset value model is mainly a reinterpretation of the classical Black-Scholes-Merton op-

tion pricing model in a credit risk context. For this reason, the assumption of a geometric 

Brownian motion as the mathematical model for asset price processes and the normality of 

marginal asset returns play a central role in the asset value model.  

In this article, we will place the classical asset value model, to which we shall also refer as the 

normal correlation model, in the larger context of generalized correlation models where the 

normal distribution assumption of asset returns is replaced by an abstract elliptical distribu-

tion.  

As the normal distribution, multivariate elliptical distributions are in general entirely defined 

by the type of their marginal distributions and their linear covariance matrix and in that re-

spect are a straightforward generalization of the normal correlation model. 

Extending a result of Vasicek (1991), we use the closed-form solutions for the portfolio loss 

distributions of homogenous portfolios to show that the distributional assumption in the gen-

eralized correlation model, which contains the classical asset value model as a special case, 

has a significant influence on the reported risk of a given and unchanged credit portfolio. In 

particular, we show that it is the normal correlation model which detects the least risk of all 

versions of the generalized correlation model in a homogenous portfolio if the value at risk at 

a sufficiently high confidence level is used as portfolio risk measure. This implies that the 

classical asset value model is not robust against misspecifications of the assumed asset return 

distribution, that it further systematically underestimates portfolio risk, if the asset return dis-

tribution is non-normal, and that it may also induce insufficient supply of economic capital to 

cover credit portfolio risk in the world’s financial institutions. 

                                                 
1  See Merton (1974). 
2  See Kealhofer (1993). 
3  Gupton et al. (1997). 
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As further results, we describe the univariate symmetric distributions which are the marginal 

distributions of multivariate elliptical distributions in arbitrary dimensions as variance mix-

tures of normals. We give asymptotic analytic solutions for the portfolio loss distribution and 

the portfolio loss density of large homogenous portfolios in the generalized correlation model 

and state some of their properties. Finally, we show that the risk minimality property of the 

normal correlation model is unrelated to the tail independence of the bivariate normal distri-

bution. 

The paper is organized as follows: After first defining the generalized correlation model we 

then develop the loss distribution and loss density of homogenous portfolios and show some 

of their properties. Finally, we prove the risk minimality of the normal correlation model 

within the family of generalized correlation models4. All proofs are given in the appendix. 

 

2. The normal correlation model  

The normal correlation model was the first fully worked out model of dependencies between 

clients in a credit portfolio. It was mainly developed by Oldrich Vasicek and Stephen Keal-

hofer of KMV Corporation5 in the mid 1990’s.  

Based on Robert Merton’s seminal article on corporate default risk of 19746, it is assumed 

that a company defaults if its firm value falls below the face amount of its debt at the time the 

debt is due7 because its proprietors are better off if they hand the firm over to the creditors 

instead of repaying the debt.  

Moreover, in the Merton-model, the firm value follows a geometric Brownian motion. This 

supposition allows for a straight forward generalization of Merton’s single firm model to a 

portfolio model by assuming the joint firm value processes of a set of n firms to follow a mul-

tivariate geometric Brownian motion with pairwise linear correlations ρij between firm i and 

firm j,   i, j = 1,…, n, of the logarithmic increments. Still every single firm defaults if its asset 

value is inferior to its liabilities at the debt’s maturity; however, default events can now be 

dependent due to the correlated asset values. 

                                                 
4  Various software tools that illustrate the results are available for free at www.wehrspohn.de and www.risk-and-

evaluation.com. 
5  See Kealhofer (1993). 
6  See also Wehrspohn (2002) sections I.B.1. and I.B.2. 
7  It is also supposed that all of the firm’s liabilities consist of zero bonds of the same seniority due at the same point in 

time. For a full list of assumptions of Merton’s model confer to Wehrspohn (2002) section I.B.1. 
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As a simplification, KMV supposes that all firms’ debts have a standardized time to maturity 

of one year. Since the logarithm of the firm value process, i.e. the asset return process, at time 

t = 1 is normally distributed with given mean and variance and since the linear correlation ρ is 

invariant under linear transformations8, we can presume without loss of generality that the 

firms’ joint asset return process V1 is normally distributed with mean 0 and a covariance ma-

trix that equals its correlation matrix. 

