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Abstract 

 

In this paper we compare portfolio optimization by two distinct methodologies. The 

first one is the usual Capital Asset Pricing Model (CAPM) efficiency frontier, which 

considers that returns from every asset are normally distributed. Many apply this type of 

optimization to assets whose return distribution is simply non-normal.  

We study two different cases: in the first one the distribution of the assets is normal 

and in the second one it is radically different. The point we are trying to make is that 

applying the standard CAPM to the non-normal distributions can lead to extremely 

erroneous decision-making. Furthermore, using software tools that combine optimization 

and simulation techniques, it is easy to optimize any portfolio, as long as its assets return 

distributions are known. 

 Conclusions and recommendations close the paper. 

 



1 - Introduction 

 

 In a wide array of industries, the Net Present Value or Internal Rate of Return of a 

project turns out to be, considering uncertainties, approximately, a normal distribution. 

Some random disturbance on sales, costs (fixed and variable) and operations of sum and 

subtraction in order to achieve the annual cash flows end up in a normal distribution. This 

can be true for the so-called Opex-driven business, where investments, profits and costs 

have the same magnitude. In CAPEX-driven businesses, however, this is rarely the truth.  

 Oil industry, in particular, presents a very peculiar distribution pattern, generally 

following the oil-in-place distribution. As mentioned in Newendorp, this distribution tends 

to be a lognormal one. A brief explanation may come in handy.  

The oil in place can be described in a very simplistic way as the following equation: 

 OIP = A.h.φ.(1 – Sw).B01 

 Where 

 OIP is the total volume of oil in place; 

 A is the rough area of the straight section of the reservoir 

 h is the height of the reservoir; 

 φ is the porosity factor, that is, the fraction of the rock that can hold oil; 

 Sw is the water saturation factor; 

 B01 is a volume formation factor, describing the volume variations due to 

temperature and pressure. 

 The recoverable oil is the product of the OIP and the recuperation factor. Figure 1 

illustrates these considerations. 

 

 

 

 

 

 
H 

A 

Sw 

1-φ 

OIP



Figure 1 – Rough representation of oil in place (OIP) in a reservoir 

 

 As the oil in place is a product of a series of random variables, its logarithm is the 

sum of other variables (logarithms of the initial variables). This property points out to a 

lognormal distribution being a good proxy to the OIP distribution. 

The problem poised in our hands is to optimize a portfolio of upstream opportunities 

considering their singular properties.  

 

2 – Classic CAPM Portfolio Optimization 

 

 In dealing with normal distributed assets, the very well known Capital Asset Pricing 

Model developed by Markowitz in the early 50’s. Considering a portfolio composed by two 

assets, namely 1 and 2, its return (µ) and risk (σ) can be calculated according to the 

following formulae: 

 µPfolio = SA.µA + SB.µB  

σPfolio = (SAσA)2 + (SBσB)2 + 2(SA.σA).(SBσB).ρA,B 

 

 Where  

Si is the share of asset I in the portfolio; 

µi is the return (mean of net present value of the project, for instance) of 

asset i;  

  σi is the risk (standard deviation of the return) of asset i;  

ρA,B is the correlation between assets A and B. 

 

 This structure can be easily manipulated to obtain the so-called bullet-shaped curve, 

which is the efficient frontier of portfolio compositions, ranging from the smallest risk to 

the bigger return. This procedure can be done straightforward with any classical 

spreadsheet optimization tool, such as Excel Solver. The frontier is a non-dominated 

region, that is, one position in it cannot be considered superior to another unless some 

decision-maker utility is incorporated (as seen in Motta e Calôba). 



In our example we consider four assets A, B, C and D. The formulae for return and 

risk can be thus generalized for this case:  

 µPfolio = SA.µA + SB.µB + SC.µC + SD.µD  
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 The correlation between an asset and itself is a perfect positive one, so we always 

have ρi,i equal to 1. 

 Considering this assets being normally distributed, the distribution for the portfolio 

return itself will also be a normal one, no matter the combination of the assets. In a more 

general case, this condition is not granted. 

 Our 4 projects, A, B, C and D are introduced in table 2, with information regarding 

its investment cost, its return measured as the net present value discounted for a minimum 

rate of atrativity and the risk as the standard deviation of the return of each asset: 

Assets Return Risk Investment
A 25,000 4,000 100,000 
B 50,000 15,000 100,000 
C 100,000 35,000 100,000 
D 500,000 100,000 100,000 

Table 1 – Summary of Investments Allowable – Values in US$ MM 

 

 We consider that our assets are statistically independent, that is, ρi,j equals zero if j 

and I are different. We also introduce a budget constrain, allowing the investor to use only 

200,000 million dollars. 

