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Algorithms Behind Term Structure Models of Interest Rates II: 
The Hull-White Trinomial Tree of Interest Rates 

 
In this article we implement the trinomial tree of the Hull-White model, which can be easily extended 
to allow different assumptions about the dynamics of the short rate process. We present the Mathe-
matica algorithm for the extended Vasicek and the Black-Karasinski model. Whenever negative inter-
est rates are generated with a positive probability, we make use of alternative branching processes, 
which guarantee the positivity of interest rates. Finally we show how to price simple options such as 
caplets, and compare the convergence of trinomial trees with different geometries. 
 
by Markus Leippolda and Zvi Wienerb 
 
 
 
INTRODUCTION 
In a previous paper we presented the Ho-Lee (1986) model, the first term structure model, which allows the matching of 
the initial term structure. Unfortunately, the Ho-Lee model is built on oversimplifying assumptions. The short rate is sup-
posed to follow arithmetic Brownian motion, which does rapidly lead to negative interest rates. We showed how this prob-
lem can be controlled by restricting the values of the node probabilities. Nevertheless, positivity of interest rates can be 
guaranteed only up to a small number of time steps in the binomial tree. Therefore, we can not expect the Ho-Lee model to 
accurately price derivative instruments, which need a high density of nodes (e.g. barrier options, instruments with frequent 
cash flows etc.). This paper does not develop a new method but shows how to implement the algorithm behind the Hull-
White interest rate model. The Hull-White methodology is used together with analytic power of Mathematica to construct 
trinomial trees for the generalized Vasicek (Hull-White 1990, 1994) and the Black-Karasinski (1991) interest rate models 
and a very flexible framework for trinomial trees.  
 
 
NOTATION AND BASIC ASSUMPTIONS 
The Hull-White model is based on the same set of assumptions as the Ho-Lee model. There are no market frictions, no 
transaction costs nor taxes. Further, all assets are perfectly divisible. Trading takes place at discrete time steps. The market 
is complete in the sense that there exists for every time T a bond with the respective maturity. We assume for every time t 
the state-space is finite. Denote by P(i,t,T) the price of a zero bond in state i at time t, which pays $1 at the maturity date T. 
The entire term structure can be captured by the strictly positive function P(i,t,T). We further require the zero bond to sat-
isfy the conditions P(i,t,t)=1 and limP(i,t,T)=0 as T�� for all i and t.  To abbreviate the notation, the bond prices P(0,0,T) 
which can be observed from the initial term structure are denoted as P(T) 
The standard branching process is trinomial. We now need to define the transitions in the tree. With πu we denote the prob-
ability by which the process moves upward from node (i,j) to node (i+1, j+1) , with πm the probability that the process 
moves to node (i+1,j)  and πd denotes the probability that the process makes a downward move to node (i+1, j-1) (see the 
figure below).  
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THE DISCRETE MODEL 
The trinomial tree is used to construct a discrete time and discrete space Markov approximation of the state variable x, 
which follows the time-inhomogeneous continuous stochastic process 
 

( )( ) ( )dWxdtaxtdx σθ +−=  

 
where W is a standard, one-dimensional Brownian motion, θ(t) is the drift and a is the mean reversion. The term σ(t) is the 
volatility term of the diffusion and may depend on the current level of the state variable x. The short rate r is now assumed 
to be a function of the state variable x. It is well known that in Gaussian interest rate models we can identify the short rate 
as the state variable (see e.g. El Karoui-Geman-Lacoste  (1995)), that is 

 
rx =  

 
Setting the short rate equal to the state variable results in the generalized Vasicek (1977) model of the term structure where 
the short rate follows the time-inhomogeneous Ornstein-Uhlenbeck process 
 

( )( ) dWdtartdr σθ +−=  

 
It is obvious that under this selection the interest rates are Gaussian and are thus subject to become negative. To avoid this 
undesirable property we adopt the methodology proposed by Hull-White (1994) and change the geometry of the tree.  
 
