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Algorithms Behind Term Structure Models of Interest Rates II:
The Hull-White Trinomial Tree of Interest Rates

In this article we implement the trinomial tree of the Hull-White model, which can be easily extended
to allow different assumptions about the dynamics of the short rate process. We present the Mathe-
matica algorithm for the extended Vasicek and the Black-Karasinski model. Whenever negative inter-
est rates are generated with a positive probability, we make use of alternative branching processes,
which guarantee the positivity of interest rates. Finally we show how to price simple options such as
caplets, and compare the convergence of trinomial trees with different geometries.

by Markus Leippold®and Zvi Wiener”

INTRODUCTION

In a previous paper we presented the Ho-Lee (1986) model, the first term structure model, which allows the matching of
the initial term structure. Unfortunately, the Ho-Lee model is built on oversimplifying assumptions. The short rate is sup-
posed to follow arithmetic Brownian motion, which does rapidly lead to negative interest rates. We showed how this prob-
lem can be controlled by restricting the values of the node probabilities. Nevertheless, positivity of interest rates can be
guaranteed only up to a small number of time steps in the binomial tree. Therefore, we can not expect the Ho-Lee model to
accurately price derivative instruments, which need a high density of nodes (e.g. barrier options, instruments with frequent
cash flows etc.). This paper does not develop a new method but shows how to implement the algorithm behind the Hull-
White interest rate model. The Hull-White methodology is used together with analytic power of Mathematica to construct
trinomial trees for the generalized Vasicek (Hull-White 1990, 1994) and the Black-Karasinski (1991) interest rate models
and a very flexible framework for trinomial trees.

NOTATION AND BASIC ASSUMPTIONS

The Hull-White model is based on the same set of assumptions as the Ho-Lee model. There are no market frictions, no
transaction costs nor taxes. Further, all assets are perfectly divisible. Trading takes place at discrete time steps. The marke
is complete in the sense that there exists for everyTimé&ond with the respective maturity. We assume for everyttime

the state-space is finite. Denote B t,T) the price of a zero bond in statat timet, which pays $1 at the maturity date

The entire term structure can be captured by the strictly positive fuliR(iio). We further requiré¢he zero bond to sat-

isfy the conditiond>(i,t,t)=1 and linP(i,t, T)=0 asT—co for all i andt. To abbreviate the notation, the bond prie€3,0,T)

which can be observed from the initial term structure are denofe@ as

The standard branching process is trinomial. We now need to define the transitions in the tregwe/dinote the prob-

ability by which the process moves upward from node (i,j) to riede j+1), with 17, the probability that the process

moves to nodéi+1,j) and g denotes the probability that the process makes a downward move t@+igdel) (see the

figure below).

@Markus Leippold, Swiss Insitute of Banking and Finance, University of St.Gallen, Merkurstr. 1, 9000 St.Gallen,
SWITZERLAND; markus.leippold@unisg.ch.

b Zvi Wiener, Business School, Hebrew University, Mount Scopus, Jerusalem 94945, |
mswiener@mscc.huji.ac.il, http://pluto.huji.ac.il/~mswiener/zvi.html.



Hull-White, 10/19/00

(i+1j+1)

> (i+1])

(i+1j-1

THE DISCRETE MODEL
The trinomial tree is used to construct a discrete time and discrete space Markov approximation of the state, variable
which follows the time-inhomogeneous continuous stochastic process

dx = (8(t)- ax)dt + o (x)dw

whereW is a standard, one-dimensional Brownian mot#ft),is the drift anda is the mean reversion. The tedtt) is the
volatility term of the diffusion and may depend on the current level of the state vatidiiie short rate is now assumed

to be a function of the state varialyelt is well known that in Gaussian interest rate models we can identify the short rate
as the state variable (see e.g. El Karoui-Geman-Lacoste (1995)), that is

X=r

Setting the short rate equal to the state variable results in the generalized Vasicek (1977) model of the term structure where
the short rate follows the time-inhomogeneous Ornstein-Uhlenbeck process

dr = (G(t)— ar)dt +odW

It is obvious that under this selection the interest rates are Gaussian and are thus subject to become negative. To avoid this
undesirable property we adopt the methodology proposed by Hull-White (1994) and change the geometry of the tree.

