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Practical Operational Risk 
 
 
 
 

 
 
 
 

Abstract 
 

Operational losses are generally observed at specific points in time and vary from moderate to 
possibly very large amounts. Both variables – the time of the event and the amplitude of the 
associated loss – are random variables whose distributions must be estimated.  
 
The concept of compound Poisson process provides an accurate analytical framework to 
address the modelling problem. The time of the event is captured by the intensity of the 
Poisson process and losses by an appropriate  distribution.  The aggregated operational losses 
are in this setup considered to follow a random process { } 0)( ≥ttL  with 
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The operational loss distribution is thus jointly determined by the average number of losses 
per unit of time – the intensity λ  of the Poisson process tN , the counting process with 
integer variables – and by the loss magnitudes Xk – in monetary terms – observed over time. 
Xk  are in general assumed to belong to a family Fθ  of parametric continuous distributions.  
 
In this paper, we analyse the class of parametric distributions which better fit  the observed 
empirical loss data classified by business lines. Particular attention is devoted to the fitting of 
the tail distribution  of the losses.  
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1. INTRODUCTION 
 
In the course of the last few decades, the financial industry has been characterised by 
accelerated globalisation, deregulation, and a boost of new products, instruments, and 
services. An inevitable outcome has been an elevated exposure of the financial institutions to 
various sources of risk. A large proportion of these financial risks are attributed  neither to 
market nor to credit risks, and it is known as operational risk. Examples include losses due to 
unauthorised trading, fraud, human errors on the Orange County (USA, 1994), Barings 
(Singapore, 1995), Daiwa (Japan, 1995), among many others. It is  often the risk connected to 
large magnitude losses that rarely occur (i.e., low frequency, high-severity losses).  
 
Operational risk is largely a firm-specific non-systematic risk: according to the Bank of 
International Settlements (1998), “Unlike market and perhaps credit risk, the [operational] 
risk factors are largely internal to the bank.”  
 
Earlier references on operational risk defined operational risk as “other risks”, or “any risk 
not categorizes as market and credit risk”, and “the risk of loss arising from various types of 
human or technical errors” (BIS (1998)). Other definitions include: risk “arising from human 
and technical errors and accidents” (Jorion (2000))  “a measure of the link between a firm’s 
business activities and the variation in its business results” (King (2001)) and “the risk 
associated with operating a business” (Crouhy et al. (2001)). 
The Basel II Capital Accord of 2001  (BIS (2001a,b), (2003), (2004)) defined operational risk 
as “the risk of loss resulting from inadequate or failed internal processes, people and systems 
or from external events”. This definition includes legal risk, but excludes strategic and 
reputational risk. 
 
Current estimates suggest that the allocation of total financial risk of a bank is roughly 60% of 
their regulatory capital to credit risks, 15% to market risks, and 25% to operational risk ( 
Jorion (2000)). Cruz (2002) suggests different figures, 50%, 15%, 35% respectively. Under 
the 2001 Basel II Capital Accord (BIS (2001a)) each bank is required to adopt a methodology 
to determine the operational risk capital charge to account for unexpected losses by the end of 
2006. BIS suggested the following methodologies: Basic Indicator Approach, Standardized 
Approach, and three Advanced Measurement Approaches (Internal Measurement Approach, 
Loss Distribution Approach, and Scorecard Approach). The choice of the method depends on 
bank’s size and risk exposure and the ability to meet required criteria. The Loss Distribution 
Approach (hereforth, LDA) is the most accurate from the statistical point of view as it utilises 
the exact distribution of the losses – both frequency and severity – based on each individual 
bank’s internal loss data. Under the LDA, the operational risk capital charge is determined by 
the value-at-risk measure (hereforth, VAR), summed across all “business line/event type” 
combinations.  The capital  charge is hence dependent on the nature of the frequency and 
severity distributions. In particular, under the VAR measure, the tails of these distributions 
become the key determinants of the amount of the capital charge.  
 
The Basel II Capital Accord classifies operational risk into 7 event type groups, 8 business 
lines, and identifies 6 operational loss types, see BIS (2003). Detailed descriptions of business 
lines mapping, loss types, and event types are presented in Table 1, Table 2, and Table 3, 
respectively. 
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Business Unit Business Line 
Corporate Finance Investment Banking Trading and Sales 
Retail Banking 
Commercial Banking 
Payment and Settlement Banking 

Agency Services 
Asset Management Others Retail Brokerage 

 
Table 1: Business line mapping according to the Basel II Capital Accord. 
 
