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The Quantification of Operational Risk

Abstract

We examine the quantification of operational risk for banks. We adopt a financial-

economics approach and interpret operational risk management as a means of optimizing

the profitability of an institution along its value chain. We start by defining operational

risk and then propose a framework to model risk mitigation through the bank’s value

chain over time. Using analytical and numerical methods, we obtain answers concerning

capital allocation, network stability, risk figures, and diversification issues. Interpreting

the results shows that the usual intuition gained from market and credit risk does not

apply to the quantification of operational risk.
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1 Introduction

In this paper we are concerned with the characterization and quantification of operational risk for

banks. Basel II gave rise to vigorous and recurring discussions on the regulation of operational risk

that have spurred great interest by both academics and practitioners. In its consultative document

on the New Basel Capital Accord, the Basel Committee for Banking Supervision continues its drive

to increase stability of financial markets in the realms of market and credit risk, and, most recently,

operational risk. However, in this paper we do not discuss how to regulate operational risk. Instead,

we consider operational risk from a purely economic and business point of view.

We define operational risk as the risk a bank faces in producing goods and services for its clients.

In that respect, operational risk plays a key role for the bank’s profitability. When measuring

and managing operational risk, some major questions emerge for the bank’s management. These

management concerns fall into three main categories.

1. Definition of operational risk:

• Can we find an appropriate definition for operational risk and, in the same spirit as for

market and credit risk, define assets and portfolios of operational risk?

• Can we make the definition of operational risk “operational”? In particular, does the

definition allow for a calibration to institutional characteristics?

2. Measuring operational risk:

• Given the definition of operational risk, can we obtain quantitative risk figures?

• Can these risk figures be interpreted in such a way that they can build the basis for

management decision? Is it possible to show the trade-off between operational risk and

costs, such as prevention, investment, and maintenance costs?

3. Managing operational risk:

• Can we find a reasonable notion of diversification for operational-risk assets?

• Can we evaluate and quantify the benefits from altering value chains and work flow

structures?
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This paper provides answers to these questions. To do so, we adopt a work flow view of

operational risk.

Our model setup belongs to the class of the so-called “functional dependence” models. This

model class allows for two types of dependence structure, the standard stochastic dependence

among the risk factors and a topological dependence. The latter dependence structure is due to the

system architecture and organization of the different work steps that produce the firm’s outputs.

Therefore, compared to market or credit risk, by buying and selling operational-risk assets the

functional dependence structure complicates the risk transfer considerably. Operational-risk assets

are topologically linked. They do not exist as independent objects.

The functional dependency has far-reaching consequences for possible outsourcing strategies.

From a cost and risk point of view, it might be more efficient to outsource the whole support

infrastructure than to focus on partial outsourcing activities only. Some recent examples include

large institutions, e.g., Deutsche Bank and J.P. Morgan Chase in the financial sector, and ABB

Ltd. in the nonfinancial sector.

Our approach is somewhat like the literature on IT networks. However, our approach is more

general. Our work flows need not be related only to IT networks. Furthermore, many of the con-

tributions on IT networks develop models of very low granularity levels. Our approach is primarily

intended to generate information for the firm’s management. Therefore, our discussion is comple-

mentary in the following respects. First, because the pressure to maintain competitiveness and

the new regulatory requirements force banks to implement a firm-wide operational risk framework.

Second, in making their decisions, managers are not only interested in risk and performance, but

also in the costs related to operational risk events and the efficiency of counter measures. To include

these aspects in our model, we use an approach that builds on arguments from financial economics.

The topological structure of our approach is similar to some credit risk models that examine

contagion between creditors (see, e.g., Egloff, Leippold and Vanini (2003), and Giesecke and Weber

(2002)). In the context of operational risk, such a model was first proposed by Kühn and Neu

(2003). Their model derives an analogy to models of disordered phenomena of statistical mechanics.

We extend their approach in several directions: First, we take into account explicit dependence

structures as modeled by graphs. Second, we include costs that arise in case of operational risk
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events. Third, we consider path-dependent counter measures.

We organize the paper as follows. In Section 2 we develop and present appropriate definitions

of operational risk and related quantities. Section 3 presents the dynamic setup of our model and

Section 4 analyzes its properties. We address the calibration of our model in Section 5. Section 6

presents a numerical exploration of our model. Section 7 concludes.

2 An Operational Definition of Operational Risk

Our model focuses on operational activities that are essential to the bank’s business model. We

leave aside the nonessential work flows that do not contribute to growth and profitability. To select

the key operational activities, we group such activities in value chains or work flows, which we see

as integrated client-to-client networks.

To develop and apply a formal model for operational risk, we consider a generic “risk manage-

ment” value chain. Value in risk management is generated by information flows between trading,

sales, and risk management units. Figure 1 illustrates a possible structure from a function or

banking unit point of view.

In Figure 1, the top level defines six different functions, the sales functions in work flows 1 and

2, the trading unit (core work flow 3), and the risk management functions in the work flows 4 to 6.

The risk management function splits up into the limit management work flows 4 and 5 and a risk

measurement work flow 6. The figure shows the information flow, indicated by arrows, between the

different functions or units.

A convenient mathematical concept that captures the structure illustrated in Figure 1 is graph

theory. A graph G is a collection of nodes and of edges connecting the nodes.1 At the nodes in

Figure 1, employees make decisions or carry out a work step. The graph’s edges connect the nodes,

and therefore serve as information interfaces. Since information is directed, we prefer to model

work flows as a collection of directed graphs.

The whole information flow in Figure 1 has several starting and end points. The end points

represent product and services. For example, the different reports or the trades shown in Figure
1Sometimes, we also use the term “states” for nodes.
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1. Thus, when modeling business activities, a graph Gj consists of paths linking input nodes with

output nodes, where the output nodes are linked to the bank’s internal and external clients and

investors.