Another way to avoid negative interest rates is to assume a stochastic process for the interest rate which is non-negative
almost surely. If we take
x=w(r)=logr

the Black-Karasinski (1991) lognormal model with constant volatility is obtained where the short rate follows the
stochastic differential equation

dlogr = (B(t)—alogr)dt+odW
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A well-known criticism of this model is that the specification of the short rate dynamics leads to infinite prices for Eurodol-
lar futures (Hogan and Weintraub (1993)). Again, we can manipulate the tree geometry to introduce an upper bound for the
interest rate. Thus, we can guarantee that the interest rate stays within a reasonable range.

Let us define the interest rate as a transformation of the state vatiableas dunction r =w™(x) which we will use in

a later section. From now on, we will make the simplifying assumption for the volatility and the mean reversion of being
constant, i.ec(x) =c and a(t) =a.

As was shown by Hull-White (1994), instead of directly modeling the discretized version of the stochastic pro¢ess for
X respectively) it is more efficient to build the trinomial tree in a two-step procedure. We first construct a "level" tree that
approximates the process

dx = —axdt+odW

Let At be the size of a time step add; be the incremental transition random variable, which is computed using the first

order approximation difference equation
Ax; = —ax At +0AW,

where AW is a Gaussian random variablbll_O, \/AtJ. In the trinomial tree the random variabbe +Ax, is

approximated by a discrete random variable on the three r{&g{@é, >g+1_j+b,>g+m+c}, wherea, b, andc are some positive

or negative integers. In the following we will make the assumptions that these three nodes are the neighbors
{)gﬂ,j_l,)gm,)g%jﬂ}. We note that this imposes a restriction on the tree construction, which is not necessary and can be

relaxed if additional conditions are imposed. We will present elsewhere a model where the process does not necessarily
evolve to the neighboring nodes.

Before we proceed, we note that the conditional expectation value and the variance of the Gaussian random variable are
given as

Ele‘i |Xij J =% (e_am _1)
and

1— g2
Var[Axij X, ]= o2 %

respectively. Often, one takes first order approximations. However, taking exact values gives slightly faster convergence
and does not result in lower computational speed.

The construction of the trinomial tree involves matching the expectation value and the varirratesath node in the

tree. This leads to a system of equations for the three tree probabilities. We have

o+, +, =1

TI, (xij +AX; )+ T, X, +1T, (x‘i = A, ) =X, €

—-alt

—2ait
2 2 2 2 _ 2 1_e
TI, (xij +Ax‘i) +71, X +7T, (xij —Ax‘i) —((7'[u -1, )Ax‘j +(7'ru +m, +m, )xij) =0 g

m “Nj
The determinant of the above system of three linear equations is Vandermonde and[bq”udts order to guarantee that
{nu,nm,nd}can be interpreted as probability measures, we have to guarantee the three inequality constraints

. 20, kD{u,m,d}. This can now be done in several different ways. First, we can build some constraints on the number of

time steps we are considering, as was done e.g. in Leippold-Wiener (1999). However by doing so we impose some severe
restrictions on the depth of the tree. This method would probably fail to value either derivatives with complex payoff struc-
tures such as barrier options or long term instruments with intermediate payoffs such as claims on mortgage backed securi-
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ties. To price these instruments accurately we would require a reasonable depth for the tree. Another possibility is to relax
the assumptions that the trinomial tree evolves to the neighbor states as pointed out above. In this case an equation system
with six variables and three equality constraints has to be solved. Thus, to uniquely select a particular threesome of transi-
tions, we would have to impose some additional (desirable) constraints. However, in this article we will focus on a third
possibility, which is to alter the geometry of the tree such that negative interest rates are avoided. Of course, altering the
geometry of the tree is an arbitrary manipulation of the pricing problem and thus subject to some criticism. Nevertheless, it

is widely used in practice.

