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Credit Portfolio Modelling, Marginal Risk Contributions,

and Granularity Adjustment

Abstract

This paper first provides a simple but very general framework for credit portfolio mo-
delling which is based on the distinction between systematic and ursystematic risk. Un-
systematic or borrower-spedfic risk vanishes through diversification in a very large, in-
finitely fine-grained portfolio. The framework contains typical models like CreditRisk+
and CreditMetrics as gecial cases. An analysis of marginal risk contributions is then
done which also includes a theoretical formula for the granularity adjustment in a

"lumpy" credit portfolio.

JEL classificaion: D 81, G 21, G 28



1. Introduction

The standard tool for credit portfolio management is today Value a Risk (VaR), which
is defined as the quantil e of the profit and lossdistribution for a given confidence level:
For a confidence level of e.g. p=99%, one is 9% certain that at the end of the plannig
horizon there will be no greater lossthan just the VaR. If VaR is completely covered by
equity capital, the confidence level is the minimum probability that insolvency will not
ocaur’. In practice, VaR for a aedit loan portfolio is calculated with models like Cre-
ditRisk+ (1997 from Credit Suisse First Boston or CreditMetrics (1997 from JP Mor-
gan. Recently, the Basel Committee on Banking Supervision (2001) has also adopted
VaR in the proposals for a new capital acwrd.

In the past, some reseachers have observed the given similarities between different cre-
dit risk models. Koyluoglu and Hickman (1998 and Finger (1999 have pointed to the
fad that for given realizations of the badkground fadors or systematic risk fadors, de-
faults and rating changes are generally assumed to be stochastically independent. Simi-
lar, Gordy (2000 has shown that a redtricted two-state version of CreditMetrics, which
differentiates only between default and non-default, can be mapped into the CreditRisk+
framework and vice versa. In this paper, | begin with a simple but very general frame-
work for credit portfolio modelling which contains models like CreditRisk+ or the unre-
stricted multi-state version of CreditMetrics as gecial cases. In this framework, the va-
lue of each loan at the end of the planning horizon is a function of some systematic risk
fadors common to all borrowers and an additional spedfic or unsystematic risk fador.
As a onsequence of the law of large numbers, unsystematic risk vanishes through di-

versificaion in avery large, infinitely fine-grained portfolio.

An important question is how much additional equity capital is required if a single loan
is added to the aedit portfolio. In order to answer this question, the derivative of the
VaR must be alculated. It can be shown mathematically that the derivative is given by
the conditional mean of the marginal loan, on condition that the value of the aedit port-
folio and VaR are exadly identical. If this general result is applied to a simple one-
fador model, the model used by the Basel Committee ca be obtained. Another result is

atheoretical formula for the granularity adjustment, which is needed to cover the remai-



ning ursystematic risk. Such a formula was recently presented by Wilde (200J). In this

paper, adifferent derivation of that formulathrough a Taylor expansion will be given.

This paper is organized as follows. Sedion 2 introduces a general framework for credit
portfolio modelling. Sedion 3 explains the role of diversificaion in that framework. In
Sedion 4, a general formula for marginal risk contributions will be presented and
applied to a simple one-facdor model. This will be done by assuming an infinitely fine-
grained credit portfolio. Subsequently, a granularity adjustment for "lumpy" credit port-

foliosis considered.

2. A general credit portfolio model

Consider a portfolio of n loans with exposure sizes Aq,.., An, As a percentage of the ex-
posure size, the difference between the adual value of each loan and the value & the
end of the planning horizon (usually one year) is described by arandom loss variable L.
Let Li=Li(X,&) be given as a function of some systematic risk fadors X = (Xa,...,Xx),
which represent the state of the emnomy and are cmmon to all borrowers, and a spea-
fic or unsystematic risk fador &. Ead & is assumed to be stochasticdly independent

from all other systematic and unsystematic risk factors.