The set of the graphs {G1,G2, . . . ,Gn} constitutes a network N . However, the business work

flow view in Figure 1 is not yet comprehensive, because we have not yet looked at the associated

IT systems and the information flow between them. In Figure 2 we illustrate a possible IT system

network for trading, sales, and risk management. The information flow occurs on different layers,

on a business, an IT system, a database, and a controlling layer. The union of all nodes and edges

over all layers defines the network.

An operational risk model must be flexible enough to account for the complexity due to the dif-

ferent layers, and it should also allow us to consider subsets of a network across different layers. For

example, if we are interested in the IT systems defined by the nodes n10, n11, n12, n14, n15, n18, n19

in Figure 2, we call the corresponding graph the IT risk management graph. This graph is only

a subset of the whole trading, sales, and risk management IT systems network, which itself is a

subset of the network defined over all layers.

In addition, flexibility is not only required in the aggregation and disaggregation on and between

the different layers, but also in the granularity of modeling information flow. According to the needs

of the institution, information modeling can vary from a simple, abstract two-state “running/down”

modeling to a more refined modeling.

We complete the geometric skeleton structure of a work flow illustrated in Figure 2 by attaching

operational risk to the elements of the graphs. Randomness occurs at two places, at the nodes and

at the edges of the graph. The randomness at the nodes is due to risk factors such as, e.g., system

failure, theft, fraud, model risk, and human error. Although a list of risk factors can comprise several

dozen entries, not all factors matter at different nodes or edges in the network. For example, in

the core work flow risk measurement on the business layer view (see Figure 1), we expect human

error and model risk to be significant risk factors, but we can neglect fraud. Risk factors on the

edges typically impact the information flow, e.g., in form of capacity problems or performance

instabilities.

Apart from the risk factors that measure the losses from an operational risk event, other at-
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tributes must be associated to the nodes. For management purposes, cost factors play a predomi-

nant role. These factors can be split up into two parts, a nonrandom component di,j for the fixed

costs, and a stochastic cost component ai,j(t) depending on the frequency and severity of opera-

tional risk events. We can adapt this latter component, which we call “counter measure,” to the

information generated by the risk factors. We collect the two cost components of a single graph Gj

in the vectors aj and dj .

Since the nodes represent systems or an individual’s activities, they can be either in a running, a

down, or an intermediate state. Therefore, we model the status of the nodes by stochastic processes

ni,j(t), which take values in [0, 1]. The value zero corresponds to an optimally operating system. If

ni,j(t) = 1, a complete breakdown of the system occurs at time t. Hence, the state ni,j(t) depends

on an m-dimensional vector Xi,j(t) = {X1
i,j(t), X

2
i,j(t), . . . , X

m
i,j(t)} and models the functioning or

malfunctioning of node i in graph j. We collect by X the set of all risk factors on the network.

So far, risk affects only the nodes, but the edges can also suffer from risky events. Just as we

did for the nodes, we define Yi,j(t) = {Y 1
i,j(t), Y

2
i,j(t), . . . , Y

p
i,j(t)} as the risk factors that affect a

specific outgoing edge of the node ni,j . The associated performance functions qr
i,j , r = 1, 2, . . . , p

attribute to the risk factors Yi,j(t) a value in [0, 1], conditional on the state ni,j(t). We write Y for

the set of all risk factors and q,n for the set of all performance and node work flows, respectively.

Using the formal construct above, we can now rigorously define the terms a) operational-risk

asset, b) operational-risk portfolio and c) operational risk.

Definition 1. Given a probability space (Ω,F,P), Gj a directed graph and X,Y,a,d,q,n, and the

filtration F generated by the work flows X⊗Y, we define:

1. The tuplet

Aj = (Gj ,Xj ,Yj ,aj ,dj ,qj ,nj),

defines an operational-risk asset for business activity j.

2. The operational-risk portfolio for k operational-risk assets distributed over m graphs is given

by

P = (N ,
k⊗

j=1

Xj ,
k⊗

j=1

Yj ,a,d,
k⋃

j=1

qj ,
k⋃

j=1

nj),
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where N =
⋃m

i=1 Gi.

3. Operational risk for an operational-risk asset j is the probability distribution of Xj⊗Yj on Gj.

Accordingly, the operational risk of an operational-risk portfolio is the probability distribution

of

(
k⊗

j=1
Xj

)
⊗

(
k⊗

j=1
Yj

)
on N .

In other words, operational risk is the internal probability distribution on a bank’s activities

to collect, generate, transfer, and transmit information to provide goods and services on a client-

to-client basis. This distribution is adjusted by the producing costs and the counter-measure costs

that originate from operational-risk events.

Definition 1 suggests that operational-risk assets and portfolios are more complicated objects

than are their market-risk and credit-risk counterparts. However, the generality of Definition 1

allows fitting in the definitions for market-risk and credit-risk assets.

In the traditional approach to market risk, the network would degenerate to a point work flow

that could be identified as the price of financial instruments. The states ni = ni are the price

functionals or positions, and Xi is the factor causing random price changes. Thus, a market-risk

asset is given by AM
i = (Xi, ni). Since market-risk assets possess only a stochastic dependence

and, moreover, market-risk portfolios are additive at any given time, a portfolio is given as PM =(
k⊗

j=1
Xj ,

∑k
j=1 nj

)
.

The same structure applies to characterize credit-risk models. Recently, there has been an

effort to take into account possible contagion and infection effects. Such credit models implicitly

encompass a graph structure representing dependencies and define a credit-risk asset as AC
i =

(Gi,Xi,Yi,qi,ni).