We now introduce three alternative branching processes, which are graphed below

<\ 4

A B Cc

Clearly, the branching process A will be used as long as interest rates are becoming neither negative nor unrealistically
high. Whenever in a following step interest rates would become negative, we switch from the branching process A to the
branching process C. On the other hand, if interest rates become unrealistically high, we can switch the geometry of the
tree from the branching process A to the branching process B. A possible structure of a trinomial tree with the above
branching processes would look like in the following picture, where after 2 time steps we start using the branching process
C and after 3 time steps we make use of all three branching processes.
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The introduction of new branching processes leads to different equation systems, which must be solved. We can let
Mathematica do the job.

THE EXTENDED VASICEK MODEL IN CONTINUOUS TIME

Before we start implementing the discrete model in Mathematica, we give a very brief derivation of the continuous (in time
and state) version of the extended Vasicek model. We do this not only for the sake of completeness but also to compare the
tree methods implemented in Mathematica with the closed-form solutions in a later section.

The continuous-time Hull-White model (1990) is basically an extension of other well-known models, particularly of the
models by Vasicek (1977), Cox-Ingersoll-Ross (1981), and Black-Derman-Toy (1990). Hull and White introduced a time-
dependent short rate process. The additional degrees of freedom allow matching perfectly the initial term structure of
interest rate and volatilities. We restrict ourselves to the extended Vasicek model, since in most pricing problems this
model allows the derivation of closed-form solutions. In contrast, the Black-Karasinski model does not allow closed-form
solutions. Further, as noted by Hogan-Weintraub (1993) the expectation of the money market account is infinite for any
time period.

The extended Vasicek model assumes the drift of the interest rate process to be time-dependent, but not the volatility. Then
the process for the short rate follows

dr = (6(t)-ar)dt + odw,

whereW is a standard Brownian motion under the risk-neutral measure. One can solve this stochastic differential equation
to obtain

t

ro=er,+ e‘a‘{e“e(s)ds+ e‘a'a{e“dW(s) .

Assuming a sulfficiently rich bond market we can express the bondRtj€eas

D T
P(t,T): E [exy%[r(s)ds%,
8

where completeness of the bond market ensures uniqueness of the risk-neutral measure. To solve for an explicit solution
for the bond price on can directly calculate the above expectation, which is an easy exercise since the integral of a normal
variable is still normal. After some calculations one arrives at

P{t,T)=exdAt,T)-BtT)r],
with

B(t,T)= é(l— ()

1

A(t,T):EazjBz(s,T)ds-je(s)B(s,T)ds

The assumption that interest rates are Gaussian variables allows us to derive closed-form solutions for bond and interest
rate options. Using standard change of numéraire techniques one can show that the call priteataibend maturing
at Swith time-T exercise function

X =(P(T,9)-K)",

for T < S, is given by
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n(0,x)=P(0,S)N[d,]- KP(0,T)N[d,].

where

.10 of
.. =(8(9)-BET) Im% du

It is further well known (see e.g. Bjork, 1998) that a caplet is a put option on some underlying bond. More precisely, if we
assume the cap rate to be which will prevail over a perio&T > 0, then the caplet is equivalentie r* (S—T) put

options on a bond with maturi§ where the exercise date of the option i$ ahd the exercise price ($+ r* (S—T))'1

The implementation of the caplet formula that we will need in a future section is rather simple. An introduction to
Mathematica in Finance can be found in Shaw (1998). First we load the statistics package

<< Staidics Master

The package allows us the define the cumulative distribution function of the standard normal distribution as

s[Z ] : = CDF NomaDistioution 011,z71;

Then, the formula for the caplet with strik@prate , time to maturityl and time intervab-T, can be typed in as
Cﬂﬁ [T_1 S_: Cﬂ]ale‘_ 1:=
Modie [(v,d, K 3,
K=1/l+cqpae (S-Ty);

o 1- Bpr-2aT] .
V=g (1—E><p[—a(S—T)1)\/2a,

d= (LogrPiS| / (KPTI)] —% v?) /v,

(KPTye[-d+vy - PIS s[-d;) 7K
]