Once default probabilities pi, i = 1,…, n, have been calculated for the single firms with the 

original Merton approach, the firms’ debts can be replaced by abstract default thresholds di 

given by 

( )ii pd 1−Φ=  

where ( )⋅Φ−1  is the inverse cumulative distribution function of the standard normal distribu-

tion. 

Now the firms’ joint default behavior can be simulated by drawing random numbers from the 

multivariate standard normal distribution with the specified correlation matrix. 

A variation of the KMV approach was suggested by Gupton, Finger and Bhatia in the model 

known as Credit Metrics9. In Credit Metrics the Vasicek-Kealhofer portfolio model is sepa-

rated from Merton’s option pricing method to calculate default probabilities. Default and also 

transition probabilities from one grade to the other are considered as being exogenously given 

through company ratings so that the firms’ asset value processes are no longer relevant to fit 

the model. This enlarges the applicability of the model from public to all externally or inter-

nally rated companies.  

The concept of dependence between counterparties in Credit Metrics is identical to the KMV 

approach. The interpretation of the multivariate normal and the marginal distributions as the 

firms’ joint and marginal asset return distributions is now purely intuitive in the Credit Met-

rics context, so that it would be better to rather speak of abstract risk index distributions. Their 

main role in the model is to extend the individual firms’ transition probabilities as given by 

their ratings to joint transition probabilities for the entire portfolio of firms. 

 

                                                 
8  Note that this implies that asset return correlations are time invariant. The time horizon t only enters into the calcula-

tion of portfolio risk through the firms’ default probabilities. 
9  Gupton et al. (1997). 
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3. The generalized correlation model  

While being economically intuitive, a major drawback of the normal correlation model is the 

somewhat arbitrary choice of the multivariate normal distribution to describe the joint move-

ments of clients’ individual risk indices. Historical reasons certainly were dominant in this 

selection because normal distributions appear as finite dimensional marginal distributions of 

the log-returns of the geometric Brownian motion, the standard model of continuous stochas-

tic processes.  

In the present discussion, however, a typical criticism of the normal distribution is that it is 

not well adapted to the specific features of a lot of financial data. This assessment refers espe-

cially to the phenomenon that many empirical distributions have long tails, i.e. that large de-

viations from the mean of a distribution are observed much more frequently than one would 

expect if the underlying distribution was normal. 

In the normal correlation model two things were fundamental: the marginal distributions that 

were needed to calculate clients’ default and transition thresholds and the correlation matrix 

of clients’ risks indices. In order to extend the model, note that a multivariate distribution is in 

general not uniquely determined by its marginal distributions and its correlation structure. 

Exceptions in that respect, however, are spherical and elliptical distributions. 

 

Definition 1: 
A distribution D is called spherical10 if it is invariant under orthogonal transformations, i.e. if 

for a random vector nX R∈  with DX ~  and any orthogonal map nnU ×∈ R  the equation 

( ) ( )UXX L=L  

holds11. If D has a density d, then this definition is equivalent to saying that d is constant on 

spheres.12 

 

Definition 2: 
Let S be the family of all spherical distributions. A distribution D is called elliptical13 if it is 

an affine linear transformation of a spherical distribution14, i.e. if for a random vector nX R∈  

                                                 
10  Or ‘spherically symmetric’. 

11  ( )XL  denotes the law of X. The expression denotes that the distributions of X and of UX are equal. 

12  Fang et al. (1989), definition 2.1., p. 29. 
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with DX ~  and a random vector nY R∈  with ( ) S∈YL  there exists nR∈µ  and nnA ×∈ R  so 

that 

YAX ⋅+= µ . 

 

The best known example of spherical or elliptical distributions respectively is the family of 

multivariate normal distributions so prominent in the normal correlation model.  

Elliptical distributions are an interesting generalization of the normal distribution in the asset 

value model because a multivariate elliptical distribution is uniquely determined by its uni-

variate marginals, its mean, and its covariance matrix since the type of all marginals is the 

same15. 