However, neither market-risk nor credit-risk assets depend on the cost components ai and di,

which highlights the importance of taking costs into account when modeling operational risk. As a

result, some of the techniques that worked so well for market and credit risks become inadequate

and, in some cases, unreliable for applying to operational risk.
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3 The Model

Definition 1 allows us to establish a static snapshot of operational risk. However, we still lack

a model framework for the network dynamics. Without loss of generality, we consider those IT

systems layer and operational-risk events that occur only at the nodes. We assume that the edges

possess no riskiness.

Given a state ni,j(t), we look for a description of its transition to the state ni,j(t + ∆). This

transition depends on the risk factors that affect the node under consideration, and on the states of

the preceding nodes. Therefore, we must consider both a standard stochastic dependence structure

and topological dependence. Thus, we introduce an auxiliary function hi,j(t) for each node, which

we call the support function. This function turns out to be useful for formulating the dynamics of

the operational-risk assets.

3.1 The Support Function

The support function hi,j(t) can comprise, e.g., human resources and the labor force, hardware

and software, inputs from other work flows, and information inputs. A decrease in support can

either be caused by an exogenous risk event or it can be caused by some failure of the neighboring

nodes. The former is a pure stochastic effect. The latter is induced by the topological dependency

of operational-risk assets.

For a given monotone and decreasing function f , the support functions can be uniquely linked

to the states by setting

ni,j(t) = f(hi,j(t)). (1)

We say that an operational-risk event occurs whenever the support hij(t) falls below a critical

threshold level h̄ij . Thus, an increase in the support for a specific node decreases the probability

of a breakdown.

Possible specifications of f encompass, e.g., the step functions such as those in Kühn and Neu

(2003), where a binary model “system running” and “system down” is analyzed. Here, we prefer a
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specification of the form

f(x) =
erfc(x)

2
, (2)

with erfc(·) as the complementary error function. The specification in equation (2) allows us to

consider intermediate states. This more refined function f measures the quality of the node or

system. In the sequel, we will work with a support dynamic2

dhi = si(hi) (bi(hi)− (w ◦ f(h))i) dt− σidWi − ςidZ , ∀i ∈ Gj , (3)

where:

• si(hi) : This work flow defines how fast a deviation of hi(t) from the expected long-run

equilibrium value is set off. Hence, we call it the speed function. In the simplest case, si is

a constant. However, such an assumption is hardly in line with real-world situations, since

deviations of the network status from a prespecified target value are usually counteracted to

ensure an acceptable risk level. Such counter measures are costly, and the work flow si can

be split into the two cost components, the fix costs di and the variable costs ai, according to

si(hi) = di + ai(hi). (4)

Since a system triggers stronger counter measures when it is down for more than one period, we

introduce a path-dependent structure for the counter measures ai(hi). A possible functional

form for ai(hi) taking into account such a path-dependency is

ai(hi)(t) = ψ ll{hi(s)<h̄i}

(∫ t

0
ni(s) ds

)γ

, (5)

where ll is the indicator function. Therefore, counter measures are only activated when the

support function falls below a critical value h̄i. If this does not happen, a constant mainte-

nance support for the node i is guaranteed. The parameter γ ≥ 0 in equation (5) determines

the curvature of ai(hi). It measures how the counter measures are intensified in case of an

prolonged operational-risk event. The parameter ψ measures the effectiveness of the counter
2For notational convenience, we drop the graph index. This should not be confusing.
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measures.

In equation (5), when an operational-risk event occurs, the counter measures induce an in-

crease in the drift of the support function. This increase is intensified when effectiveness is

high and ni is becoming large, i.e., when a total breakdown of the node i becomes more likely.

• bi(hi) : This term is part of the long-term mean of state ni and captures the threshold in

service level agreements (SLA). SLAs are used to restrict the employees responsibility in a

network to a local neighborhood. That is, employees need only be concerned with the SLAs

to which they contracted. Therefore, the function bi(hi) is a simple but efficient method to

implement the system engineers’ incentives and to mimic the real-life reduction of network

complexity.

• (w ◦ f(h))i : This expression quantifies the topological dependency within the network and is

defined by

(w ◦ f(h))i(t) =
N1(i)∑

m=1

wi,mf(hm) +
N2(i)∑

m=1,k=1

wi,mwi,kf(hm)f(hk) + . . . . (6)

The constants w describe the coupling strength among the different interacting systems.

The first summation in equation (6) describes the support levels of all input nodes, where

information can reach system i in one and only one way. For system i, there are N1(i) of

such systems. The second summation term in equation (6) models the case where systems are

mirrored. Only if both input systems in the double sum are in a down state will the system

i be affected.

• σidWi : The noise Wi captures the different operational risk factors. Its impact on the support

function of system i is scaled by σi.

• ςidZ : This term reflects an external risk factor, which affects all systems of the network. Not

all systems are equally affected by external events. Therefore, we scale the factor by a node

specific constant ςi. We assume that E(dWidZ) = ρi.
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3.2 Cost and Loss Functions

There is a subtle difference between costs and losses. As argued in Section 2, costs are related to

prevention and counter measures. Therefore, we subsume to these costs all outlays that are needed

to recover a network which suffered from the operational-risk event. In contrast, losses are linked

to the operational-risk event through the value-generating work flow of system i. The system no

longer fulfills its assignments of business activities and impairs the functionality of the value chain

and the value-generating work flow.

To parameterize the cost and the loss function, we propose the following approach. From Figure

3, we see that an operational-risk event is triggered as soon as the support function falls below its

critical value h̄i (point A). The operational-risk event can be characterized by its duration and its

severity. For a node i, the duration Dik of the operational-risk event k is given by the time interval

defined by two stopping times [τ ik, τ ik]. We define the severity Sik as Sik = inft∈Dik
hik(t).

We use the duration and the severity to parameterize the cost and loss function for an operational-

risk event. A possible specification for the cost function is

Cik = Cik(Sik, Dik) =
∫

Dik

g(|hik(s)|) ds, (7)

for some positive and increasing function g. In Figure 3, the shadowed area Cik represents the cost

function.