Obviously, such a very general approach contains typical models like CreditMetrics or
CreditRisk+ as ecia cases. CreditMetrics for example is a mark-to-market model in
which the value of each loan is a function of the borrower’s credit rating. Note that in
our model an upgading would result in a gain in market value and consequently in a
negative value of the loss variable L;. CreditMetrics assumes that rating changes are
driven by an underlying asset value process The return r; of the assts of borrower i is
explained as alinear combination of systematic and ursystematic risk fadors:

=Wy X+t W X+ W, (1)

! For example, the usual goal of a AA rating for the bank requires a confidence level of 99,97% (planning
horizon one year).



The realizaion of the aset return r; then determines the rating of the borrower?, and the

respedive rating defines the value of the loan at the end of the planning horizon.

CreditRisk+ differentiates only between default and non-default. Default probabilities
pi=pi(X) are volatile® and in general given as a linear combination of some gamma-
distributed badground fadors X = (Xy,...,X):*

P (X)) =w, X; +o+w X, 2

Obviously, the badkground fadors in CreditRisk+ play the same role & the systematic
risk factorsin CreditMetrics. To seethe similarities, assume that the badkground fadors
determine a cetain threshold T;(X) so that borrower i defaults if the @rresponding un-
systematic risk fador & fulfils £<T;(X). Thethreshold T;(X) hasto be dosen so that the
probalitity for this is exadly pi(X). It follows that in both models the value of each loan
at the end of the planning horizon is given as a function of some systematic risk fadors

and an additional unsystematic risk fador.
3. Diverdgification

As a percentage of total exposure, the random loss of the entire portfolio at the end of

therisk horizon is

" AL
L, = 228 3
2= A
Now assume that the redizations of the systematic risk fadors X = (X4,...,Xk) occur be-
fore the redizations of the unsystematic risk fadors &. If the values of the systematic

risk factors are taken as given, Lp is a sum of stochastically independent random varia

2 Therating would be AAA if r; > Tana, AA if Taaa > 1; = Tan and so on, where the thresholds T; must be
chosen so that migration probebili ties are in accordance with the higtoricd transition matrix. In addition,
because systematic risk factors are common to all borrowers, the approach also takes the sochagtic de-
pendence of rating migrations into account.

3 For given redizations of the default probabiliti es, default events are assumed to be stochastically inde-
pendent.

“* Gordy (2000 p. 122.



bles. Thus, the central limit theorem can be goplied. Conditional on X, the portfolio loss
variable Lp is asymptoticadly normal-distributed with mean

i L, [X
L) = 2 A ML) @
2 A
and variance
" AZ (L |X
s (LJx) = 228 2GR0 ©

(YA

It is easy to show that if 0< A, <A <A, and o*(L|X) <oz, for al i with finite

boundaries A,.and o?,,, then o?(L,|X) - 0 as n - . For n sufficiently large, the

max?

variance tends to zero and the probalitiy for an arbitrary small deviation of Lp from the

conditional mean u(L,|X ) getsarbitrary small. This is, of course, nothing else than an

application of the law of large numbers.

On condition that the values of the systematic risk factors are given, Lp beames non-
stochastic in a very large, infinitely fine-grained portfolio. Borrower-spedfic or unsy-
stematic risk can thus be eliminated through diversification. The only remaining risk is
systematic risk, that is the risk that the adual values of the systematic risk fadors X =

(X1,...,Xk) result in ahigher or lower value of the conditional mean x( LP|X ).

4. Marginal risk contributions
4.1 A general result

In banking pradice, the marginal risk contribution if a new loan is added to a portfolio
is often assumed to be proportional to the marginal standard deviation. From a theoreti-
cal perspedive, this is obviously wrong because aedit risk is by nature highly skewed
and fat tailed. The standard deviation is therefore not an appropriate measure for credit



risk. So what is needed is a general formula for marginal risk contributions which does

not rely on specific assumptions about the lossdistribution.

In order to formulate, first without any reference to the previous sated framework, such
a general result, suppose that the value of the adual portfolio is given by a random va
riable Y and that a fradion t of another random variable Z is added to that portfolio.