 Our procedure to estimating the frontier is a very simple one. First we minimize 

portfolio risk; then we maximize return, always subject to the constrains. We consider eight 

intermediate steps along the minimum risk and the one calculated when maximizing return, 

and maximize return in each of these nine problems.  

 Through non-linear optimization procedures internal to Excel Solver we obtained 

the following results, listing the return and risk along the frontier, as well as the share of the 

assets in each position. These results are shown in table 2. 

 

 



 Portfolio Results Portfolio Asset Composition 
 Return (µ) Risk (σ) A B C D 

Lowest Risk    91.007,97    14.231,67  100% 83% 15% 2% 
2  147.562,64    18.853,36  100% 64% 23% 14% 
3  204.117,31    28.370,92  82% 62% 32% 24% 
4  260.671,98    38.547,01  43% 81% 43% 33% 
5  317.226,65    48.844,21  4% 99% 55% 42% 
6  373.781,32    59.502,48  0% 84% 63% 54% 
7  430.335,99    70.716,36  0% 64% 70% 66% 
8  486.890,66    82.261,06  0% 45% 78% 77% 
9  543.445,33    94.014,80  0% 26% 85% 89% 

Highest Return  600.000,00  105.948,10  0% 0% 100% 100% 
Table 2 – Portfolios in the Efficient Frontier 

 

 As observed, higher risks can only be achieved by admitting higher return. As we 

rise in the frontier, the investor sweeps assets A and B, more conservative, for assets C and 

D, with higher return and risk. The efficient frontier can be observed in figure 2, stating the 

trade-off between risk and return. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 –Representation of the non-dominated portfolio compositions (Frontier) 

 

 If our assets are normally distributed, no longer discussion should be made. As this 

is not our case, we will move a little further, in the next session. 
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3 – Simulating our Portfolios 

 

Considering our assets are lognormaly distributed in theory, we know we should not 

rely on the CAPM estimates. A little exercise will be done. Using @Risk, a Monte Carlo 

Simulation Add-in from Palisade Inc, we simulated the minimum risk portfolio pointed out 

by CAPM in two instances: the first one considering normal distributed returns and the 

second one considering the more realistic lognormal distribution. This will give us an 

insight in the importance of optimizing the portfolio considering appropriate distributions. 

We will consider the Value at Risk at a level of 5%, that is, the minimum profitability the 

portfolio yields with a 95% assurance. But first we shall show a graph of these two 

distributions, in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – A Normal and Lognormal Portfolio Distributions 
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 As we can see, the normal distribution, in red pattern, has a higher mode, although it 

extends to lowers maximum and minimum. A list of descriptive statistics is shown in table 

3, below. 

Statistics Normally 

Distributed 

Lognormally 

Distributed 

Minimum 25,881.34 51,060.59 

Maximum 153,784.50 191,613.30 

Mode 66,689.19 61,215.93 

Average 91,090.78 91,034.36 

Standard Deviation 14,212.45 14,333.36 

Skewness 0.002369 0.6757061 

Kurtosis 3.015074 3.894074 

5% Percentile 67,790.07 70,322.95 

95% Percentile 114,393.70 116,954.60 

Table 3 – Statistics from Monte Carlo Simulation 

 

 We can observe a difference of approximately 2 billion dollars in both the 5% and 

95% percentiles of the distribution. Higher differences appear in the mode, minimum and 

maximum values of the portfolios. However the investments have almost the same risk and 

return. 

 

4 – Adapting for the Lognormal (or any other) Distribution  

 

 In the previous section we simulated the returns awarded by a portfolio composition 

that minimizes the risk. We noticed a difference in the portfolio return distribution 

functions when we swapped the distribution of the assets between normal and lognormal. 

However, using CAPM, we minimized risk for normally distributed assets. We wonder 

whether the composition of the risk-minimizing portfolio would change if we consider the 

assets lognormally distributed in our optimizing problem.  

 In order to investigate this issue, we would either have to conceive a way to 

represent theoretically the lognormal combination of the four assets composing the 



portfolio in order to optimize via Excel Solver or produce a means to optimize the portfolio 

while simulating. This last option seems very profitable as we could optimize portfolios 

composed by any kind of different distributions. 