As argued above, the loss function `ik requires the specification of a value-generating work flow

for node i. These work flows are determined by the value chains. A value chain can be represented

as a path p through the network under consideration. We assume that the contribution of node i

to the value-generating work flow of path p is given by a positive stochastic variable vip. With P

paths running through system i, the loss function reads

`ik = `ik

(
Sik, Dik,

∑

P

vip

)
. (8)
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We can define the loss function as an expected loss difference

`ik

(
Sik, Dik,

∑

P

vip

)
= µip(vip, 0, 0)− µip(vip, Dik, Sik), (9)

where µip(·) is the mean of the pth value work flow acting on node i. The specification in equation

(9) allows the possibility of modeling reputational losses through the duration Dik. Such losses can

arise when a system i is down and an important service for key clients cannot be provided over an

extended period.

4 Analytical Results

4.1 Prioritization

The dynamic specification of the support function in equation (3) results in a coupled system of

nonlinear stochastic differential equations. Nevertheless, using analytical methods, we can explore

the effect of prioritizing the network through the allocation of resources by the bank’s management,

and the effect of prioritization on the network’s stability.

To emphasize the role of the topological dependency, we leave the stochastic dependency aside.

Suppose that the bank’s management aims to maintain a uniform service level on the whole network

or portfolio of operational-risk assets by allocating resources in such a way that the infection rates

between the different nodes is the same for all nodes at all times. In other words, we require the

matrix of coupling constants W := (wij) in equation (3) to be symmetric.

Proposition 2. Suppose that ai(hi)/f ′(hi) > 0 is constant for all i and h, the statistical risk is

zero, and f is at least twice continuously differentiable. If the matrix W is symmetric, the network

is asymptotically stable.

Proposition 2 holds for arbitrary differentiable counter measure functions ai(hi), threshold level

functions bi(hi), and functions f . Therefore, Proposition 2 indicates some strong policy recom-

mendations. Once management has committed itself to a uniform service level on the portfolio,

the nodes will evolve to their stationary equilibrium state. Unstable or even a chaotic portfolio
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behavior is not possible in this uniform service level approach. Instead, if management prioritizes

the allocation of resources, limit cycles can occur. Put differently, since the matrix W becomes

nonsymmetric, the portfolio can move on isolated and closed trajectories where stationary points

are no longer feasible.3

As an example, consider two systems A and B. If management decides that A should infect

B much less than B should affect A,(because B is a much more sensitive system), then portfolios

based on such a prioritizing structure can exhibit limit-cycle behavior. Therefore, given a specific

topological dependency structure, management faces a trade-off between prioritizing the portfolio’s

service levels and the possibility of network instability. To maintain stability in the above sense,

huge resources are necessary. But since resources are scarce, there is always a tendency to prioritize,

and indeed, such practice is widely observed in the industry.

To the topological dependencies of the above arguments, we now add statistical dependen-

cies. With the nonlinear dynamics in equation (3), a general analytical discussion is not feasible.

Therefore, we linearize the system in (3) by choosing

ai(hi) = ai , bi(hi) = bihi , f(hm) = fmhm , (10)

with ai, bi, fm positive constants.

Proposition 3. Consider the support dynamics in equation (3) with the function specifications

given in (10).

1. Suppose that the matrix M with entries mij = ai (bihi − wi,jfjhj) has only eigenvalues with

positive real part. Then the network is asymptotically stable and the stationary covariance φ

satisfies the algebraic equation

Mφ + φM> = σσ>. (11)

2. Assume that the system (3) is two-dimensional. Then, the stationary covariance is explicitly
3The proof of this fact is due to a theorem of Vilela Mendes and Duarte (1992). Basically, the dynamics of the

nodes are given by a superposition of gradient and Hamiltonian vector fields. The latter is responsible for positive
cyclical and chaotic behavior.
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given by:

φ =
det(M)σσ> + (M − tr(M)I) σσ> (M − tr(M)I)>

2tr(M) det(M)
(12)

The asymptotic stability property given in Proposition 3 can be extended to the case of fully

nonlinear portfolio dynamics if the linear dynamics are asymptotically stable, the linearized system

is close to the nonlinear system, and the nonlinear work flows satisfy some regularity conditions.

If these conditions hold, the stochastic stability of the nonlinear network follows (see Freidlin and

Wentzell (1999)). Therefore, in a stochastic setup, a network maintains its stability only if the

operational risk factors act as small perturbations on the fixed network topology. This result

rationalizes, at least in part, the practice of counteracting, mitigation, or elimination of operational

risk.

4.2 Topological Diversification

The above considerations lead us to the problem of how to define diversification in the context

of operational risk. An ongoing debate in the banking industry is the question of centraliz-

ing/decentralizing IT networks. Since the notion of costs and risks conflicts, an answer to the

above question is not straightforward. To put the discussion on firm ground, we start with the

static notion of topological diversification. We define the degree ](M) of a subset M⊂ N by

](M) =
∑

j∈M
](nj) =

∑

j∈M

|kj |
|N |

with |kj | the number of incoming and outgoing edges in the node nj . Therefore, centralizing a

network increases the degree ](M).

Definition 4. We fix n output nodes and k input nodes. Let nm be the minimum number of systems

(nodes) necessary to produce the outputs and let km be the associated minimal edges.

• The portfolio (nm, km) is the least topologically diversified portfolio.

• A portfolio (n′, k′) is more topologically diversified than a portfolio (n′′, k′′) if and only if
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n′ ≥ n′′ and for any graph G:

max
ni∈G′

](G′(ni)) ≤ max
ni∈G′′

](G′′(ni)) .

The definition states that a portfolio becomes more topologically diversified, if the number of

systems increases and at the same time the number of interfaces does not. To put it differently, the

most topologically diversified portfolio is given by a portfolio in which each operational-risk asset

has no interface with any other asset.

