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Credit Portfolio Modelling, Marginal Risk Contributions,

and Granularity Adjustment

Abstract

This paper first provides a simple but very general framework for credit portfolio mo-

delling which is based on the distinction between systematic and unsystematic risk. Un-

systematic or borrower-specific risk vanishes through diversification in a very large, in-

finitely fine-grained portfolio. The framework contains typical models like CreditRisk+

and CreditMetrics as special cases. An analysis of marginal risk contributions is then

done which also includes a theoretical formula for the granularity adjustment in a

"lumpy" credit portfolio.

JEL classification: D 81, G 21, G 28
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1. Introduction

The standard tool for credit portfolio management is today Value at Risk (VaR), which

is defined as the quantile of the profit and loss distribution for a given confidence level:

For a confidence level of e.g. p=99%, one is 99% certain that at the end of the plannig

horizon there will be no greater loss than just the VaR. If VaR is completely covered by

equity capital, the confidence level is the minimum probabil ity that insolvency will not

occur1. In practice, VaR for a credit loan portfolio is calculated with models like Cre-

ditRisk+ (1997) from Credit Suisse First Boston or CreditMetrics (1997) from JP Mor-

gan. Recently, the Basel Committee on Banking Supervision (2001) has also adopted

VaR in the proposals for a new capital accord.

In the past, some researchers have observed the given similarities between different cre-

dit risk models. Koyluoglu and Hickman (1998) and Finger (1999) have pointed to the

fact that for given realizations of the background factors or systematic risk factors, de-

faults and rating changes are generally assumed to be stochastically independent. Simi-

lar, Gordy (2000) has shown that a restricted two-state version of CreditMetrics, which

differentiates only between default and non-default, can be mapped into the CreditRisk+

framework and vice versa. In this paper, I begin with a simple but very general frame-

work for credit portfolio modell ing which contains models like CreditRisk+ or the unre-

stricted multi-state version of CreditMetrics as special cases. In this framework, the va-

lue of each loan at the end of the planning horizon is a function of some systematic risk

factors common to all borrowers and an additional specific or unsystematic risk factor.

As a consequence of the law of large numbers, unsystematic risk vanishes through di-

versification in a very large, infinitely fine-grained portfolio.

An important question is how much additional equity capital is required if a single loan

is added to the credit portfolio. In order to answer this question, the derivative of the

VaR must be calculated. It can be shown mathematically that the derivative is given by

the conditional mean of the marginal loan, on condition that the value of the credit port-

folio and VaR are exactly identical. If this general result is applied to a simple one-

factor model, the model used by the Basel Committee can be obtained. Another result is

a theoretical formula for the granularity adjustment, which is needed to cover the remai-
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ning unsystematic risk. Such a formula was recently presented by Wilde (2001). In this

paper, a different derivation of that formula through a Taylor expansion will be given.

This paper is organized as follows. Section 2 introduces a general framework for credit

portfolio modelling. Section 3 explains the role of diversification in that framework. In

Section 4, a general formula for marginal risk contributions will be presented and

applied to a simple one-factor model. This wil l be done by assuming an infinitely fine-

grained credit portfolio. Subsequently, a granularity adjustment for "lumpy" credit port-

folios is considered.

2. A general credit portfolio model

Consider a portfolio of n loans with exposure sizes A1,.., An. As a percentage of the ex-

posure size, the difference between the actual value of each loan and the value at the

end of the planning horizon (usually one year) is described by a random loss variable Li.

Let Li=Li(X,εi) be given as a function of some systematic risk factors X = (X1,...,Xk),

which represent the state of the economy and are common to all borrowers, and a speci-

fic or unsystematic risk factor εi. Each εi is assumed to be stochastically independent

from all other systematic and unsystematic risk factors.