Another way to avoid negative interest rates is to assume a stochastic process for the interest rate which is non-negative 
almost surely. If we take  

( ) rrwx log==  

 
the Black-Karasinski (1991) lognormal model with constant volatility is obtained where the short rate follows the 
stochastic differential equation 
 

( )( ) dWdtratrd σθ +−= loglog  
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A well-known criticism of this model is that the specification of the short rate dynamics leads to infinite prices for Eurodol-
lar futures (Hogan and Weintraub (1993)). Again, we can manipulate the tree geometry to introduce an upper bound for the 
interest rate. Thus, we can guarantee that the interest rate stays within a reasonable range. 
 
Let us define the interest rate as a transformation of the state variable x, i.e., as a function ( )xwr 1−=  which we will use in 

a later section. From now on, we will make the simplifying assumption for the volatility and the mean reversion of being 
constant, i.e. σσ =)(x and ata =)( .  

 
As was shown by Hull-White (1994), instead of directly modeling the discretized version of the stochastic process for r (or 
x respectively) it is more efficient to build the trinomial tree in a two-step procedure. We first construct a "level" tree that 
approximates the process 

dWaxdtdx σ+−=  
 
Let t∆  be the size of a time step and ijx∆ be the incremental transition random variable, which is computed using the first 

order approximation difference equation 

iijij Wtaxx ∆+∆−=∆ σ  

 

where iW∆  is a Gaussian random variable [ ]tN ∆,0 . In the trinomial tree the random variable ijij xx ∆+  is 

approximated by a discrete random variable on the three nodes { }cjibjiaji xxx ++++++ ,1,1,1 ,, , where a, b, and c  are some positive 

or negative integers. In the following we will make the assumptions that these three nodes are the neighbors 
{ }1,1,11,1 ,, +++−+ jijiji xxx . We note that this imposes a restriction on the tree construction, which is not necessary and can be 

relaxed if additional conditions are imposed. We will present elsewhere a model where the process does not necessarily 
evolve to the neighboring nodes.  
Before we proceed, we note that the conditional expectation value and the variance of the Gaussian random variable are 
given as  
 

[ ] ( )1−=∆ ∆− ta
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respectively. Often, one takes first order approximations. However, taking exact values gives slightly faster convergence 
and does not result in lower computational speed. 
The construction of the trinomial tree involves matching the expectation value and the variance of x at each node in the 
tree. This leads to a system of equations for the three tree probabilities. We have 
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The determinant of the above system of three linear equations is Vandermonde and equals 32 ijx∆ . In order to guarantee that 

{ }dmu πππ ,, can be interpreted as probability measures, we have to guarantee the three inequality constraints 

{ }dmukk ,,,0 ∈≥π . This can now be done in several different ways. First, we can build some constraints on the number of 

time steps we are considering, as was done e.g. in Leippold-Wiener (1999). However by doing so we impose some severe 
restrictions on the depth of the tree. This method would probably fail to value either derivatives with complex payoff struc-
tures such as barrier options or long term instruments with intermediate payoffs such as claims on mortgage backed securi-
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ties. To price these instruments accurately we would require a reasonable depth for the tree. Another possibility is to relax 
the assumptions that the trinomial tree evolves to the neighbor states as pointed out above. In this case an equation system 
with six variables and three equality constraints has to be solved. Thus, to uniquely select a particular threesome of transi-
tions, we would have to impose some additional (desirable) constraints. However, in this article we will focus on a third 
possibility, which is to alter the geometry of the tree such that negative interest rates are avoided. Of course, altering the 
geometry of the tree is an arbitrary manipulation of the pricing problem and thus subject to some criticism. Nevertheless, it 
is widely used in practice. 
We now introduce three alternative branching processes, which are graphed below 
 

A B C

 
 
Clearly, the branching process A will be used as long as interest rates are becoming neither negative nor unrealistically 
high. Whenever in a following step interest rates would become negative, we switch from the branching process A to the 
branching process C. On the other hand, if interest rates become unrealistically high, we can switch the geometry of the 
tree from the branching process A to the branching process B. A possible structure of a trinomial tree with the above 
branching processes would look like in the following picture, where after 2 time steps we start using the branching process 
C and after 3 time steps we make use of all three branching processes.   
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The introduction of new branching processes leads to different equation systems, which must be solved. We can let 
Mathematica do the job.  
 