Figure 4 shows two graphs with two outputs with different topologies. In Panel A both graphs

have maxni∈GA
j
(GA) = 1 for j = 1, 2, but in Panel B one has maxni∈GB

j
(GB) = 1/2 for j = 1, 2.

Since the number of nodes in Panel B also exceeds those of Panel A, the portfolio in Panel B is more

topologically diversified than the one in Panel A. Although topological diversification increases with

the parallelization of the portfolio, such solutions are much more costly. Hence, managers face a

trade-off between a high degree of topological diversification and high investment and maintenance

costs.

If we compare the idea of operational-risk diversification with the one for standard financial

assets, some striking features show up. In the latter case, diversification means to exploit the

correlation among the assets, since the risk of a portfolio should be smaller than the sum of the

individual risks. In contrast, an operational-risk portfolio is topologically more diversified the

less dependence there is between the assets. Hence, from a traditional finance point of view,

diversification for operational-risk assets is understood as an antidiversification.

Beside these differences, the costs to diversify are also significantly different. For market assets,

these costs are basically transaction costs, which are small for liquid assets and so are neglected

most of the time. In contrast, for operational-risk assets, costs comprise, e.g., investment costs,

which are a much more significant factor and are likely to dominate the benefits from diversification.

These hurdles for active operational risk management and the tendency to prioritize networks

rationalize the following market practices. First, management often increases diversification only

for the key systems, e.g., by mirroring systems. Second, if management commits itself to an

outsourcing strategy, such a strategy targets large entities of operational-risk assets.
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4.3 Dynamic Diversification

The notion of diversification provided by Definition 4 is based on the architecture of the portfolio,

which reflects much of common decision-making in network planning. However, Definition 4 takes

a purely static point of view, and hence does not incorporate the evolution and the migration of

statistical risk over time in the portfolio. For a given operational-risk portfolio, it is not a priori

clear how the topological dependence distributes the stochastic risks over time. Put differently,

what is initially topologically a well-diversified portfolio might become the opposite in a dynamic

context.

To illustrate this issue, we proceed in two steps. First, we use a simple example to show that

the static notion of diversification is of little use in a dynamic context. Second, we give a dynamic

definition of diversification.

To start, we consider the case with two operational-risk assets and the stationary variance given

in equation (12) with two specifications A and B. In specification A, the matrix W is an arbitrary

symmetric 2×2 matrix. In specification B, the matrix W is of a lower triangular type, i.e., w12 = 0

and all other parameters are the same as in A. Hence, the specification A (B) corresponds to the

less-diversified portfolio in Panel A (B) of Figure 4. We then calculate the stationary variance of

a portfolio with two nodes for both configurations (see Figure 5).

To conclusions emerge: First, if we consider both the dynamic and the statistical risk, the

topology-based ordering is not maintained in equilibrium. There are regions, i.e., values of the

supports, where the risk of configuration A dominates the risk of B and vice versa. In other words,

using only architectural planning of networks to manage operational risk does not allow us to

determine the true risk figure. The portfolio that is more diversified at the beginning might end

up strictly dominated by other, less-diversified portfolios.

Second, risk is less for the less-diversified portfolio in the region where the portfolio fractions are

similar, i.e., close to the diagonal in Figure 5. This observation reflects the results in Proposition

2, but now extends to the case in which the dynamics of the risk factors matter. In an increasingly

complex network, to obtain a low risk level a uniform allocation of resources becomes more desirable.

Compared to the upper panel in Figure 5, we no longer rely on the symmetry of the coupling matrix

15



W for the two plots in the lower panel. This specification is equivalent to prioritizing the portfolio.

We observe in our numerical example that prioritization leads to a decrease in the variance of the

operational-risk portfolio.

To overcome the drawbacks of a purely static notion of diversification based on network topolo-

gies, we propose a dynamic definition of diversification for operational risk.

Definition 5. Consider a fixed number of outputs and inputs and two portfolios generating the

outputs. Let Pi = (Ai1 ,Ai2 , . . . ,Ain), i = 1, 2, be two portfolios of operational-risk assets, and let

τ = T−t be a fixed time horizon. The operational-risk portfolio P1 is more diversified than portfolio

P2 during time τ if and only if

E1,t

(∫ T

t
P1(s)ds

)
≥ E2,t

(∫ T

t
P2(s)ds

)
, (13)

where

Ei,t

(∫ T

t
Pi(s)ds

)
=

∫ T

t
Ei,t (ni1(s), ni2(s), . . . , nik(s) ∈ Ai) ds , ∀nij ∈ Pi . (14)

The set Ai ⊂ [0, 1]|Si| defines the operational risk acceptance set with |Si| the number of states

in the portfolio.

Intuitively, if the expected value of moving to states outside a predefined risk acceptance level

is lower than for the reference portfolio, an operational-risk portfolio is more diversified than a

reference portfolio. Definition 5 is based on an internal criterion, the choice of the risk acceptance

levels, which are usually imposed by the bank’s management. As operational risk is institution-

based and a bank’s risk figures are not comparable to those of other banks, such an internal criterion

is particularly apposite.

5 Calibration

Once we have formulated our model, our next step is to calibrate the operational-risk data. Fi-

nancial institutions typically acquire operational risk data in two ways. First, they rely on self-
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assessments and simulations to generate enough actual data. Second, they set up databases to

collect historical operational-risk data. Both activities are encouraged by the regulatory authori-

ties.

However, the acquisition of adequate data poses serious problems. Although self-assessment

based on expert knowledge seems easy to implement, the pitfalls in human decision-making under

risk and uncertainty make this a challenging task.4 Furthermore, operational-risk data in the low

frequency/high impact domain are very sparse. Therefore, some institutions pool their data sets.

However, the applicability of these data sets suffers from the fact that operational-risk data are, by

Definition 1, both time- and institution-dependent.