DEFINING THE PROBABILITIES IN MATHEMATICA
In this section we determine the tree probabilities using Mathematica to solve the corresponding systems of equations.
First, we define the value of the transition nodes for each branching process. We denttensAth the three node

values if branching process A is chosen. SimildrgnsB andtransC denote the values if the branching process B and
C are selected.

tansA = (X[j1-aX%X [j1,X [] ]+aX};
tansB = (X[[1-2aXX [[]-2a%X [J1};
tansC = (X[ ],X [[]+aXX []]+2aX},
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We continue to define two auxiliary functions

arxeE[x 1:
anVvix i:

7. X
Pus ee ( axE[x2] - anxE[X]1"2);

which calculate the expectation and variance of the branching processes. Let's define the down-, middle- and up-
probabilities byr,,,,1,} , i.e.

Upoed [x]; x = {x3, =2 =l};

Since we are starting with a equidistant tree where the starting node is set equal to zero, we can define
X[ 1:=] aX

The probabilities in the branching process A then solve the equation system

pobA | 1 -Faen [x/. Sove |

{ axE(ransA | == ulij 1,
ARV [tasA 1 == viij 12
Pls eex == 1 1},

~] 15
The probabilities in the branch B solve

pooB [j ] = Faen [x/.Sove |

{ anEasB 1 ==ulij 1,
anresB 1 == viij 1%
Ps ee r == 1 },

~]1;

and in branch C

pobCj 1 = Faen [x/. Sove |

{ a€(rasC ] == ulij 1,
an/tasC 1 == viij 123
Pls ee n == 1 },

115

The next step is to specify the drift and the volatility function in the above equation systems. As stated earlier, we will use
the exact values for the first and second moments

ui,l 1:= X[j1 Bpr-aaty;
. . 1- Bpr-2aat;
VibL. 1:=o¢ \/ 2a ;

The following function is particularly useful for the tree calculations. It produces as output the probqbiiity{—],o,l}
depending on the current levef the node. The values fgmin andjmax indicate the critical time step where the
branching processes C and B replace the standard process A.
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H[L,Z_,hh_,jTBX_ 1:=

Whch [jmn - < j < jmax, 01,
max <= j, pobB  j1,
j <=, pobC  [j1 10Z+21

PLOTTING THE LEVEL TREE

The tree that has been constructed so far is generic and does not yet reflect the term structure of interest rates or zero bond
prices respectively. However, plotting the tree gives some interesting insight on how the geometry of the tree works. We
load the twopackages Statistics’ DataManipulation andLinearAlgebra’MatrixManipulation®

to make use of the functio@lumnDrop[] andSubmatrix[] . Then the two auxiliary functions

axlree [T jmn,max_  1:=
Modue [{Jm, jp, XX 13,
jm = Maxpn -1, -Tj;
o - Mnpmax+1T1;
XX=Taoe (F 1j-i »>-28&&j-i <2 f [T-1i 1,07,
gfm +Ljp -13 gimip
Which [
Tew= aX&8 T <= -pin, Reum [ XN,
T>pax & T > -, Pepend [Append |
SMelix [ XX, {22}, (- +jmax -1, -jn .+ nex + 131,
Deele [ Xq-11, {{1}, (21311, Dele [ Xqln, - ({1}, (23}11,
T > max, Append [ CoumnDrop |
Transpose  [CoumnDiop [ Transpose [ XX, -111, -11,
Deete [XX-11, (1311,
Ts> -y, Pepend  [CoumnDiop |
Transpose  [CoumnDiop [ Transpose [ XX4,1 11,11,
Deele (Xqln, (-13111 1

and

peded [T, jpin,max_  ]:-
Modue [{XY 3},
X = Nbx[.rm1 —T]1

y = Mngmex, T 1;
Tade (f[T,k1, (kxy 311

are necessary inputs for thesePlot][] function
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TeePot [(T,pin,pax_  1:-=