THE EXTENDED VASICEK MODEL IN CONTINUOUS TIME  
Before we start implementing the discrete model in Mathematica, we give a very brief derivation of the continuous (in time 
and state) version of the extended Vasicek model. We do this not only for the sake of completeness but also to compare the 
tree methods implemented in Mathematica with the closed-form solutions in a later section.  
The continuous-time Hull-White model (1990) is basically an extension of other well-known models, particularly of the 
models by Vasicek (1977), Cox-Ingersoll-Ross (1981), and Black-Derman-Toy (1990). Hull and White introduced a time-
dependent short rate process. The additional degrees of freedom allow matching perfectly the initial term structure of 
interest rate and volatilities. We restrict ourselves to the extended Vasicek model, since in most pricing problems this 
model allows the derivation of closed-form solutions. In contrast, the Black-Karasinski model does not allow closed-form 
solutions. Further, as noted by Hogan-Weintraub (1993) the expectation of the money market account is infinite for any 
time period.  
The extended Vasicek model assumes the drift of the interest rate process to be time-dependent, but not the volatility. Then 
the process for the short rate follows 
 

( )( ) dWdtartdr σθ +−= , 

 
where W is a standard Brownian motion under the risk-neutral measure. One can solve this stochastic differential equation 
to obtain 
 

( ) ∫∫ −−− ++=
t
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t sdWeedsseerer
00

0 )(σθ . 

 
Assuming a sufficiently rich bond market we can express the bond price P(t,T) as 
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where completeness of the bond market ensures uniqueness of the risk-neutral measure. To solve for an explicit solution 
for the bond price on can directly calculate the above expectation, which is an easy exercise since the integral of a normal 
variable is still normal. After some calculations one arrives at 
 

( ) ( )[ ]trTtBTtATtP ),(,exp, −= , 

with 
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The assumption that interest rates are Gaussian variables allows us to derive closed-form solutions for bond and interest 
rate options. Using standard change of numéraire techniques one can show that the call price at time t on a bond maturing 
at S with time-T exercise function 
 

( )+−= KSTPX ),( , 

 
for ST < , is given by 
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( ) ( ) [ ] ( ) [ ]21 ,0,0,0 dNTKPdNSPX −=Π , 
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It is further well known (see e.g. Björk, 1998) that a caplet is a put option on some underlying bond. More precisely, if we 
assume the cap rate to be *r  which will prevail over a period S-T > 0, then the caplet is equivalent to ( )TSr −+ *1  put 

options on a bond with maturity S, where the exercise date of the option is at T and the exercise price is ( )( ) 1*1 −−+ TSr  

 
The implementation of the caplet formula that we will need in a future section is rather simple. An introduction to 
Mathematica in Finance can be found in Shaw (1998). First we load the statistics package 
 
�� Statistics̀Master̀  
 
The package allows us the define the cumulative distribution function of the standard normal distribution as 
 
)#z_' :  CDF#NormalDistribution #0,1 ',z ';  
 
Then, the formula for the caplet with strike caprate , time to maturity T and time interval S-T , can be typed in as 
 
caplet #T_,S_,caprate_ ' :  

Module $�v,d, K �,

K  1s+1�caprate +S� T//;
v  

V

a
+1� Exp#�a+S� T/'/� 1� Exp#�2aT'

2a
;

d  -Log#P#S's+KP#T'/' � 1
2

v21 v v;

+ KP#T' )#�d� v' � P#S' )#�d'/sK

(  
 
 
 
DEFINING THE PROBABILITIES IN MATHEMATICA 
In this section we determine the tree probabilities using Mathematica to solve the corresponding systems of equations. 
First, we define the value of the transition nodes for each branching process. We denote with transA  the three node 
values if branching process A is chosen. Similarly, transB  and transC  denote the values if the branching process B and 
C are selected. 
 
transA  �x#j '� 'x,x #j ', x #j '� 'x�;

transB  �x#j '� 2'x,x #j ' � 'x,x #j '�;
transC  �x#j ', x #j ' �'x, x #j '� 2'x�;  
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We continue to define two auxiliary functions 
 
auxE#x_' :  S .x;

auxV#x_' :  Plus �� + auxE#x^2' � auxE#x'^2/;  
 
which calculate the expectation and variance of the branching processes. Let’s define the down-, middle- and up-
probabilities by{ }123 ,, πππ , i.e. 