In our model setup, we describe calibration for the self-assessment approach. We consider

counter measure dynamics that are state-dependent and given as in equation (3). Hence, we

linearly approximate the support function f and the speed function s around their expected value

and the fixed costs, respectively. Carrying out the analysis, we get

dhi(t) = (Mi1 −Mi2hi(t))dt + σidWi , (15)

where Mi1 and Mi2 are the ith diagonal element of the matrix M1 and M2, respectively. The

matrices M1 and M2 are given in Appendix A.

The model in equation (15) captures the fixed costs in the node dynamics, the sensitivity of the

counter measures to a change in the support function, the mean node support, and the sensitivity

of the node’s state on a change in the underlying support. The solution of (15) is

hi(t) = e−Mi2t


hi(0) +

t∫

0

eMi2sMi1ds +

t∫

0

eMi2sσidWi


 (16)

If we assume that the node sensitivity matrix is symmetric, we can decouple the system using

standard linear algebra. Hence, we obtain explicit formulæ for the probability laws of either the

nodes or the support dynamics. We link this information to the expert knowledge as follows. We
4See, e.g., Rabin (1998), Ebnoether, Vanini, McNeil and Antolinez (2003), and Doebeli, Leippold and Vanini

(2003).
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write

pOp
i,∆t = P

[
hi(t + ∆t) ≤ hi| hj(t) ≥ hj , ∀j ∈ N

]
(17)

for the probability that the support for system i will be below the required level hi at time t + ∆t

conditional on an operating environment. That is, the support of all systems at time t is larger

than the support hj needed to fulfill all duties which are fixed, e.g., in a service level agreement

(SLA). We chose time ∆t such that all systems can fully recover in this time interval. We obtain

the probability pOp
i,∆t explicitly in terms of several constants that we still need to calibrate. The

constants are the coupling constants wij , the volatility σ and the performance index. Management

chooses the threshold values h and h and the fixed costs.

A second expression that we can use for calibration is

pFail
i,k,∆t = P

[
hi(t + ∆t) ≤ hi| hk(t) ≤ hk, hj(t) ≥ hj , ∀j ∈ N\{k}

]
. (18)

Equation (18) gives the probability that the system i will be down given that all other systems are

running except system k.

Given our model setup, there are many other expressions that we can calculate. Such expression

lend themselves for calibration. However, from the many possibilities that we can use to calculate

probabilities, conditional probabilities, and moments, we should choose these quantities that can

be related in the simplest way to the expert knowledge. We obtain such knowledge by using ques-

tionnaires. Below, we give an example of a question to extract expert knowledge. The expressions

in brackets relate to the model and are not part of a questionnaire:

Choose a time period (T ), such that you can give an answer to the following question: How

often in the chosen period (T ) do you expect your system (i) to be down (E[Fi]) if all systems (j)

which provide inputs to your system (i) will be fully operational during the chosen period?

If T∆ equals the largest integer smaller than T/∆, where we assume that the recovery time and
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the period ∆t are measured in units of hours, we get

E [Fi] =
T∆∑

j=1

j∆t(1− pOp
i,∆t)

j−1pOp
i,∆t =

1−
(
1− pOp

i,∆t

)T∆
(
1 + T∆pOp

i,∆t

)

pOp
i,∆t

. (19)

Hence, we obtain an equation for the unspecified probability pOp
i,∆t that can be solved numerically.

Its solution gives us an expert-based estimate p̂Op
i,∆t of the model probability pOp

i,∆t. To calibrate

the model, we can ask additional questions of the same type as above. The evaluation of the

questionnaires gives us a vector of estimated expressions symbolized as x̂. We then equalize these

expressions to the analytical counterparts x(Φ), which depend on a vector of model parameters Φ.

Solving for estimated parameters Φ̂, we have determined the dynamics of the support function and

the nodes.

6 Numerical Example

In this section, we apply the model to the IT systems network for a bank’s risk management, as

illustrated in Figure 2. Our discussion splits into two parts. In the first part, we explore the two

quantities of severity S and duration D for the risk management network. We denote this network

as N1. In the second part, we discuss the effect of an alternative network architecture.

For both N1 and N2, the network dynamic is captured by the support function hi acting on

node ni. We assume that uncertainty is generated by the node-specific standard Brownian motions

Wi and an external factor Z that acts on the whole network. We assume that the support function

follows

dhi = ai(hi)


bi(hi)−

N1(i)∑

m=1

wi,mf(hm)


− σidWi − ςidZ. (20)

For the function f in equation (1), which defines the trigger for the operational-risk event, we

use the complementary error function as in equation (2). Whether a node ni is running or down

depends on the level of support function relative to the threshold reflected in the function bi(hi).

For simplicity, we assume bi(hi) = b = constant. We further simplify the model by setting σi = σ

and ςi = ς. The dWi’s and dZ are correlated by a constant ρ. The counter measure function ai(hi)
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is given by equation (5).

Having defined the static and dynamic characteristics of the network, we simulate the severity S

and the duration D for each node and aggregate them for paths, graphs, and for the whole network.

These two key figures then build the basis for the calculation of operational risk losses and costs

(see Section 3.2). For the simulation of N1, we discretize model dynamics for the states and set

the time increment ∆t equal to one day. We use 10, 000 simulation runs and a time horizon of 30

days. This time horizon can be appropriate for some value chains such as risk management. An

operational-risk portfolio supporting the trading floor requires a much shorter time horizon. For

our analysis, we concentrate on the total of the risk-management nodes and on node n1, which lies

outside the risk-management network.