Obviously, such a very general approach contains typical models like CreditMetrics or

CreditRisk+ as special cases. CreditMetrics for example is a mark-to-market model in

which the value of each loan is a function of the borrower`s credit rating. Note that in

our model an upgrading would result in a gain in market value and consequently in a

negative value of the loss variable Li. CreditMetrics assumes that rating changes are

driven by an underlying asset value process. The return r i of the assets of borrower i is

explained as a linear combination of systematic and unsystematic risk factors:

iikik11ii
�ŵXw...Xwr +++= (1)

                                                                                                                                                                            
1 For example, the usual goal of a AA rating for the bank requires a confidence level of 99,97% (planning
horizon one year).
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The realization of the asset return r i then determines the rating of the borrower2,  and the

respective rating defines the value of the loan at the end of the planning horizon.

CreditRisk+ differentiates only between default and non-default. Default probabilities

pi=pi(X) are volatile3 and in general given as a linear combination of some gamma-

distributed background factors X = (X1,...,Xk):4

kik11ii Xw...Xw)X(p ++= (2)

Obviously, the background factors in CreditRisk+ play the same role as the systematic

risk factors in CreditMetrics. To see the similarities, assume that the background factors

determine a certain threshold Ti(X) so that borrower i defaults if the corresponding un-

systematic risk factor εi fulfils εi<Ti(X). The threshold  Ti(X) has to be chosen so that the

probalitity for this is exactly pi(X). It follows that in both models the value of each loan

at the end of the planning horizon is given as a function of some systematic risk factors

and an additional unsystematic risk factor.

3. Diversification

As a percentage of total exposure, the random loss of the entire portfolio at the end of

the risk horizon is

∑
∑

=

=
n

1i i

n

1i ii

P
A

L A
 = L (3)

Now assume that the realizations of the systematic risk factors X = (X1,...,Xk) occur  be-

fore the realizations of the unsystematic risk factors εi. If the values of the systematic

risk factors are taken as given, LP is a sum of stochastically independent random varia-

                                                       
2 The rating would be AAA if r i ≥  TAAA, AA if TAAA > ri ≥  TAA and so on, where the thresholds Ti must be
chosen so that migration probabili ties are in accordance with the historical transition matrix. In addition,
because systematic risk factors are common to all borrowers, the approach also takes the stochastic de-
pendence of rating migrations into account.
3 For given realizations of the default probabiliti es, default events are assumed to be stochastically inde-
pendent.
4 Gordy (2000) p. 122.
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bles. Thus, the central limit theorem can be applied. Conditional on X, the portfolio loss

variable LP is asymptotically normal-distributed with mean

∑
∑

=

=
n

1i i

n

1i ii

P
A

)X(L� A
 = )XL(� (4)

and variance

2n

1i i

n

1i i
22

i

P
2

)A(

)X(L� A
 = )XL(�

∑
∑

=

= (5)

It is easy to show that if maximin AAA0 <<<  and 2
maxi

2 �)XL(� <  for all i with finite

boundaries maxA and 2
max

� , then 0)XL(�
P

2 →  as ∞→n . For n sufficiently large, the

variance tends to zero and the probalitiy for an arbitrary small deviation of LP from the

conditional mean )XL(�
P  gets arbitrary small. This is, of course, nothing else than an

application of the law of large numbers.

On condition that the values of the systematic risk factors are given, LP becomes non-

stochastic in a very large, infinitely fine-grained portfolio. Borrower-specific or unsy-

stematic risk can thus be eliminated through diversification. The only remaining risk is

systematic risk, that is the risk that the actual values of the systematic risk factors X =

(X1,...,Xk) result in a higher or lower value of the conditional mean )XL(�
P .

4. Marginal risk contributions

4.1 A general result

In banking practice, the marginal risk contribution if a new loan is added to a portfolio

is often assumed to be proportional to the marginal standard deviation. From a theoreti-

cal perspective, this is obviously wrong because credit risk is by nature highly skewed

and fat tailed. The standard deviation is therefore not an appropriate measure for credit
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risk. So what is needed is a general formula for marginal risk contributions which does

not rely on specific assumptions about the loss distribution.