 
Unprotect #S'; S  �S3, S2, S1�;  
 
Since we are starting with a equidistant tree where the starting node is set equal to zero, we can define 
 
x#j_ ' :  j 'x  
 
The probabilities in the branching process A then solve the equation system  
 
probA #j_ '  Flatten $ S s. Solve $

� auxE#transA '   P#i, j ' ,

auxV#transA '   v#i, j '2,
Plus �� S   1  ,

S((;  
 
The probabilities in the branch B solve 
 
probB #j_ '  Flatten $S s.Solve $

� auxE#transB '   P#i, j ' ,

auxV#transB '   v#i, j '2,
Plus �� S   1  ,

S(( ;  
 
and in branch C  
 
probC#j_ '  Flatten $ S s. Solve $

� auxE#transC '   P#i, j ' ,

auxV#transC '   v#i, j '2,
Plus �� S   1  ,

S((;  
 
The next step is to specify the drift and the volatility function in the above equation systems. As stated earlier, we will use 
the exact values for the first and second moments 
 
P#i_, j_ ' :  x#j ' Exp#�a't ';
v#i_, j_ ' :  V � 1� Exp#�2a 't '

2a
;

 
 
The following function is particularly useful for the tree calculations. It produces as output the probability { }1,0,1, −=zzπ  

depending on the current level of the node. The values for jmin  and jmax  indicate the critical time step where the 
branching processes C and B replace the standard process A. 
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3#j_,z_, jmin_, jmax_ ' :  

Which#jmin � j � jmax, probA #j ' ,

jmax � j, probB #j ' ,

j � jmin, probC #j ' '3z �27  
 
 
PLOTTING THE LEVEL TREE 
The tree that has been constructed so far is generic and does not yet reflect the term structure of interest rates or zero bond 
prices respectively. However, plotting the tree gives some interesting insight on how the geometry of the tree works. We 
load the two packages Statistics`DataManipulation`  and LinearAlgebra`MatrixManipulation`  
to make use of the functions ColumnDrop[]  and Submatrix[] . Then the two auxiliary functions 
 
auxTree #T_, jmin_, jmax_ ' :  
Module #�jtm, jtp, XX �,
jtm  Max#jmin � 1, �T';

jtp  Min#jmax � 1,T ';
XX Table #If # j � i ! �2 && j � i � 2, f #T� 1, i ', 0 ',

�i, jtm �1, jtp � 1�, �j, jtm, jtp �';

Which#
T � jmax && T � �jmin, Return #XX',

T ! jmax && T ! � jmin, Prepend #Append#
SubMatrix #XX, �2,2 �, ��jmin � jmax � 1, �jmin � jmax � 1�',

Delete #XX3�17, ��1�, �2��'', Delete #XX317, ���1�, �2��'',
T ! jmax,Append #ColumnDrop #

Transpose #ColumnDrop #Transpose #XX', �1'', �1',

Delete #XX3�17, �1�'',
T ! �jmin,Prepend #ColumnDrop #

Transpose #ColumnDrop #Transpose #XX', 1 '',1 ',
Delete #XX317, ��1�''' '  

 
and  
 
precLevel #T_, jmin_, jmax_ ' :  
Module #�x,y �,
x  Max#jmin, �T';

y  Min#jmax, T ';
Table #f #T,k ', �k,x,y �' '  

 
are necessary inputs for the TreePlot[]  function 
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TreePlot #T_, jmin_, jmax_ ' :  

Module #�LL, FF, HH �,
LL  ��;

Do# FF  DeleteCases #Transpose #auxTree #u, jmin, jmax '', _0,2 ';
HH precLevel #u, jmin, jmax ';
f #x_,y_ '  �x,y � ;

LL  Append#LL,Table # Line #�HH3i 7, # �'&s� FF3i 7, �i, 1, Length #FF'�'';
Clear #f ',
�u,1,T � ';
Show#Graphics #Flatten #LL'''

'  
 