Given the value-generating work flows, we can calculate the costs and the losses of an operational-

risk event and express them in terms of interpretable risk figures such as value-at-risk, expected

shortfall, or maximum loss. As this is a straightforward exercise, we focus on the difference between

two different operational risk management practices and their impact on the two key quantities, du-

ration and severity. The first risk-management practice provides both a constant-level support and

state-dependent counter measures whenever an operational-risk event occurs. The second practice

provides only a constant support. In the latter case, we expect that the length of time a system

malfunctions will be considerably prolonged and the severity will be much larger.

Panels (A1) and (B1) of Figure 6 plot the conditional distributions of duration and severity for

N1 when counter measures are taken into account. In this case, both constant and state-dependent

measures counteract an operational-risk event. Panel (A1) plots the distribution for node n1, and

Panel (B1) plots the distribution for the aggregated nodes of the risk-management network. The

panels (A2) and (B2) plot the corresponding conditional distributions for the situation in which

we impose no counter measures and the bank’s management acts, given an operational-risk event,

only through the constant support function.

The above risk distributions can be used for profitability management as follows. For the process

owner of the risk-management value chain, the distributions serve as a valuation tool of the SLA

between the IT system layer (see Figure 2) and the business layer (see Figure 1). The distribution

allows the owner to calculate risk figures, such as expected values and value-at-risk, and to evaluate
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the performance of the IT systems. In addition, the counter measures, which express stochastic

costs, and the fixed maintenance costs characterize the IT systems from a second point of view.

Using these two data sets of risks and costs, the process owner can decide according to her

preferences whether the risks and costs of the supporting systems is acceptable given the contracted

SLAs. If this is not the case, the process owner can increase/reduce counter measures or fixed

costs, thereby achieving acceptable risk and cost levels. This procedure defines a consistent and

comprehensive management tool for the value chain’s profitability.

Our model setup also allows us to explore the impact of a change in the effectiveness of counter

measures by changing the parameter ψ in equation (5). Figure 7 plots the realized difference in

duration and severity together with different confidence contours, when the effectiveness of the

state-dependent counter measures drops to a lower level. As expected, the drop in the counter

measures’ effectiveness leads to an increase in both the severity and duration of operational-risk

events. Such an analysis of the effectiveness eventually allows the management to quantify the

gains from measures that target at an increase in the effectiveness of operational-risk management.

To discuss the impact of altering the network structure, we consider the system structure

illustrated in Figure 8 as our alternative. We label the resulting network as N2. The motivation

behind the specification N2 lies in the current efforts of many banks to reduce the number of

systems used. These efforts are based on two causes: first, a large network complexity is costly, and

second, most IT systems providers now offer highly integrated systems with multiple functionalities.

Compared to N1, N2 in Figure 8 reduces the systems involved in the risk-management work flow

from eight to only three.

From Figures 2 and 8, we see that the risk-management work flow in N2 is topologically less

diversified. However, this observation does not necessarily mean that N2 is also dynamically less

diversified. Indeed, it turns out that the diversification index, as proposed in Definition 4, only

differs slightly between N1 and N2. The numbers we obtain are 0.9936 and 0.9876. Whether

the difference between these two numbers is significant from a business point of view depends

on the value chain under consideration. If the current risk level in network N1 is acceptable for

the management, the switch to the less (topologically) complex network N2 might be justified by

investment and maintenance-cost considerations.
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However, if management is considering a processing value chain that involves a huge amount

of different daily work steps, the difference could turn out to be significant. In that case, the

management would be well-advised to further increase the efficiency of counter measures so as to

further decrease the risk figures of the network.

7 Conclusion

The quantification of operational risk is a challenging task. Often, it is not clear how the man-

agement of operational risk differs from the management of market or credit risk, or how it can

add value to an institution. We use a financial-economics approach to interpret operational risk

management as a means to optimize the profitability of an institution along its value chain. To

develop the formal model, we introduce a realistic risk-management value chain that guides us

through the theoretical construction of our model.

Often, practitioners adopt only a static perception of operational risk. We propose a dynamic

approach that builds on functional dependencies among different systems within a network. Based

on our definition of operational risk, we use an analytical perspective to address the problem of

network prioritization in terms of costs and diversification. We find that prioritizing the network

can lead to instable behavior. Furthermore, when considering operational risk, we suggest split-

ting diversification into topological and dynamic diversification. A topologically more diversified

portfolio need not be dynamically more diversified, and vice versa.

The problem of decentralizing or centralizing under operational risk threats relates to the topo-

logical dependence structure embedded in the stochastic model. Aside from stability issues, risk is

likely to lessen over time. A purely static architectural planning based on the diversification can

lead to a hazardous misperception about the true risk exposure. Therefore, to account for the mix-

ing between stochastic and topological dependence over time, a dynamic modeling of operational

risk is indispensable.

We use a numerical application on the risk-management value chain to highlight the usefulness

of our approach for management decisions. We first quantify the interdependent operational risks

and costs. These two data sets generate risk and costs figures for the management. We analyze the
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influence of counter measures and compare the resulting key figures to the case in which counter

measures are neglected. Finally, we quantify the impact of altering the network architecture.

We conclude that our model can serve as a valuable decision tool for a bank’s operational-risk

management.
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Figure 1: Work flow view for trading, sales, and risk management. Work flows 1 and 2 define the
sales, work flow 3 the trading unit, and work flows 4 to 6 the risk management.
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Figure 3: Parameterizing cost and loss functions. When the value of the support function hi(t)
falls below the threshold h̄i, an operational-risk event k occurs. The operational-risk event can be
characterized by the time interval, during which the support function stays below the threshold,
and by the minimum value the support function obtains during this time interval. We call these
quantities duration Dik and severity Sik, respectively.
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Figure 4: Two different topologies for two graphs.
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Figure 5: The stationary covariance structure for specification A (meshed surface) and B. The
left panel plots the covariance structure for the symmetric case and the second panel plots the
asymmetric case. We set σ11 = 0.22, σ12 = 0.1, σ22 = 0.15 and, for the matrix M , w11 =
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Appendix A