Then, the condition

Prol(Y +tZ >VaRY +tZ)) =a = const (6)

that the adual realization of Y+tZ exceals VaR(Y+tZ) only with a cnstant probabili-
ty o implicitly defines VaR(Y+1Z) as a function of t. In appendix A, the first and second
deriviatives of VaR(Y+tZ) with resped to t are cdculated®. The only assumptions made
is that the random variables Y and Z have ajoint probability density function and that

first and second moments exists. The first derivative is simply the cnditional mean:

oVaR(Y+1t2)
ot

|1z = #(Z|Y =VaR(Y). (7)
Intuitively, this result can be interpreted as follows: If Y>VaR(Y) (the bank is alrealy
bankrupt) or Y<VaR(Y) (there is a remainig equity buffer) and for a sufficiently low
value of t, adding a very small sufficiently small fradion tZ would not change the out-
come. Therefore, the marginal capital requirement for an additional risk is the average
value for all critical cases with Y=VaR(Y).

As a special case, asuume that Y and Z are bivariate normal distributed, i.e. the cae
when the standard deviation is in fad the right risk measure. In this case, the usual for-

mulafor the linea regression applies, and the conditional mean is exactly equal to:

oVaR(Y+1t2)

s o= HEY =VaR(E a(2)+ PTED VAR =) ®

® For simil ar results seealso Gourieroux et a. (2000), Tasche (1999).



Here, cov(Y,Z)/o?(Y) isthe usual beta-factor known from the classical CAPM. As
VaR is commonly considered as the sum of expected and so-cdled unexpeded loss the
formula states that marginal VaR is given by expeded loss of the marginal loan plus
beta-fadtor times unexpeded lossof the portfolio. Of course, as aready mentioned, the
underlying assumption of a normal distribution is problematic when applied to the loss

distribution of a aedit loan portfolio.
4.2 One-factor model

Above, a general formula has been derived which states that marginal VaR is the condi-
tional mean of the marginal risk, on condition that the value of the original portfolio ex-
adly equals VaR. If applied to the aedit risk framework developed ealier, the cnditi-
on that the portfolio value equals VaR would impose arestriction on the coice of the

risk factors. For asmple ase, assume that

1) the value of each loan at the end of the planning horizon is an increasing function of
only one systematic risk fador X (the lossvariable L; isthen a deaeasing function of X),

l.e. Xisascaar
2) unsystematic risk is perfedly diversified away, i.e. L, = u( LP|X)

In this case, the only remainig risk is that the adual realization of X will be below the
quantile x_, with x_ implicitly defined by Prob( X < x, ) =a. The restriction imposed
on the risk factor is simply X = x_. Therefore, as a percentage of total exposure, VaR

of the whole aedit portfolio is given by:

> A uL]X=x,)
DA

VaRLP):/u(LPP(:Xa): (©)

Marginal VaR for eat Euro borrowed to borrower i is then given by the conditional
mean of the individual loan u(L;|X = X ), with the condition that the systematic risk

fador X equals the quantile X, .



It follows that in such a one-fador model marginal risk contributions depend only on
the dharaderistics of the individual loan, and not on the dharaderistics of the portfolio
to which it is added. This is the reason why such a one-factor model has been adopted
by the Basel Committee in the proposals for a new cepital acord. If instead a multi-
fador model had been used, the marginal risk contributions of each loan would also de-
pend on how well the aedit portfolio is diversified over the different seadors (countries
or industries), with the state of each sedor being represented by one of the systematic
risk factors. It would be difficult for the regulator to obtain such detailed information
about individual bank portfolios.

The model used by the Basel Committeeis a simplified CreditMetrics model which dif-
ferentiates only between default and non-default®. Default ocaurs if the asset return falls
below a cetain threshold D:

ri:\/;X+1ll-p 8i<D (10)

Here, p isthe wrrelation coefficient of the aset returns and X, & are independent stan-
dard normal distributed random variables with mean zero and variance one. Then, as a
consequence of the dhoice of the aefficients, r; is also standard normal distributed. The
relationship between the default threshold D and the probability of default PD is

PD=N7(D), where N is the aumulative distribution function for a standard normal
random variable. With default resulting in alossgiven default LGD, (as a percentage of

the exposure Aj), marginal VaR is given as follows as the @nditional mean, on conditi-

onthat X =x, =N"(a):