 We couldn’t figure out how to work this until we discovered the potential of Risk 

Optimizer, a component of Palisade’s Decision Tools Industrial Version. This invaluable 

software can tackle this problem very easily. In fact, we can set the problem as easily as 

with Solver, determining our problem constrains, that is, budget allocation, and order to 

maximize or minimize a statistic of a given cell. If this cell contains an @Risk function, or 

is influenced by any random variables in the spreadsheet, the optimizer will do the trick.  

 Risk Optimizer works with state-of-the-art Genetic Algorithms (GA). This 

technique, in a nutshell, mimics Darwinian Evolution processes, creating subsequent 

generations of a population, which combines individuals in order to improve the desired 

result. The best individual is always kept in the next population. When the computer 

reaches a condition given by the user, such as running time or absence of improvement in 

the last x generations, the process is halted and we can see a log of the optimization and 

observe the values for the decision variables that provided this best result, as well as the 

whole optimization process. In order to work well, GA needs a feasible starting point in 

order to begin optimizing. Most of the cases this is no hard task to complete. 

 The introduction of this software creates a new paradigm in the spreadsheet 

technologies, that is, to easily optimize anything in any kind of spreadsheet with random 

variables. The GA optimization may take a long time, but this problem seems rather 

irrelevant with the processor speed in the computers nowadays. In addition to that, Palisade 

itself gave some attention to speeding up the simulation process, developing 

RiskAccelerator. There seems to be no limit for this tool.  

 In our case we used the same spreadsheet where CAPM was applied and defined the 

assets as lognormal distributions, with the aid of @Risk built-in functions that operate in 

perfect synchrony with Excel. The objective of the problem is to maximize return or 

minimize risk given the budgetary constrains. In a way very much similar to the approach 

we used in the CAPM optimization, we added one constrain commanding the return to stay 

above a given level and at the same time minimizing the risk for the portfolio. Rising this 



level from the one observed in the minimum risk up to the one of highest return, we obtain 

the efficient frontier.  

 Figure 4 shows the efficient frontier for the opportunities, considering the lognormal 

distribution of the opportunities. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Efficient Frontier observed via Simulation Optimization Techniques 

 

We note that this frontier has some discontinuities, and the values observed for risk 

and return are not so different from the observed in the CAPM frontier. This can be easily 

seen when we plot both frontiers, which is done in figure 5. 
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Figure 5 – Comparison of the Frontiers obtained via CAPM and Simulation 

 

We may argue ourselves: we developed a numerical procedure in order to correctly 

optimize portfolios of 4 upstream assets, respecting the probability distribution of the assets 

NPV’s, and for what? To reach the same efficient frontier? All is useless then. This could 

be our conclusion, but it would be a premature one.  

And why is that? Maybe the frontiers are similar ones, but what about the portfolio 

compositions? Are they quite the same? That is, the same composition that minimizes risk / 

maximizes return for the normal assets does it again for the lognormal assets? Table 4 

shows the composition of portfolios along the frontier obtained via simulation. 

 Portfolio Results Portfolio Asset Composition 
 Return (µ) Risk (σ) A B C D 

Lowest Risk     95,440.97    14,134.02  99,98% 81,36% 15,79% 2,88% 
2   151,037.41    22,225.67  56,59% 94,50% 38,72% 10,19% 
3   210,126.01    29,154.54  56,59% 90,23% 28,21% 24,97% 
4   265,765.12    40,563.70  27,65% 70,19% 71,77% 30,40% 
5   325,591.36    49,521.72  24,41% 90,80% 37,24% 47,54% 
6   370,054.11    59,240.41  21,81% 69,51% 53,37% 55,31% 
7   430,178.80    70,969.01  13,79% 74,69% 42,05% 69,47% 
8   501,502.91    84,194.75  12,81% 23,59% 82,58% 81,02% 
9   550,423.62    95,197.83  2,26% 11,96% 96,33% 89,46% 

Highest Return   598,462.69  107,501.52  2,13% 1,55% 96,33% 100,00% 

Table 4 – Portfolios in the Efficient Frontier (Simulation) 
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As seen before, as we rise in the frontier seeking higher returns, assets A and B 

positions are traded for positions in assets C and D. However the composition of the 

portfolios differ a lot. 

Figure 5 shows a comparison between portfolio compositions along both for the 

normal and lognormal frontiers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Portfolio Composition along both frontiers 

 

Observing figure 5 we can readily understand that, although risk and return are 

similar, the composition of the portfolio can be very different, as observed for points 
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labeled 2, 4, 5, 6, 7 and 8. The figure confirms the existence of several differences between 

the two frontiers. 