We use the first-order approximations

s(h) = s(h̄) +
∂s(h̄)
∂h

(h− h̄) + O(h2),

f(h) = f(h̄) +
∂f(h̄)

∂h
(f − f̄) + O(f2),

for the speed function s and for the function f . We then get the linearized support dynamics, where we

write h for the increment h− h̄,

dhi =
(
si(h̄) + ∂sihi

) (
bi(h̄) + ∂bihi −

∑
wij

(
fj(h̄) + ∂fjhj

))
dt, (A.1)

= si(h̄)
(
bi(h̄)−

∑
wijfj(h̄)

)

︸ ︷︷ ︸
=yi

dt + ∂si

(
bi(h̄)−

∑
wijfj(h̄)

)
+ si(h̄)∂bi)

︸ ︷︷ ︸
=xi

hidt

−si(h̄)
∑

wij∂fjhjdt, (A.2)

with the shorthand notation ∂si = ∂si(h)
∂h . In vector notation, for h = (h1, . . . , hk)> and y = (y1, . . . , yk)>,

we obtain

dh = ydt + diag(x1, . . . , xk)hdt−




s1w11∂f1 . . . s1w1k∂fk

...
. . .

...

skwk1∂f1 . . . skwkk∂fk


 hdt. (A.3)

Thus, the matrices M1 and M2 are given by

M1 = diag (y1, . . . , yk) , (A.4)

(M2)ij =





xi − siwii∂fi, if i = j;

−siwij∂fj , if i 6= j.
(A.5)
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Appendix B

Proof of Proposition 2

The absence of mirrored systems implies that

dhi = ai(hi)


bi(hi)−

N1(i)∑
m=1

wi,mf(hm)


 ,∀i ∈ N .

We next apply the following fundamental theorem of dynamical systems, using the following definitions.

First, we decompose the matrix W in its symmetric and anti-symmetric parts:

W (S) =
1
2
(W + W>) , W (A) =

1
2
(W −W>).

Second, we introduce the gradient U and Hamiltonian H functions:

U = −
N∑

i=1

∫ hi

bi(ξi)f ′i(ξi)dξi +
1
2

∑

j,k

w
(S)
j,k fj(hj)fk(hk),

H =
N∑

i=1

∫ hi fi(ξi)
ai(ξi)

dξi .

Finally, we define the Riemannian metric gij and the symplectic form Λij :

gij =
ai(hi)
f ′i(hi)

δij , Λij(h) = − (ai(hi))
−1

((
W (A)

)−1
)

ij

(aj(hj))
−1

.

with δ the Kronecker symbol.

Theorem 6. ai(hi)/f ′(hi) > 0 is a constant for all i and h. If the matrix w(A) is invertible, the vector field

decomposition

ḣi = ḣ
(G)
i + ḣ

(H)
i .

follows, with

ḣ
(G)
i = −

∑

j

gij
∂U

∂hj
,

ḣ
(H)
i =

∑

j

Λij
∂H

∂hj
.

For the proof of the theorem see Vilela Mendes and Duarte (1992). Their proof extends the fundamental
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Cohen-Grossberg Theorem (1983) to the case in which W no longer needs to be symmetric. Since we

assume that the matrix W is symmetric, the Hamiltonian part vanishes and only the gradient field enters

the dynamics. We then get:

ḣ
(G)
i = −

∑

j

gij
∂U

∂hj

= −
∑

j

gij

(
−bj(hj)f ′j(hj) +

∑

k

w
(S)
k,j fk(hk)f ′j(hj)

)

= −ai(hi)

(
−bi(hi) +

∑

k

w
(S)
k,i fk(hk)

)
.

From these facts follows that the operational risk network with symmetric couplings possesses a Lyapunov

function which, in turn, guarantees global asymptotic stability of the dynamics. Since the support function

and the node states are related by a monotone transformation, we proved the claim. ¤

Proof of Proposition 3

The linearized dynamics reads

dhi = ai


bihi −

N1(i)∑
m=1

wi,mfmhm


 + σdWt, ∀i ∈ N .

In matrix notation, we write it as

dht = Mhtdt + σdWt,

with the matrix Mij = ai (bihi − wi,jfjhj). If M has only eigenvalues with positive real part and if we set

the initial time at −∞ instead at zero, the solution of the system reads

ht =
∫ t

−∞
e−M(t−s)σdWs . (A.6)

Equation (A.6) implies a mean of zero and a covariance matrix

E(hth
>
s ) =

∫ min(t,s)

−∞
e−M(t−v)σσ>e−M>(t−v)dv . (A.7)

34



with A> the transpose of the matrix A. If we set φ(t) := E(hth
>
t ) for the stationary covariance matrix, we

have

Mφ + φM> =
∫ t

−∞
Me−M(t−v)σσ>e−M>(t−v)dv

+
∫ t

−∞
e−M(t−v)σσ>e−M>(t−v)M>dv

=
∫ t

−∞

d

dv

(
e−M(t−v)σσ>e−M>(t−v)

)
dv

= σσ> − lim
v→−∞

e−M(t−v)σσ>e−M>(t−v)

= σσ> .

by the assumption on the eigenvalues of M . To prove the second claim, we note that each 2 × 2 matrix

satisfies the characteristic equation

M2 − tr(M)M + det M = 0 .

This implies that e−Mt is a polynomial of first order in M , since in the power series expansion higher orders

can be re-expressed as a first-order polynomial by using the characteristic equation. Furthermore, from (11)

and (A.7) follows that φ can be expressed as

φ = ασσ> + β(Mσσ> + σσ>M>) + ϑMσσ>M> . (A.8)

Using the characteristic equation, we find that (11) is satisfied if and only if the unknown α, β and ϑ satisfy

a linear equation system. Solving this system for the unknown and inserting them into (A.8) proves the

second claim. ¤
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