Not all symmetric univariate distributions are possible as marginal distributions of an ellipti-

cal distribution in nR  for any N∈n . It can be shown, however, that a univariate distribution 

D is the marginal distribution of a spherical distribution in nR  for any N∈n  if and only if it 

is a variance mixture of centered normals16. Hence17, D can be defined by its density function  

( )sdW
s

x
s

xf ∫
∞









−=

0

2

2
exp1

2
1)(
π

 

where the weight or mixing distribution W only takes values on ),0( ∞ , i.e. a variance mixture 

of normals is a normal distribution with random variance. This definition immediately implies 

that a random variable DX ~  can be written as 

YwX ⋅=  

where Y is standard normally distributed, Ww ~ , and Y and w are stochastically independent. 

Example 1 

A well-known example of a normal variance mixture is the Student-t distribution with n de-

grees of freedom. Here the mixing distribution w is given as 

                                                                                                                                                         
13  Or ‘elliptically symmetric’. 
14  Fang et al. (1989), definition 2.2., p. 31. 
15  Cf. Embrechts et al. (1999), p. 11. 
16  Fang et. al, (1989), theorem 2.21, p. 48. Note that there exist univariate distributions that are no variance mixtures of 

normals that can be marginals of spherical distributions for some, but not all N∈n . 

17  Note that any mixture of normals has a density with respect to the Lebesgue measure. 
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ϑ
nw =  

where 2~ nχϑ . 

Example 2 

A more flexible family of mixture distributions is the generalized hyperbolic distribution. The 

one-dimensional centered and symmetric version of the generalized hyperbolic distribution 

has three free parameters λ, α, δ and is defined by its Lebesgue-density 

( ) ( ) ( )( ) ( )22
2/1

2/2/12,,a,,; xxxgh +−⋅= −
− δαδδαλδαλ λ

λ K  

with  

( )
( )δλδπ

αδαλ
λ

λ K⋅⋅
=

2
,,a

2/1

 

where ( )⋅λK  is a modified Bessel function of the third kind with index λ and R∈x . Alterna-

tively, the generalized hyperbolic distribution can be defined by its mixing distribution. This 

is the generalized inverse Gauss distribution with density 

( ) ( )
( ) 















 +−⋅= − x
x

xxgig ψχ
ψχ
χψχψ λ

λ

λ

2
1exp/,; 1

2/

K
 

for 0>x  and 2δχ =  and 2αψ = . 

The generalized hyperbolic distribution is continuous in its parameters and has the normal and 

the t-distribution as limiting cases: 

For ∞→δα , , 2σ
α
δ →  and any given λ, the generalized hyperbolic distribution converges 

towards ( )2,0 σN .18 

On the other hand, for 0=α , νδ =  and 2/νλ −=  it is equal to the t-distribution with ν 

degrees of freedom.19 

 

 

                                                 
18  Cf. Prause (1999), p. 3. 
19  Cf. Prause (1999), p. 5. 
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Example 3 

An interesting special case of the generalized hyperbolic distribution is the normal inverse 

Gauss distribution (NIG). It is obtained for 2/1−=λ  and has the inverse Gauss distribution  

( ) 






 +






 +−⋅
⋅⋅

= ψχψχ
π
χχψ x

xx
xig

2
1exp

2
,; 3  

as mixing distribution. 

The NIG is particularly interesting as an alternative for the normal distribution in the asset 

value model because it is not only infinitely divisible20, but also closed under convolution. 

Hence, similar to the normal distribution, it generates a Lévy-motion whose finite dimen-

sional marginals are all NIG-distributed21. Therefore, the intuitive interpretation in the Va-

sicek-Kealhofer model and in Credit Metrics of the normal distribution as the marginal distri-

bution of an asset return process could be maintained in a one-to-one fashion if the normal 

distribution was replaced by the NIG. 

Example 4 

A very simple family of mixtures of normals are finite mixture distributions. They are ob-

tained if the mixing distribution W takes on only finitely many values with positive probabil-

ity, i.e. if there exist real numbers 0,...,1 >nww  such that 

{ }( ) 1,...,1 =∈ nwwwP   

if Ww ~ . 