In order to formulate, first without any reference to the previous stated framework, such

a general result, suppose that the value of the actual portfolio is given by a random va-

riable Y and that a fraction t of another random variable Z is added to that portfolio.

Then, the condition

.const� ))tZY(VaRtZY(obPr ==+>+ (6)

that the actual realization of Y+tZ exceeds VaR(Y+tZ) only with a constant probabili-

ty �  implicitly defines VaR(Y+tZ) as a function of t. In appendix A, the first and second

deriviatives of VaR(Y+tZ) with respect to t are calculated5. The only assumptions made

is that the random variables Y and Z have a joint probability density function and that

first and second moments exists. The first derivative is simply the conditional mean:

VaR(Y))Y(Z�=
t 

tZ)VaR(Y 
0t =

∂
+∂

= (7)

Intuitively, this result can be interpreted as follows: If Y>VaR(Y) (the bank is already

bankrupt) or Y<VaR(Y) (there is a remainig equity buffer) and for a suff iciently low

value of  t, adding a very small sufficiently small fraction tZ would not change the out-

come. Therefore, the marginal capital requirement for an additional risk is the average

value for all critical cases with Y=VaR(Y).

As a special case, assume that Y and Z are bivariate normal distributed, i.e. the case

when the standard deviation is in fact the right risk measure. In this case, the usual for-

mula for the linear regression applies, and the conditional mean is exactly equal to:

))Y(�)Y(VaR(
)Y(�

)Z,Ycov(
)Z(�VaR(Y))Y(Z�=

t 

tZ)VaR(Y 
20t −+==

∂
+∂

=    (8)

                                                       
5 For similar results see also Gourieroux et al. (2000), Tasche (1999).
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Here, )Y(�/)Z,Ycov( 2  is the usual beta-factor known from the classical CAPM. As

VaR is commonly considered as the sum of expected and so-called unexpected loss, the

formula states that marginal VaR is given by expected loss of the marginal loan plus

beta-factor times unexpected loss of the portfolio. Of course, as already mentioned, the

underlying assumption of a normal distribution is problematic when applied to the loss

distribution of a credit loan portfolio.

4.2 One-factor model

Above, a general formula has been derived which states that marginal VaR is the condi-

tional mean of the marginal risk, on condition that the value of the original portfolio ex-

actly equals VaR. If applied to the credit risk framework developed earlier, the conditi-

on that the portfolio value equals VaR would impose a restriction on the choice of the

risk factors. For a simple case, assume that

1) the value of each loan at the end of the planning horizon is an increasing function of

only one systematic risk factor X (the loss variable Li is then a decreasing function of X),

i.e. X is a scalar

2) unsystematic risk is perfectly diversified away, i.e. )XL(�L PP =

In this case, the only remainig risk is that the actual realization of X will be below the

quantile 	x , with 	x  implicitly defined by 
)xX(obPr 	 =< . The restriction imposed

on the risk factor is simply 	xX = . Therefore, as a percentage of total exposure, VaR

of the whole credit portfolio is given by:

 
A

)xX(L� A
)xXL(�)L(VaR

n

1i i

n

1i
	ii

	PP

∑
∑

=

=
=

===                             (9)

Marginal VaR for each Euro borrowed to borrower i is then given by the conditional

mean of the individual loan )xXL(�
	i = , with the condition that the systematic risk

factor X equals the quantile 	x .
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It follows that in such a one-factor model marginal risk contributions depend only on

the characteristics of the individual loan, and not on the characteristics of the portfolio

to which it is added. This is the reason why such a one-factor model has been adopted

by the Basel Committee in the proposals for a new capital accord. If instead a multi-

factor model had been used, the marginal risk contributions of each loan would also de-

pend on how well the credit portfolio is diversified over the different sectors (countries

or industries), with the state of each sector being represented by one of the systematic

risk factors. It would be diff icult for the regulator to obtain such detailed information

about individual bank portfolios.