Modue [¢{LL A= HH 3,

W= (3

Dor FF = DelieCases  [Trangpose  [axTiee [u, jninjmex 11, _0,2 1;
HH peded [ujinjmex 1;

fIX,y_ 1= Xy ;

L= Apperd(LL Tebe [Lre [(HHig, #3)1&/e FALiD, (i1 Lengh  [FRI310;
Cear [f],

ulLT 31,

SonGaphcs [Hatien  [LL177
]

As an example we can plot the trinomial level tree with 10 time steps that switches from the branching process A to C after
three down-moves and switches from A to B after 6 up-moves:

TreePot [10, -3,6 ]
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CONSTRUCTION OF THE TREE FOR THE STATE PRICES AND THE INTEREST RATES

Now that we have discussed how the nodes of our tree are constructed, we need to define the transitions in the tree. This
has to be done in such a way that for each node att tihgetransitions at time+-1 are correctly specified. This involves

not only finding the transition nodes but also the corresponding probabilities. The funbkfmmin,jmax,a] ,

whereqg denotes the time arjchin  andjmax specify at which node we alter the branching process, takes care of this
task.

hhio,jn,jmex,a 1=
Modue [¢fm, jp, XX, YY 3,
Cear (f;
XK= (1
m - Maqmn -1 -0
o = Mnjmax+1q7y;
YY=-Tae (F j-i >-2&&j-i <2z -fmjgg-1i -i+ja 1,07,
gm L -1y, ¢ imjp e
XX = Append [ XX,
f Q<= max&& q <= -jn, DekieCases (Trangpose (YY), 0 (231,
DekieCases [ Transpose [ Whch |
q>jmex & q > - jm,
Prepend [Append [
SoMelix  [YY, (22}, (- +jmax -1, -jn .+ jmex + 1y,
Deete (YY[-11, ({1}, {23311, Dee [YY[ln, - (¢1y, (233170,
q > jmex,
Append [ CoumnDrop
Transpose  [CoumnDrop [Transpose 1YY}, -137, -1,
Deee [YY[-17, (L1171,
g> -jn,
Prepend [ CoumnDrop |
Transpose [ CoumnDrop [ Transpose [YY], 117,11,
Deete [YY[11, (-1317
11,_0 23113
XX

1
As already mentioned the functidwa[g,jmin,jmax,a] finds the correct nodes with the corresponding probabilities.
The next step for the construction of the interest rate tree is to convert the generic level tree into the calibratesl tree. Her
calibration means that the tree is perfectly matched to the initial term structure. Within the calibrated tree the prices of th
zero bonds that mature at each tree time-period coincide with those implied by the yield curve currently observed in the

market. Only then our model is arbitrage-free.
Remember, that so far we have constructed a tree which does represent the process

Ax; =—ax At +0AW

i
Now, we want the tree to represent the time-inhomogeneous process

Ox, = (B(t) —ax; )At +0AW

10
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where 9(t) should guarantee the absence of arbitrage. This is achieved by matching the prices of zero bonds implied by the
tree to the zero bond prices obtained from the yield curve. Starting with the one period zerB(Abae obtain for
t = At the equality

p(at)=exd-w (o, ]S m =570

wherea  is the shift parameter by which the tree nogeis shifted upwardsQ; is the price of the statg In other words
Q, is today's value of an instrument, which pays $1 if sfabecurs, and nothing in every other state. Generalizing the
above relationship we arrive at

P(i+1at)= 50 Q. exd-w(a,, +kaxat]

In the case whemw™(x)=x=r we can solve the above equation for using

1 minji, jpa I P ! 1 t
aiAt = E Iog ZK:nEaj{*i,]Jmm] QiA'K eXd_ k Ar At] B %

In the Black-Karasinski model the shift parameter has to be solved numerically, e.g. using the Newton-Raphson method.
Oncea;, is determined we can calculate the state prices for the next time step using

Q(”l)A” - sz‘Avknm eXp[_ W_l(aim + kAX)At]

where 17, ; is the probability of moving from nod(’rAt,k) to node((i +1)At, j). The Mathematica code which solves this
problem for arbitrary functionsw’l([)] is TreeCalculation[t,jmin,jmax] , Wheret is the time-dimension of the
tree having/ At time steps anfinin andjmax are the upper and lower bounds imposed on the level tree.