 

Besides the flexibility of deformation, the distributions differ above all in tail behavior. 

                                                 
20  As is any generalized hyperbolic distribution. Cf. Barndorff-Nielsen and Halgreen (1977). 
21  Cf. Eberlein et al. (1998), p. 6f., who use the Lévy-motion generated by the NIG instead of the classical geometric 

Brownian motion to model financial price processes. 
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Tail behavior of normal mixture distributions
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Figure 1: Tail behavior of normal mixture distributions 

Figure 1 shows that NIG and t-distributions have exponentially decreasing tails while tails of 

finite mixture distributions and the normal distribution decrease of order ( )2xeO − . 

For a further interpretation of the illustration above, we need  

 

Definition 3:  

Let f be the density function of a distribution F with expectation µ and variance 2σ . We say 

that F has long tails compared to the normal distribution if and only if 

( )
( ) 1lim

2,

>
∞→ x

xf
x

σµϕ
 

where 2,σµϕ  is the density of the normal distribution with expectation µ and variance 2σ . 

 

We can now prove 

Theorem 1: 
Let D be a normal variance mixture with non-degenerate mixing distribution. Then D has 

long tails compared to the normal distribution. 
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Definition 4: 
We say that a model defines a representation of the generalized correlation model, if its risk 

index distribution is a variance mixture of normals. According to the choice of the risk index 

distribution in the generalized correlation model, we will also speak of the Student-t-

correlation model, the finite mixture correlation model etc.  

 

The normal correlation model is just a special case in this framework. It is obtained for cw ≡  

for some constant c > 0. 

To better understand the properties of the generalized correlation model and to see the impact 

of the choice of clients’ risk index distributions on the resulting portfolio risk, in the following 

we look at homogenous portfolios because we can derive analytic loss distributions for this 

special class of portfolios, which render it possible to prove results. 

We define a homogenous portfolio as consisting only of identical clients in terms of probabili-

ties of default p, exposure E, risk index correlations ρ , and expected loss given default λ22. 

Without loss of generality, we assume that all risk index distributions are centered and have 

variance 1. 

Let D be the distribution of risk indices. We assume that D is a mixture of normals with mix-

ing distribution W, such that  

DXw ~⋅   

where  

( )1,0~and~ NXWw . 

In the generalized correlation model in a homogenous portfolio each client’s risk index Xi is 

then given as 

( )ii ZYwX ⋅−+⋅⋅= ρρ 1  

with ni ,...,1=  if n is the number of clients in the portfolio where Y and Zi are independent and 

standard normally distributed. 

To facilitate the exposition of the results,  

                                                 
22  We do not assume recovery rates or loss given default rates as being fixed. They may be random with the same mean 

(not necessarily the same distribution) being independent from all other random variables in the model such as sys-

tematic and idiosyncratic risk factors. 
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•  let F be the cumulative distribution function of D, 

•  let Φ  be the cumulative distribution function of the standard normal distribution, and 

•  let L be the loss distribution of the portfolio under consideration, i.e. the cumulative dis-

tribution function of portfolio losses. 

We begin with the derivation of the portfolio loss distribution of homogenous portfolios in the 

generalized correlation model, then calculate the density of the portfolio loss distribution and, 

finally, compare the results for the normal and generalized correlation model.  

 

(1) Portfolio loss distribution 

Theorem 2: 
In the generalized correlation model in a homogenous portfolio containing n clients each hav-

ing an exposure of E = 1/n and risk index correlations 10 << ρ  the asymptotic portfolio loss 

distribution is given as 

( ) ( )( ) { }

( ) ( )




























⋅
−Φ⋅−⋅

Φ=

≤==

−−

∞→

ρ
λρ

λρλρ

w
pFlw

lnEplLplL

w

n

11 /1

Loss,,,;lim,,;

E

P

 

where ( )⋅wE  is the expectation functional with respect to w. 

 

From Theorem 2 we obtain the loss distribution in the normal correlation model for 1≡w , i.e.  

( ) ( ) ( )












 Φ−Φ⋅−
Φ=

−−

ρ
λρ

λρ
pl

plL
11 /1

,,; , 

a result that was already proved by Vasicek (1991). 