The model used by the Basel Committee is a simplified CreditMetrics model which dif-

ferentiates only between default and non-default6. Default occurs if the asset return falls

below a certain threshold D:

D
i

�  
-1+ X  
  = 
i

r < (10)

Here, ρ is the correlation coeff icient of the asset returns and X, εi are independent stan-

dard normal distributed random variables with mean zero and variance one. Then, as a

consequence of the choice of the coefficients, r i is also standard normal distributed. The

relationship between the default threshold D and the probability of default PD is

)D(NPD 1−= , where N is the cumulative distribution function for a standard normal

random variable. With default resulting in a loss given default iLGD  (as a percentage of

the exposure Ai), marginal VaR is given as follows as the conditional mean, on conditi-

on that )�(NxX 1� −== :

)
-
1

 x
(PD)N
(N LGD                       

)
-
1

 x
(PD)N�(obPr LGD)xXL(�

�1-

i

�1-

ii�i

−
=

−
<==

                                          (11)

                                                       
6 The model is due to Vasicek (1997). See also Schonbucher (2001).
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For example, in the consultative paper from January 2001, the Basel Committee has set

2.0� =  and 57.2x %5.0 −=  for a corporate loan portfolio (This will be probably not the

parameter choice in the final accord). Formula (11) is then used to calculate the capital

charge for a loan with probabil ity of default PD .

4.3 Granularity adjustment in a one-factor model

Because no real-world portfolio can be infinitely fine-grained, a granularity adjustment

has to be added to account for the remaining unsystematic risk, i.e. for large concentra-

tions of risk in a "lumpy" portfolio. Such a granularity adjustment has also been propo-

sed by the Basel Committee in the already mentioned consultative paper from January

2001. There, the calculation of the granularity adjustment is based on a theoretical result

of Gordy (2001), who shows that the remaining unsystematic risk is inversely propor-

tional to the effective number of loans. Gordy also estimates the proportional constant

for typical loan portfolios numerically through Monte Carlo simulations. A theoretical

formula for the granularity adjustment was recently given by Wilde (2001). Here I take

a different approach which leads exactly to the same result as in Wilde (2001).

It has been shown above that VaR is given as the conditional mean, on condition that

�xX = . The trick is then to develop a second-order Taylor expansion with respect to

the error term )XL(�L PP − . This results in (see appendix B):

)xXL(��� 

)�(�f nl 
 

2

)xXL(�

 
xxx/)xXL(� 

x/)xXL(� 
 

2

1
         

                                                                                                                           )xXL(�     )L(VaR

�P

�P
2

�
P

P
2

�PP

==∂

∂=
−=∂=∂

∂=∂
−

=≈
(12)                                                                                                                                 

where )�(�f  denotes the probability density function of the conditional mean

)XL(��
P= , which is a function of the systematic risk factor X .
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The granularity adjustment consists of two terms: The sensitivity

�/� X)/�/()X/�( 22 ∂∂=∂∂∂∂  of the conditional variance with respect to the condi-

tional mean and the conditional variance )XL(�
P

2  times the derivative of the log-

arithmic density 
X

fln . The second term is positve if the density of the conditional me-

an )XL(��
P=  slopes downwards in the right tail , i.e. for very high average losses.

This will usually be the case. Unclear is the sign of the first term. To get an intuition,

note that the remaining unsystematic risk could also lift the value of the credit portfolio

above the VaR-threshold if a violation of that threshold would otherwise occur. If

�/� 2 ∂∂  is positive (the variance is an increasing function of average losses), the chan-

ce that the remaining unsystematic risk prevents a violation of the VaR-threshold is

greater than the corresponding risk that a violation of the VaR-threshold is triggered

only by unsystematic risk. As a consequence, it cannot be completely ruled out that the

granularity adjustment might be negative, at least theoretically.