11
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TreeCalcuiation t,jmn,jmax_ 1=
Modde [{ZZAA bV 3,
Cear [QQ,al;
axX =St (3]0
zin1:= Z-Ln i,
gri,j,z,m 1:=
IL[j, Z jnn, jrex 1 BQr-o[(+n-11 + j 2X)] at 1;
ZZ = {{Liy,
RR= ({-log(Prat 11 /at}y;
AA= WRR-117;
Do
ZZ = Append [ZZ, Appy  [Pus,
Faten (hhijjmn jmex, AA - 1,171,177,
AA= Append [AA
a /. AdRoOt  [Pr(j + 1) at] == ZZ[-17.Tabe [BP[-w[(a+ haX)]at],
(h Maxpn, -j1,Mn (maxj 131, (o AATL-111311,

gLt saty,
Cear (zgr 1,
Q= ZZ
Do RR =

Append [RR, Teble [w [AATi + 17 + ] ax1, ¢ Mex [-ijon 1, Mn [ijmax 1311,
{ilLlengh [AA-11;
V=0F [#<0V++1&//e RR;
fvs> 0
Pt [":Wanng You have generaied " v," negaive nierest raie SN
Consckr adusing ower and upper bounds "1
]

In the code we used the functiw([)] to denote the inverse of the functiw@].

The output of the functiofireeCalculation[t,jmin,jmax] is stored in the two variabl€gQandRR whereQQ
denotes the evolution of the state prices in the treeR&nthe evolution of the short rates. Before we want to consider
some examples we introduce the functiotTreePlot[T,jmin,jmax,list] which is equivalent to the function
TreePlot[t,jmin,jmax] which graphs the level tree.

IntTreePiot [T,mn,jmax_, & 1=

Modue [{LL, AR HH 3,

L= {3

Dor - = DeeieCases  [Trangpose [axTree [ujmnjmax 11, _0,2 71;
HH pedevd  [ujmnjmex 1;
fix,y 1:= (xB  [X+«Ly « Mn-jminx 1+113 ;
LL- Append(LL,Tade [Lre [(HHi1,#}1&/e AOiD, (il lengh (AR
Cer [f],
ULT /atyy;

Show[Gaphics [Hatten  [LLj1, Fame -> Tue ] ]

12
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THE EXTENDED VASICEK MODEL
As stated earlier, in Gaussian models the short interest rate can be set equal to the state variable,Tireus we have

WIY.1:=Y,
wlY_1:=Y

To keep things simple we assume that the initial term structure is given as
Pt 1:= Bor-(007 - 00LBEp [-01t 1) t1;

which is a rather flat term structure.

Now consider spanning the tree over 5 years using time steps of 0.5, i.e. we are constructing a trinomial tree with depth of
10. Also we want the standard branching process to change to C after two down-moves and to change to B after 3 up-
moves. The rest of the assumptions are given below.

a = O.m, o = O.(II.S, At = 05,

TreeCaloukation 5 -2317;
TPt (5 -23 RR ]

THE BLACK-KARASINSKI MODEL

In the Black-Karasinski model with deterministic volatility the functioand its inverse are defined as

wry_1:= Logrys;
w[y_1:= Bory:;