The portfolio loss distribution is generally easy to calculate for finite mixture distributions 

because in this case the expectation functional ( )⋅wE  is reduced to a simple sum. Let the mix-

ing distribution W be a probability distribution on { }kww ,...,1  with { } ii pww ==P  for 

ki ,...,1= . Then the portfolio loss distribution can be written as 

( ) ( ) ( )
∑
=

−−















⋅
−Φ⋅−⋅

Φ⋅=
k

i i

i
i w

pFlw
pplL

1

11 /1
,,;

ρ
λρ

λρ . 
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Portfolio loss distributions
(ρρρρ = 20%, p = 0.5%, λλλλ = 100%)
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Figure 2: Portfolio loss distributions in the generalized correlation model based on finite mixture distributions23 

Figure 2 shows loss distributions for a homogenous portfolio resulting from the finite mixture 

correlation model. Note that the loss distributions in the finite mixture correlation model 

dominate the loss distribution in the normal correlation model at high confidence levels, in 

our above example at confidence levels above 92.5% (fm 1), 84.8% (fm 2), and 79.9% (fm 3). 

We will prove this as a general result in Theorem 6 below. 

For more complex mixing distributions the portfolio loss distribution can be calculated using 

numerical techniques or the Monte Carlo integration. 

                                                 
23  The mixing distributions of the finite mixtures in the graph are defined as follows: 

 fm 1: { } { } 1.085.6,9.035.0 ==== ww PP  

 fm 2: { } { } 35.021.2,65.035.0 ==== ww PP  

 fm 3: { } { } 775.019.1,225.035.0 ==== ww PP  
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Portfolio loss distributions NIG with shape parameter δδδδ 
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Figure 3: Portfolio loss distributions in the generalized correlation model based on normal inverse Gaussian 
distributions 

 

It is a very important feature of the generalized correlation model that clients with uncorre-

lated risk indices are still dependent in their default behavior if the mixing distribution W is 

non-trivial. We state this fact as 

Theorem 3: 
In the generalized correlation model, in a homogenous portfolio containing n clients each hav-

ing an exposure of E = 1/n and risk index correlations 0=ρ , the asymptotic portfolio loss 

distribution is given as 
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Theorem 3 states that – other than in the normal correlation model24 where 0=ρ  implies 

{ } 1Loss =⋅= λpP  – uncorrelated non-normal risk indices in the generalized correlation 

model imply a constant portfolio loss distribution only for p = ½. 

                                                 
24  Again, the result for the normal correlation model follows from the theorem for 1≡w . In this case Φ=F . 
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For default probabilities p < ½ the loss distribution is not constant, but only takes values be-

tween 0 and λ/2. On the other hand, for default probabilities p > ½ the loss distribution is not 

constant either, and only takes values between λ/2 and λ. 
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Figure 4: Loss distributions resulting from uncorrelated Student-t-distributed risk indices25 

 

Figure 4 shows that loss distributions remain above or below λ/2 for the respective probabili-

ties of default. If the number of the degrees of freedom of the Student-t-distribution tends to-

wards infinity, i.e. if the t-distributed risk indices converge towards normally distributed risk 

indices, the portfolio loss distributions become more and more flat and converge towards 

( ) λλ ⋅≡ pplL ,0,;  as we would expect from Theorem 3. 

If the mixing distribution of the risk index distributions is discrete, as is the case at finite mix-

tures of normals, then the resulting portfolio loss distribution is also discrete given the risk 

index correlations are zero (Figure 5). However, if the mixing distribution converges to a con-

stant, the loss distribution again converges towards ( ) λλ ⋅≡ pplL ,0,; . 

 

                                                 
25  The loss given default rate λ is set to 100%. 
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Figure 5: Loss distributions resulting from uncorrelated finite mixture distributed risk indices26 

 

In the remaining case of perfect risk index correlations 1=ρ  the differences between the 

models disappear. Here clients’ risk indices are given as 

YwXX i ⋅==  

so that all clients default simultaneously if  

( )pFYwX 1−≤⋅= . 