A simple example is a model with variable default probabiltity p(X)=X, and with Ai=1,

LGDi=100% for all i. Then )X1(X)XL(�
i

2 −=  and equation (13) reduces to:

�

���
�P xxx

)x(
X

f nl 
 

n2

)x1(x
    

n2

x 21
     x)L(VaR =∂

∂−
−

−
−≈ (13)

Here, the first part of the granularity adjustment will be in fact negative in most practi-

cal cases where the worst possible default probabili ty �� x)x(p =  is lower than 50%. In

addition, the granularity adjustment is inversely proportional to the number of loans n,

which confirms the above mentioned result of Gordy (2001).

5. Conclusion

In recent years, practitioners have developed many different credit portfolio models.

Here, a general framework for credit portfolio modelling has been developed which is

based on the distinction between systematic and unsystematic risk. As a consequence of

the law of large numbers, unsystematic risk can be completely diversified away in a ve-
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ry large, infinitely fine-grained portfolio. VaR and marginal risk contributions then de-

pend only on systematic risk.

A simple case is a one-factor model where the systematic risk factor is a scalar. Then, if

unsystematic risk is perfectly diversified away, the only remaining risk is that the rea-

lization of the systematik risk factor will be below the respective quantile. However, be-

cause no real-world credit portfolio is infinitely fine-grained, an additional granularity

adjustment has to be added to account for large concentrations of risk in "lumpy" credit

portfolios. As has been shown, the impact of the remainig unsystematic risk can be ad-

ded incrementally rather than calculating both risks at once.

Mathematical appendix

A. First and second derivative of Value at Risk

Consider two random variables Y and Z with a joint probabil ity density function f(y,z)

and define VaR=VaR(Y+tZ) as a function of a real variable t by

.const� )VaRtZY(obPr ==>+

Then:

VaR)tZY Z(�

t

aRV =+=
∂

∂

VaRs
s

)s(
tZY

fln
)stZYZ(�  

s

)stZYZ(�

   
t

aRV 2
2

2

2

=











∂
+∂

=++
∂

=+∂
−=

∂
∂

where )s(
tZY

f +  denotes the probability density function of tZY + .

Proof:

Note first that the formula for the conditional density is:
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)aRV(
tZY

f

)z,tzaRV (f
    )VaRtZY z(

Z
f

+

−==+

Then:

0 = )aRV  tZY(obPr
t

>+
∂
∂

  = dz dy 
tzaRV

)z,y(f    
t

∫
∞+

∞−
∫
∞+

−∂
∂

  = dz )z,tzaRV (f )z
t

aRV
(∫

∞+

∞−
−−

∂
∂

  = )aRV(
tZY

f  VaR))tZY Z(�

t

aRV
( +=+−

∂
∂

Dividing by )aRV(
tZY

f +  yields the result for the first derivative. The formula for the

second derivate can be get as follows:

0 = )aRV  tZY(obPr
t 2

2

>+
∂
∂

   =  dz dy 
tzaRV

)z,y(f    
t 2

2

∫
∞+

∞−
∫
∞+

−∂
∂

   =  dz )z,tzaRV (f )z
t
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(

t
∫
∞+

∞−
−−

∂
∂

∂
∂

   =  ∫
∞+

∞− ∂
−∂−

∂
∂+−

∂
∂
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t 

)z,tzaRV (f
 )z

t
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()z,tzaRV (f

t

aRV
2
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B. Granularity Adjustment

With appendix A and the parameter choice

∑
∑

=

==
n

1i i

n

1i ii

P
A

)X(L� A
 = )XL(�Y , 

∑ =

=
n

1i iA

1
t , 

∑
∑

=

=−
n

1i i

n

1i iiiP

A

))X(L� -(LA
= 

t

YL
Z=

which ensures, under the assumptions made in section 3,  that the conditional variance

of Z is finite, a Taylor expansion around t=0 directly leads to the following result:
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)x(
X

f
) ( f

P ∂=∂
= .     q.e.d.
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