As an example we can plot the trinomial level tree with 10 time steps that switches from the branching process A to C after 
three down-moves and switches from A to B after 6 up-moves: 
 
TreePlot #10, �3, 6 '  
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CONSTRUCTION OF THE TREE FOR THE STATE PRICES AND THE INTEREST RATES 
 
Now that we have discussed how the nodes of our tree are constructed, we need to define the transitions in the tree. This 
has to be done in such a way that for each node at time t the transitions at time t+1 are correctly specified. This involves 
not only finding the transition nodes but also the corresponding probabilities. The function hh[q,jmin,jmax,a] , 
where q denotes the time and jmin  and jmax  specify at which node we alter the branching process, takes care of this 
task. 
 
hh#q_, jmin_, jmax_,a_ ' :  
Module #�jtm, jtp, XX, YY �,
Clear #f ';
XX ��;

jtm  Max#jmin � 1, �q';
jtp  Min#jmax � 1,q ';

YY Table # If # j � i ! �2 && j � i � 2,z #i � jtm ' g#q� 1, i, �i � j,a ' , 0 ',

�i, jtm �1, jtp � 1�, �j, jtm, jtp �';
XX Append#XX,

If # q � jmax && q � �jmin, DeleteCases #Transpose #YY', _0, �2�',
DeleteCases # Transpose # Which#

q ! jmax && q ! � jmin ,
Prepend #Append#
SubMatrix #YY, �2,2 �, ��jmin � jmax � 1, �jmin � jmax � 1�',

Delete #YY3�17, ��1�, �2��'', Delete #YY317, ���1�, �2��'',
q ! jmax,

Append#ColumnDrop #

Transpose #ColumnDrop #Transpose #YY', �1'', �1',
Delete #YY3�17, �1�'',

q ! �jmin,
Prepend #ColumnDrop #

Transpose #ColumnDrop #Transpose #YY', 1 '',1 ',
Delete #YY317, ��1�''

'', _0, �2�''';

XX

'  
 
As already mentioned the function hh[q,jmin,jmax,a]  finds the correct nodes with the corresponding probabilities. 
The next step for the construction of the interest rate tree is to convert the generic level tree into the calibrated tree. Here, 
calibration means that the tree is perfectly matched to the initial term structure. Within the calibrated tree the prices of the 
zero bonds that mature at each tree time-period coincide with those implied by the yield curve currently observed in the 
market. Only then our model is arbitrage-free.  
Remember, that so far we have constructed a tree which does represent the process 
 

Wtaxx ijij ∆+∆−=∆ σ  

 
Now, we want the tree to represent the time-inhomogeneous process 
 

( ) Wtaxtx ijij ∆+∆−=∆ σθ )(  
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where ( )tθ  should guarantee the absence of arbitrage. This is achieved by matching the prices of zero bonds implied by the 

tree to the zero bond prices obtained from the yield curve. Starting with the one period zero bond P t∆( ) we obtain for 

tt ∆=  the equality 
 

( ) ( )[ ] ∑∑ −=−=

− =∆−=∆
1

1

1

10
1exp

i ii i QtwtP πα  

 
whereα 0

 is the shift parameter by which the tree node x
0
 is shifted upwards. ijQ  is the price of the state ij . In other words 

ijQ is today's value of an instrument, which pays $1 if state ij  occurs, and nothing in every other state. Generalizing the 

above relationship we arrive at 
 
 

( )( ) ( )[ ][ ]
[ ]∑ −= ∆

−
∆ ∆∆+−=∆+ max

min

,min

,max

1
, exp1

ji

jik tiki txkwQtiP α  

 
 

In the case when ( ) rxxw ==−1  we can solve the above equation for α i
 using 

 

[ ] ( )( )
[ ]

[ ]∑ −= ∆∆ ∆
∆+−∆∆−

∆
= max

min

,min

,max ,

1log
explog

1 ji

jik kiti t

tiP
trkQ

t
α  

 
 
In the Black-Karasinski model the shift parameter has to be solved numerically, e.g. using the Newton-Raphson method. 
Once iα is determined we can calculate the state prices for the next time step using 

 