However, since FYw ~⋅  it is 

( ){ } ( ){ } ppYpFYw =Φ≤=≤⋅ −− 11 PP  

independent of F. 

 

(2) Portfolio loss density 

In the previous section, we considered the asymptotic portfolio loss distribution of homoge-

nous portfolios for an infinite number of clients in the portfolio. Due to the increasing number 

of clients, each single client’s exposure converges to zero relative to the total portfolio expo-

                                                 
26  The mixing distribution is a two-point distribution that is standardized to have expectation 1. The loss given default rate 

λ is set to 100%. 
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sure. Therefore, homogenous portfolios asymptotically do not contain exposure concentra-

tions on specific clients or exposure point masses. This is a necessary condition for the portfo-

lio loss distribution in order to have a Lebesgue density. 

In the next theorem, we derive the portfolio loss density for risk index correlations 10 << ρ . 

 

Theorem 4: 
In the generalized correlation model, in a homogenous portfolio containing n clients each hav-

ing an exposure of E = 1/n and risk index correlations 10 << ρ , the density dL  of the asymp-

totic portfolio loss distribution is given as 

( ) ( )( )
( ) ( )
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,,;
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1 E  

where ϕ  is the standard normal density. 

 

Figure 6 shows loss densities for a model where the risk index distribution is a bi-mixture 

defined by its mixing distribution { } { } 5.08.1and5.02.0 ==== ww PP  for various default 

probabilities and risk index correlations.  
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Figure 6: Portfolio loss densities in the bimixture correlation model 

 



   

 18  

Note that the density function is not necessarily unimodal. The number of modes varies with 

default probabilities, with risk index correlations and also with the type of mixing distribu-

tion. 

We formulate this observation as 

Theorem 5: 
In the generalized correlation model the number of modes of the asymptotic portfolio loss 

distribution of a homogenous portfolio with risk index correlations 10 << ρ  is smaller or 

equal to the cardinality of the support of the mixing distribution of the risk index distribution. 
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Figure 7: Portfolio loss densities in the normal correlation model  

 

Figure 8 gives an example of trimodal loss densities in the trimixture correlation model. 
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Portfolio loss densities in the trimixture correlation model
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Figure 8: Trimodal portfolio loss densities in the trimixture correlation model27 

 

We saw in the previous section, that the portfolio loss distribution is discrete for zero correla-

tions in the finite mixture correlation model while it is Lebesgue absolutely continuous for 

positive risk index correlations. We would, therefore, expect that loss densities degenerate in 

this model if risk index correlations go to zero, a phenomenon that is illustrated in Figure 9. 
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Cumulative portfolio loss distributions
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Figure 9: The low correlation effect in the finite mixture model28 

For extremely low correlations, the loss density develops peaks at the discontinuity points of 

the loss distribution. The relative size of the peaks is approximately equal to the size of the 

point masses at the discontinuity points. 

                                                 
27  The distributions differ only in the clients’ default probability p and share the mixing distribution 

{ } { } { } 3/178.1,3/11,3/12.0 ====== www PPP . The modes of the original loss densities in the convex combi-

nations are well visible and well separated. 
28  The actual model displayed in the charts is a bimixture model with the mixing distribution 

{ } { } 3.04.2and7.04.0 ==== ww PP . 
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(3) Comparison of the normal and the generalized correlation model 

So far the replacement of the normal distribution by a general distribution, determined by its 

marginal distributions and a correlation structure, was rather intuitively motivated as a general 

topic in the correlation model and by the fact that all of these distributions have long tails.  

The next theorem gives a fundamental reason as to why the choice of the normal distribution 

as the distribution of risk indices might cause structural problems in the asset value model and 

why it should be carefully overthought. The theorem also shows that the analysis of homoge-

nous portfolios can be extremely helpful in understanding the economic and model theoretic 

consequences of allegedly natural mathematical assumptions.  

Theorem 6:  

Let ( )λρ,,;1 pLN ⋅−  and ( )λρ,,;1
\ pL NG ⋅−  be the inverse cumulative distribution functions of the 

asymptotic portfolio loss distributions of a homogenous portfolio with risk index correlations 

10 << ρ  in the generalized correlation model with a normal and a non-normal risk index dis-

tribution respectively. Then there exists a confidence level *α such that 

( ) ( )λραλρα ,,;,,; 11
\ pLpL NNG

−− >  

for all confidence levels *αα >  and 
2
1≠p . 