 

6 – A Final Comparison between the two techniques 

 

As a finishing touch for this article, we shall compare the results obtained by both 

frontiers, that is, comparing graphs and statistics of the normal and lognormal frontiers. In a 

first step we will consider the minimum risk position in both frontiers, followed by the 

opposite point in the frontier, the highest return. This should provide us the information of 

the gains obtained from the use of the simulation-optimization method.  

We shall emphasize that the aforementioned simulation method results are closer to 

reality as the assets introduced are considered lognormally distributed. This analysis will 

give us the precise dimension of the bias introduced by the CAPM. In order to do so, we 

simulated a 50,000-iteration run of the portfolio compositions.  

As our first exercise, we introduce the graph obtained when simulating the 

minimum risk positions in both portfolios, labeled figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 – Comparison between minimum risk positions 

 

In the figure, the red pattern represents the lognormal distribution, and the green 

pattern corresponds to the normal distribution. We notice that the probability that the 

portfolio return is under 67,7 US$ MM is 5% for the normal distribution, but only 0,75% 

for the lognormal portfolio. Conversely, the probability of the portfolio awarding more than 

114,4 US$ MM is also 5% for the normal distribution, but 10,3% for the lognormal 

distribution. In simple English, the CAPM amplifies the downside risk and reduces the 

upside potential for the portfolio.   

The statistics that confirm this hypothesis are in table 5. 
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Statistics Normally 

Distributed

Lognormally 

Distributed 

Minimum     34.590,66    54.766,43
Mean      91.080,63    95.913,41
Mode      86.140,41    79.487,08
Maximum    148.052,70  197.638,60
Standard Deviation 14.183,18    14.399,29
Skewness 0,00            0,68
Kurtosis              2,97            3,94
5% Percentile      67.727,63    75.087,93
95% Percentile    114.392,30 121.710,80 

Table 5 – Statistics from Monte Carlo Simulation 

 

It is noticeable that the minimum value for the lognormal distribution is 20 million 

superior to the normal minimum. The mean of the lognormal portfolio is 4 million higher to 

the normal mean and the risk is more or less the same. The 5% percentile and the 95% 

percentile are also higher. We conclude that looking at the minimum risk portfolio through 

the CAPM glasses only worsens its value.  

Moving up to the other side of the frontier, we simulate the highest return portfolio. 

The results are shown in figure 7. 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 – Comparison between maximum return positions 

 

 The difference between the distributions is noticeable. Values under US$ 425 MM 

occur 3,18% (5%) in the lognormal (normal) portfolio. Values above US$ 773 MM appear 

5,79% (5%) in the lognormal (normal) portfolio. Although the magnitude of the difference 

is smaller, the CAPM also reduces the value of this portfolio. 

 Table 6 shows statistics about those two portfolios: 
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Statistics Normally 

Distributed 

Lognormally 

Distributed 

Minimum       83.489,61    286.708,10 

Mean     600.071,50    597.300,90 

Mode     545.298,20    548.532,80 

Maximum  1.063.905,00 1.187.475,00 

Standard Deviation     105.856,30    105.038,50 

Skewness               0,00              0,54 

Kurtosis               3,00              3,49 
5% Percentile     425.701,30    441.457,40 

95% Percentile     773.528,60    783.069,10 

Table 6 – Statistics from Monte Carlo Simulation 

 

 Notice the huge difference between the minima of both simulations; it is worth US$ 

200 MM! Differences in percentiles 5% and 95% are over US$ 10 MM. We can easily see 

that yes, there is a big difference between using CAPM and Simulation-Optimization 

Techniques and this difference can lead to improper selection of the portfolio.  

 

7 – Conclusions 

 

 In this paper we introduced the necessity of using Simulation-Optimization 

techniques to handle portfolio management in the absence of the heavenly desired normal 

distributed assets. 

 We introduced four assets slightly based on Upstream Exploration and Production 

Oil Projects, assuming lognormal distributions. Throughout the paper, using Solver to 

compose the CAPM efficient frontier of the assets and Palisade’s RiskOptimizer in order to 

compose the Simulation-Optimization frontier of these same assets. We’ve shown that 

composition of portfolio may vary a lot in both cases. 

 Lastly, we simulated both portfolios, using Palisade’s @Risk, and showed the 

relevant differences between the theoretical results and the Simulation-Optimization 

Techniques. 

 This academic example has another point: stimulating people to use RiskOptimizer 

and discover how the easy-to-use, practical approach of Genetic Algorithms Optimization 



comes as a interesting solution not only for portfolio or financial problems, but any 

problem at all involving optimization of a spreadsheet containing random variables, for the 

generic approach of this great software may be inserted in a huge number of problems.  