( ) ( )[ ]∑ ∆∆+−= ∆
−

∆∆+ k tijkkijti txkwQQ απ 1

,,,1 exp  

 
 

where jk ,π  is the probability of moving from node ( )kti ,∆  to node ( )( )jti ,1 ∆+ . The Mathematica code which solves this 

problem for arbitrary functions ( )⋅−1w  is TreeCalculation[t,jmin,jmax] , where t  is the time-dimension of the 

tree having t/ ∆t  time steps and jmin  and jmax  are the upper and lower bounds imposed on the level tree. 
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TreeCalculation #t_, jmin_, jmax_ ' :  

Module #�ZZ,AA, b,v �,
Clear #QQ,D';
'x  Sqrt #3' V ;
z#n_' :  ZZ##�1,n '';

g#i_, j_,z_, m_ ' :  
3#j, z, jmin, jmax ' Exp#�Z#+�m3�17 � j 'x/' 't ';

ZZ  ��1��;

RR ���Log#P#'t ''s't ��;
AA w#RR3�17' ;

Do#

ZZ  Append#ZZ,Apply #Plus,

Flatten #hh#j, jmin, jmax,AA ', 1 ', 1 '';
AA Append#AA,

D s. FindRoot #P#+j � 1/ 't '   ZZ3�17 .Table #Exp#�Z#+D � h 'x/' 't ',
�h, Max #jmin, �j ', Min #jmax, j '�' , �D, AA##�1''�' ',

�j, 1, t s't � ';

Clear #z,g, r ';
QQ ZZ;
Do#RR  

Append#RR,Table #Z#AA3i �17 � j 'x', �j, Max #�i, jmin ', Min #i, jmax '�'',
�i,1, Length #AA' � 1�';

v  0;If # # � 0, v ��'&ss� RR;
If #v ! 0,

Print #"�Warning: You have generated ",v, " negative interest rate +s/\n
Consider adjusting lower and upper bounds �"''

'  
 
In the code we used the function ( )⋅ω  to denote the inverse of the function ( )⋅w . 

The output of the function TreeCalculation[t,jmin,jmax] is stored in the two variables QQ and RR, where QQ 
denotes the evolution of the state prices in the tree and RR the evolution of the short rates. Before we want to consider 
some examples we introduce the function IntTreePlot[T,jmin,jmax,list]  which is equivalent to the function 
TreePlot[t,jmin,jmax]  which graphs the level tree. 
 
IntTreePlot #T_, jmin_, jmax_, list__ ' :  

Module #�LL, FF, HH �,
LL  ��;

Do# FF  DeleteCases #Transpose #auxTree #u, jmin, jmax '', _0,2 ';
HH precLevel #u, jmin, jmax ';
f #x_,y_ ' :  �x, list 3x � 1,y � Min#�jmin,x ' � 17� ;

LL  Append#LL,Table # Line #�HH3i 7,# �'&s� FF3i 7, �i, 1, Length #FF'�'';
Clear #f ',

�u,1,T s't �';
Show#Graphics #Flatten #LL'' , Frame �! True ' '  
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THE EXTENDED VASICEK MODEL 
 
As stated earlier, in Gaussian models the short interest rate can be set equal to the state variable, i.e. xr = . Thus we have 
 
w#y_' :  y;
Z#y_' :  y;  
 
To keep things simple we assume that the initial term structure is given as  
 
P#t_ ' :  Exp#�+0.07 � 0.01Exp #�0.1t '/ t ';  
 
which is a rather flat term structure.  
Now consider spanning the tree over 5 years using time steps of 0.5, i.e. we are constructing a trinomial tree with depth of 
10. Also we want the standard branching process to change to C after two down-moves and to change to B after 3 up-
moves. The rest of the assumptions are given below. 
 
a  0.01; V  0.015; 't  0.5;

TreeCalculation #5, �2, 3 ';
IntTreePlot #5, �2, 3, RR '  
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0.12

 
 
 
 
 
THE BLACK-KARASINSKI MODEL 
 
In the Black-Karasinski model with deterministic volatility the function w and its inverse are defined as 
 
w#y_' :  Log#y';