Alternatively: Let ( )λρ,,; pLN ⋅  and ( )λρ,,;\ pL NG ⋅  be the cumulative distribution functions 

of the asymptotic portfolio loss distributions of the same homogenous portfolio with risk in-

dex correlations 10 << ρ  in the generalized correlation model with a normal and a non-

normal risk index distribution respectively. Then there exists a portfolio loss *l such that 

( ) ( )λρλρ ,,;,,;\ plLplL NNG <  

for all portfolio losses *ll > . 

 

Theorem 6 states that for high confidence levels the normal correlation model reports less risk 

in any homogenous portfolio than any other correlation model (see Figure 10). I.e. at the high 

confidence levels risk managers are interested in, the normal correlation model is not robust 

against misspecifications in the risk index distribution. 
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Normal versus Student-t correlation model
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Normal versus finite mixture correlation model
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Figure 10: Portfolio loss distributions in the normal versus the generalized correlation model 

 

It is worth noting that Theorem 6 also proves that the property of tail dependence, shown by 

some multivariate distributions, is not relevant for a specific correlation model in order to 

detect a higher portfolio risk than the normal correlation model at high percentiles29.  

Tail dependence is an asymptotic measure of dependence of bivariate distributions that is of-

ten used to describe dependence of extreme events. 

 

Definition 5:30 

Let X and Y be random variables with distribution functions 1F  and 2F . The coefficient of 

upper tail dependence of X and Y is  

( ) ( ){ } λαα
α

=>> −−

−→

1
1

1
21

|lim FXFYP  

provided a limit ]1,0[∈λ  exists. If ]1,0(∈λ , X and Y are said to be asymptotically depend-

ent in the upper tail. If 0=λ , X and Y are said to be asymptotically independent. 

                                                 
29  This disproves a hypotheses by Nyfeler (2000), p. 50ff., Frey and McNeil (2001), p. 16, and Frey et al. (2001), p. 5ff., 

who in simulation experiments found that the multivariate t-distribution as risk index distribution led to higher portfolio 

risk than the normal distribution and blamed this observation on the tail dependence property of the t-distribution. 
30  See Schmidt (2002), p. 302, definition 1.1 or Embrechts et al. (1999), p. 18, definition 7. 
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Theorem 6 states that the normal correlation model is risk minimal among all correlation 

models with elliptical risk index distributions. It can, however, be shown that some multivari-

ate elliptical distributions are tail independent as, for instance, the logistic distributions and 

the symmetric hyperbolic distributions which also include the NIG31. 

 

Conclusion 

We have defined the generalized correlation model as an extension of the classical asset value 

credit risk model that is widely used in the banking sector worldwide. For homogenous port-

folios, we have derived a number of properties of the wider family of models. As our main 

result, we have shown that the normal correlation model – the classical asset value model – is 

risk minimal within the generalized correlation framework.  

This shows that not only the underlying portfolio but also the superimposed modeling as-

sumptions do significantly influence the reported portfolio risk and that a model can be highly 

sensitive to misspecifications possibly leading to insufficient risk management actions. It par-

ticularly implies that financial institutions using the normal correlation model for risk assess-

ment might underestimate their true credit portfolio risk. 

 

                                                 
31  See Schmidt (2002), p. 324f., theorem 6.6 and theorem 6.8. 
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Appendix 

Proof of Theorem 1: 

Without loss of generality, we can assume that .1and0 2 == σµ  Let W be the mixing distri-

bution of D and Ww ~ . Then there exists an s > 1 such that { } 0: >≥= swp P . 

Let  f  be the density of D. Then we have 
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□ 

Proof of Theorem 2: 
By definition of the model client i defaults if  

( ) ( )
( )

ρ
ρ

ρρ

−⋅
⋅⋅−

≤⇔

≤⋅−+⋅⋅=
−

−

1

1
1

1

w
YwpF

Z

pFZYwX

i

ii

 

for ni ,...,1= . 