N*(PD)-/p x,
1p

u(L|X =x_)=LGD, Prob( < )

(11)

N(PD)-/p X,

= LGD, N( -
P

)

® The model isdueto Vasicek (1997). Seealso Schonbucher (2001).
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For example, in the mnsultative paper from January 2001, the Basel Committeehas st

p =02 and x,., =—2.57 for a corporate loan portfolio (This will be probably not the

parameter choice in the final acerd). Formula (11) is then used to cdculate the caital
charge for aloan with probabil ity of default PD .

4.3 Granularity adjustment in a one-factor model

Because no red-world portfolio can be infinitely fine-grained, a granularity adjustment
has to be added to acount for the remaining unsystematic risk, i.e. for large @ncentra-
tions of risk in a"lumpy" portfolio. Such a granularity adjustment has also been propo-
sed by the Basel Committeein the already mentioned consultative paper from January
2001 There, the cdculation of the granularity adjustment is based on a theoretical result
of Gordy (2001, who shows that the remaining unsystematic risk is inversely propor-
tional to the dfedive number of loans. Gordy also estimates the proportional constant
for typical loan portfolios numerically through Monte Carlo simulations. A theoretical
formula for the granularity adjustment was recenitly given by Wilde (2001). Here | take
adifferent approach which leads exadly to the same result as in Wilde (2001).

It has been shown above that VaR is given as the conditional mean, on condition that

X =x, . Thetrick is then to develop a second-order Taylor expansion with resped to

the erorterm L, — u( LP|X ). Thisresultsin (see gopendix B):

VaR(Lp) = u( LP|X =X,)
(12)

190%(Ly|X =x)/ 0x o?(Lax=x )0Int, (x)
2 dpu(Lp|X =x)/0x X=X, 2 du  |H=p(LeX=x,)

where fﬂ( 1) denotes the probability density function of the nditional mean

w=u( LP|X ), which is afunction of the systematic risk fador X .
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The granularity adjustment consists of two terms. The sensitivity

(00?1 0X )/(0ul0X)=00°/ du of the conditional variance with resped to the wndi-
tional mean and the wnditional variance o °( LP|X) times the derivative of the log-

arithmic density In fX . The second term is positve if the density of the conditional me-

an u=u(Lp|X) slopes downwards in the right tall, i.e. for very high average losss.

This will usually be the cae. Unclea is the sign of the first term. To get an intuition,
note that the remaining unsystematic risk could also lift the value of the aedit portfolio
above the VaR-threshold if a violation of that threshold would otherwise occur. If

do’ | du is positive (the variance is an increasing function of average losses), the chan-

ce that the remaining ursystematic risk prevents a violation of the VaR-threshold is
greder than the wrresponding risk that a violation of the VaR-threshold is triggered
only by unsystematic risk. As a mnsequence, it cannot be completely ruled out that the
granularity adjustment might be negative, at least theoreticdly.

A simple example is a model with variable default probabiltity p(X)=X, and with Ai=1,
LGDi=100% for al i. Then 02( Li|X ) = X(1- X) and equation (13) reducesto:

1-2x, x (1-x )9Infy (x)

VaR L, )=x -
RiLe)=x, 2n 2n ox X=X,

(13

Here, the first part of the granularity adjustment will be in fad negative in most practi-

cal cases where the worst possble default probability p(x, ) = X, is lower than 50%. In

addition, the granularity adjustment is inversely proportional to the number of loans n,
which confirms the above mentioned result of Gordy (2001).

5. Conclusion

In recant yeas, praditioners have developed many different credit portfolio models.
Here, a general framework for credit portfolio modelling has been developed which is
based on the distinction between systematic and unsystematic risk. As a consequence of

the law of large numbers, unsystematic risk can be completely diversified away in a ve-
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ry large, infinitely fine-grained portfolio. VaR and marginal risk contributions then de-
pend only on systematic risk.