Z#y_' :  Exp#y';  
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For the construction of the tree we use the same initial term structure as in the Vasicek Model. We further make the as-
sumptions that the length of one time period is 0.25. Note that the choice w[y_]:= Log[y]  makes the interest rate a 
strictly positive process, we do not have to specify a value for jmin  to avoid negative interest rates. Thus in the example 
below we select a sufficiently high input value for jmin  which does not influence the tree geometry. With the other 
assumptions as given below the tree takes the following shape 
 
a  .02; V  .085; 't  0.25;

TreeCalculation #5, �30, 3 '

IntTreePlot #4, �30, 3, RR '  
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FORWARD PROBABILITIES IN THE HULL-WHITE MODEL 
 
Remember that ijQ  is the price of the state ij , ie, ijQ is today's value of a payoff of $1 in state ij  and $0 in every other state. 

Also we know that at every time step i the state prices sum up to the observed bond price ( )tiP ∆,0 . In an arbitrage-free 

setting 10 ≤≤ ijQ  for all 0, ≥ji  and we also have ( ) 1,00 ≤∆< tiP for all 0≥i . Since the bond price ( )tiP ∆,0  is strictly 

positive we can use it as a numéraire (see Geman-El Karoui-Rochet (1995)). Thus, if we discount the state price ijQ with 

( )tiP ∆,0 , the expression ( )tiPQij ∆,0  acts like a probability measure. It is strictly positive and the sum over all states j at 

a time step i equals unity.  
 
Consider now an arbitrary claim with payoff-function X at time T. Then, the time-t price of this claim is 
 

( ) ( ) [ ]XETtPXt T

t,, =Π , 

 
where []⋅T

tE  is the expectation operator under the T-forward neutral measure. In our trinomial tree, this means that the 

price of ( )Xt,Π  becomes 

 

( ) ( )[ ]
[ ]∑ ∆

∆−=
⋅=Π max

min

,min

,max ,,
jtT

jtTk kkT XQXt  
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where ( )kX  is the payoff if state k occurs at time T. 

 
 
 
EXPLORING THE CONVERGENCE FOR THE EXTENDED VASICEK MODEL  
In this section we want to take a closer look on how the trinomial tree method for the extended Vasicek model performes 
relative to the closed form solution. We will consider a single caplet on the interest rate. To simplify things we construct a 
function, which calculates the values of the caplet both for the numerical method and the closed-form solution. We call this 
function caplComp  where T is the time-of-maturity of the option, T/diff  gives the number of time steps, lower  and 
upper  determine at which nodes the geometry of the tree is changes, and caprate  is the strike of the caplet. 
 
caplComp #T_,diff_, lower_,upper_, caprate_ ' :  

Module #�res �, 't  diff;

TreeCalculation #T, lower,upper ';

res  � +Max##� caprate,0 '&s� RR##�1'' / .QQ##�1'',

caplet #+T� 1/, T, caprate '�;

Clear #'t, RR,QQ ';

res '  
 
We valued a caplet with strike at 4% and time-to-maturity of two years. We manipulated the geometry of the tree in such a 
way that the interest rate do not become negative. Hovewer, we did not impose any upper bound for the interest rate proc-
ess. The results can be seen in the picture below. 
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0.024
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Clearly, the price calculated with the trinomial tree is higher than the one with calculated with the closed-form solution. 
This must be due to the fact, that we have capped the trinomial tree in order to prevent the interest rate of becoming nega-
tive. This gives more weight to positive interest rates, whereas the closed form solution uses the whole range of the nor-
mally distributed interest rates. 
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SUMMARY 
 
In this article we presented an algorithmic approach to the term structure model of Hull-White. We did not add any new 
theoretical aspects, but we have shown how to implement such a model into Mathematica. This software seems to be very 
suitable for solving this type of problems. First, we have to solve some systems of equations to determine the probabilities 
in different branching processes. Then we have to construct a trinomial tree flexible enough so that one can arbitrarily de-
fine the geometry of the tree. Further, within the tree we have to find the roots of an equation numerically in order to de-
termine the level shift in the Black-Karasinski model. All this can be done in the same software package. Finally, we make 
use of Mathematica’s graphical capabilities to explore the convergence of the tree method relative to the closed form solu-
tion in the extended Vasicek model. 
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