Hence, client i’s probability of default conditional to w and Y is given as 

{ } ( )
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ρ
ρ
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1

w
YwpF
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because iZ  is standard normally distributed for ni ,...,1= . 

Moreover, since the idiosyncratic components iZ  of clients’ risk indices are stochastically 

independent, it follows from the law of large numbers that the percentage of clients defaulting 

in the portfolio given w and Y  is equal to their conditional probability of default with prob-

ability one if ∞→n . 

Note that asymptotically the number of defaulting clients goes towards infinity as well if the 

conditional probability is positive. Thus, again by the law of large numbers, the portfolio loss 

conditional to w and Y is equal to  

( )
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since the individual loss given default rates are stochastically independent and limited with 

the same mean λ. 

The unconditional portfolio loss distribution is, therefore, given as 

{ } ( )
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The theorem then follows from ( ) ( )xx −Φ=Φ−1 . 

□ 

Proof of Theorem 3: 
If risk indices are uncorrelated, client i defaults if 
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≤⋅=
. 

Along the same lines as in Theorem 2 one can show that the portfolio loss distribution is then 

given as 
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which is equivalent to the formulation in the theorem since ( ) 0/1 <Φ− λl  if 2/λ<l , 

( ) 0/1 >Φ− λl  if 2/λ>l , and ( ) 0/1 =Φ− λl  if 2/λ=l . 
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□ 

Proof of Theorem 4: 
The portfolio loss density is defined as the first derivative of the cumulative distribution func-

tion of portfolio losses. Thus, we have 
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since the standard normal density is continuous and integrable so that we may derive within 

the expectation functional wE . 

□ 

Proof of Theorem 5: 
It can be shown by derivation of the portfolio loss density of the normal correlation model32, 

that the portfolio loss distribution is unimodal for 2/10 << ρ  in this model (see also Figure 

7). For 12/1 << ρ  the portfolio loss density is bimodal with peaks at 0 and the maximum 

loss. 

The theorem then follows immediately from the fact that the portfolio loss distribution in the 

generalized correlation model is the convex combination of loss distributions in the normal 

correlation model. 

□ 

Proof of Theorem 6: 

Let ( )λρ,,;, pL Nd ⋅  and ( )λρ,,;\, pL NGd ⋅  be the portfolio loss densities in the correlation 

model with a normal and a non-normal risk index distribution. We show that a portfolio loss 
*l  exists so that ( ) ( )λρλρ ,,;,,; \,, plLplL NGdNd <  for all portfolio losses *ll > (see Figure 

11). This implies that ( ) ( )λρλρ ,,;,,;\ plLplL NNG <  and, thus, the second version of the 

theorem because ( ) ( ) λλρλρ == ,,;1,,;1\ pLpL NNG . 

                                                 
32  The portfolio loss density of the normal correlation model is obtained by setting cw ≡ for some constant c in Theorem 

4. 
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Portfolio loss densities in the normal and the generalized correlation 
model

(p = 0.5%, ρρρρ  = 20%, λλλλ  = 100%)
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Figure 11: Portfolio densities in the normal and the generalized correlation model 
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The statement ( ) ( )λρλρ ,,;,,; \,, pxlLplL NGdNd <  is equivalent to 
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Since ( ) λλ →∞→Φ− ll for/1  and ( ) ∞→→− xx for0exp , the theorem holds if  

( ) ( ){ } ( ) ( ){ } 00 1111 >Φ⋅>=>Φ⋅− −−−− pwpFpwpF PP .  (*) 

Let [ ]maxmin ;: wwSS w ==  be the support of the mixing distribution W. 

Let p < ½ . If ∞=maxw , (*) holds trivially because ( ) 01 <Φ− p . 

If ∞<maxw , it follows from the continuity and symmetry of F that  
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since the mixing distribution W is non-degenerate by assumption and l < 0. 

Hence, there exists Sw ∈
~

 such that 0
~

max >






 ≥≥ wwwP  and  

( ) ( ){ } 011 >Φ⋅> −− pwpFP . 

The case p > ½ can be solved with an analogous argument. 

□ 
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