13
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For the construction of the tree we use the same initial term structure as in the Vasicek Model. We further make the as-
sumptions that the length of one time period is 0.25. Note that the chgick= Log[y]

strictly positive process, we do not have to specify a valugrfior

makes the interest rate a
to avoid negative interest rates. Thus in the example

below we select a sufficiently high input value forin which does not influence the tree geometry. With the other

assumptions as given below the tree takes the following shape

a= 02 o=085 at =02
TreeCalouation (5 -30,31
InfTreePiat 4 -30,3 RR ]
) <
: ST XEXS
o X NS KK
EEIILRLIIL AR I,
TR A AR LSS A
| LXK A
w0 | < SEOTICA ISP
SEES SIS
o | RGOSR
| e
B == ———e
<—=—os—os—os—s—=0
0 | ===
(0102 —

75

FORWARD PROBABILITIES IN THE HULL-WHITE MODEL

Remember thaQ, is the price of the stafg ie, Q, is today's value of a payoff of $1 in stdtand $0 in every other state.
Also we know that at every time stephe state prices sum up to the observed bond m(eeiAt). In an arbitrage-free
setting0< Q, < 1for all i, j 20 and we also have < P(0,iAt)< 1for all i > 0. Since the bond price(0,iAt) is strictly
positive we can use it as a numéraire (see Geman-El Karoui-Rochet (1995)). Thus, if we discount the s@tevigice
P(O,iAt), the expressioQ, /P(O,iAt) acts like a probability measure. It is strictly positive and the sum over all jsthtes
a time step equals unity.

Consider now an arbitrary claim with payoff-functidmt timeT. Then, the time-price of this claim is
N, x)=Pe,T)E [X],

where E/ [[]] is the expectation operator under théorward neutral measure. In our trinomial tree, this means that the
price of I‘I(t, X) becomes

min[T/At, s,

nex)= )

k=max{~T/At, j, ]

14
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where (X), is the payoff if staté& occurs at timd.

EXPLORING THE CONVERGENCE FOR THE EXTENDED VASICEK MODEL

In this section we want to take a closer look on how the trinomial tree method for the extended Vasicek model performes
relative to the closed form solution. We will consider a single caplet on the interest rate. To simplify things we construct a
function, which calculates the values of the caplet both for the numerical method and the closed-form solution. We call this
functioncaplComp whereT is the time-of-maturity of the optiof/diff gives the number of time stepswer and

upper determine at which nodes the geometry of the tree is changesafate s the strike of the caplet.

capiCamp [T, diff, lower_, upper , caprate 1:=
Modue [({res 3, at = dff
TreeCalculation [T, ower, upper 13
s = { (Max#-capae,0 1&/e RR[-111).QQrr-111,
capet [(T-1),T,capate 13,
Cear [2t RR,QQ 1;
fes ]

We valued a caplet with strike at 4% and time-to-maturity of two years. We manipulated the geometry of the tree in such a
way that the interest rate do not become negative. Hovewer, we did not impose any upper bound for the interest rate proc-
ess. The results can be seen in the picture below.

0.024 | 1

0.02375 ]

0.0235 ]

Prices

0.02325 | 1

0.023 | ]

Trinomial tree "‘/\/’
0.02275 | i

0.0225 ]

0.02225 Closed form price ]

0 5 10 15 20
Time steps (x15)

Clearly, the price calculated with the trinomial tree is higher than the one with calculated with the closed-form solution.
This must be due to the fact, that we have capped the trinomial tree in order to prevent the interest rate of becoming nega-
tive. This gives more weight to positive interest rates, whereas the closed form solution uses the whole range of the nor-
mally distributed interest rates.
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SUMMARY

In this article we presented an algorithmic approach to the term structure model of Hull-White. We did not add any new
theoretical aspects, but we have shown how to implement such a model into Mathematica. This software seems to be very
suitable for solving this type of problems. First, we have to solve some systems of equations to determine the probabilities
in different branching processes. Then we have to construct a trinomial tree flexible enough so that one can arbitrarily de-
fine the geometry of the tree. Further, within the tree we have to find the roots of an equation numerically in order to de-
termine the level shift in the Black-Karasinski model. All this can be done in the same software package. Finally, we make
use of Mathematica’'s graphical capabilities to explore the convergence of the tree method relative to the closed form solu-
tion in the extended Vasicek model.
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