A simple cae is a one-fador model where the systematic risk fador isa scalar. Then, if
unsystematic risk is perfedly diversified away, the only remaining risk is that the rea-
lization of the systematik risk factor will be below the respedive quantile. However, be-
cause no red-world credit portfolio is infinitely fine-grained, an additional granularity
adjustment has to be added to acount for large cncentrations of risk in "lumpy" credit
portfolios. As has been shown, the impad of the remainig unsystematic risk can be al-
ded incrementally rather than calculating both risks at once

M athematical appendix

A. First and second derivative of Value at Risk

Consider two random variables Y and Z with a joint probabil ity density function f(y,2)
and define VaR=VaR(Y+1Z) as afunction of areal variablet by

Prol(Y +tZ >VaR) =a = const

Then:
VAR _ (Z|Y +tZ =VaR)
ot
2 [Bo2(Z)Y +tZ = s dln f (s)O
aa\t’j‘R:_ 7o |a ) sz +iz =) Ya”z 0
H S S Es:VaR

where fY + tZ(s) denotes the probability density function of Y +tZ .

Proof:

Note first that the formula for the conditional density is:
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f(VaR-tz,z)
Z(VaR)

fZ(z|Y +tZ =VaR) = :
Y +t

Then:
0
0= EProb(Y +1Z > VaR)

+ o0 + o0
i [ f(y,z)dydz
-0 VaR-1tz

STRSY)

to svaR
= J’(

— 00

-z) f(VaR-tz,z)dz

oVaR
ot

= ( -H(Z|Y +1Z =VaR)) f,, , . (VaR)

Dividing by fY+tZ(VaR) yields the result for the first derivative. The formula for the

semnd derivate can be get asfollows:

2

0= gt—zProb(YHZ > VaR)

02 + oo + o0
= el i [ f(y,z)dydz
1" % VaR-tz

+ o0
-9 [ (avaR—z)f(VaR—tz,z)dz
ot _, ot
_ +°°azvaRf(VaR—tz Z)+(6VaR_2)61‘(VaR—tz,z)O|Z
ot’ ’ ot ot

— 00
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+ oo 2
0°VaR aVaR of (s—tz,z
=] 5 = = f(VaR-tz,z) + ( )? of(s-tz.2) 3 )S:VaR dz
oot s
+ oo
= aanRf (Y +1Z=VaR) f,, , - (VaR)
— 00
avar ., AT, (ZAY+Z=8)T, (s) ;
*( P s s=var %
_ 0°vaR
=5 y+z(VaR)
+ o | O (FY +1Z=5)
+_I°°(,u(Z|Y+tZ—VaR)—z) - ‘S _var Ty 4z (VaR) dz
+ 0 of (s)
_ 2 _ Y +tZ
+__[oo(y(Z|Y+tZ—VaR) 2) £, (ZY +1Z=VaR) T‘S:VaR dz
H)ZVaR @0 (Z)Y +tZ =5s) dln f (s)O H
o |as +0(ZY +1Z =) Ya”;tz 0 Ofy 4 7 (VaR)
H @ Fs=varH
g.ed.
B. Granularity Adjustment
With appendix A and the parameter choice
L |X - "OA(L - p(L X
Y= (LX) = > LA wL ) e e > L AL - uL]X))

ZlA \/Z.lAi St \lzin:lA

which ensures, under the assumptions made in sedion 3, that the conditional variance

of Z isfinite, a Taylor expansion around t=0 direaly leads to the following result:



15

VaR L, ) = VaRY +tZ)
_ oVaRY +tZ) t> 9°vaR Y +tZ)
~ VaRY) + t - ‘t:O = S -
= VaR\Y) + u(tZ|Y =VaRY))
(oo (1Z|Y =s dln f,(s)0
2@ 0s 0s Es:VaF(Y)
= /”(LP|Xa) + 0
190%(Ly|X =x)/ 0x o?(Lp|x =x )0Int, (x)
2 0u(Lp|X =x)/0x |X=X, 2 ou  |u=p(LeX=X,)
fo (X)
with f (u)= . ged
2 0u(Lp|X =x)/ ox
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