 
Loss Type Contents 
Write-downs Direct reduction in value of assets due to theft, 

fraud, unauthorized activity or market and 
credit losses arising as a result of operational 
events 

Loss of recourse Payments or disbursements made to incorrect 
parties and not recovered 

Restitution Payments to clients of principal and/or interest 
by way of restitution, or the cost of any other 
form of compensation paid to clients 

Legal Liability Judgments, settlements and other legal costs 
Regulatory and Compliance Taxation penalties, fines, or the direct cost of 

any other penalties, such as license revocations 
Loss of or damage to assets Direct reduction in value of physical assets, 

including certificates, due to some kind of 
accident (e.g., neglect, accidents, fires, 
earthquakes) 

 
Table 2. Loss types and definitions according to the Basel II Capital Accord. 
 
 
Event Type Definition and Categories 
Internal Fraud Acts intended to defraud, misappropriate property or circumvent 

regulations, the law or company policy, which involves at least one 
internal party. Categories: unauthorized activity and theft and fraud. 

External Fraud Acts of a type intended to defraud, misappropriate property or 
circumvent the law, by a third party. Categories: (1) theft and fraud 
and (2) systems security.  

Employment Practices and 
Workplace Safety 

Acts inconsistent with employment, health or safety laws or 
agreements, from payment of personal injury claims, or from 
diversity/discrimination events. Categories: (1) employee relations, 
(2) safe environment, and (3) diversity and discrimination. 

Clients, Products, and 
Business Practices 

Unintentional or negligent failure to meet a professional obligation 
to specific clients (including fiduciary and suitability requirements), 
or from the nature or design of a product. Categories: (1) suitability, 
disclosure and fiduciary, (2) improper business or market practices, 
(3) product flaws, (4) selection, sponsorship and exposure, and (5) 
advisory activities. 

Damage to Physical Assets Loss or damage to physical assets from natural disaster or other 
events. Categories: Disasters and other events.  
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Business Disruption and 
System Failures 

Disruption of business or system failures. Categories: systems.  

Execution, Delivery, and 
Process Management 

Failed transaction processing or process management, from 
relations with trade counterparties and vendors. Categories: (1) 
transaction capture, execution and maintenance, (2) monitoring and 
reporting, (3) customer intake and documentation, (4) 
customer/client account management, (5) trade counterparties, and 
(6) vendors and suppliers. 

 
Table 3. Event types and descriptions according to the Basel II Capital Accord. 
 
In this paper we analyze the operational risk of a Bank  using both the internal data supplied 
by the Bank and integrating, when necessary, with an external database. We focus on the 
following  aspects of the operational risk: 

 We apply the canonical statistical analysis (descriptive statistics, alternative parametric 
fitting, goodness-of-fitting tests) to internal and external loss data, separately and then 
with a specifically tailored integration procedure, 

 We explore the implications of a loss estimation approach based on mixed distributions 
with an extreme value distribution (EVD, such as the GPD) explicitly modelling only 
the extreme losses. 

 
The paper  is structured as follows. Section 1. is devoted to methodologies for assessing 
operational risk. In Section 2, we present our case study, describe the procedure adopted to 
integrate internal, and external losses and present the statistical evidence for the determination 
of the severity conditional distributions and the frequency distribution for each one of the 
three BL’s included in our study. We extend the analysis in order to show how it is possible to 
improve the fitting in the far tail introducing a mixed distribution. 
  
 
2.   A METHODOLOGY FOR ASSESSING OPERATIONAL RISK:  MODIFICATION OF THE LDA 
APPROACH 
 
Operational risk possesses unique characteristics that distinguish it from other sources of 
financial risk. The nature of operational risk is very different from that of market risk and 
credit risk, see King (2001). In fact, operational losses share many similarities with insurance 
claims, suggesting that most actuarial models can be a natural choice of the model for 
operational risk, and models well developed by the insurance industry can be almost exactly 
applied to operational risk, see Bening and Korolev (2002), Chernobai et al. (2005a), Grandell 
(1991), Panjer and Wilmott (1992), Thorin and Wikstad (1977).  
 
The LDA approach is computationally intensive but has the advantage of taking into account 
the frequency and severity distributions. The two distributions are first estimated individually, 
then the aggregate distribution is computed using the compound Poisson process, and finally 
the appropriate risk measures are added across all “business line/event type” combinations 
This methodology implicitly assumes that “business line/event type” combinations are 
perfectly correlated. 
 
A number of problems arise when one tries to deal with operational risk in practice. First, 
banks collect data losses only for losses above a certain threshold that may vary from bank to 
bank. It means that if one fits the data without considering the missing data, results would be 
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biased. Second, most banks began collecting operational risk data only from 2001  and given 
the relatively low frequency of operational risk events, one may face the problem of an 
insufficient set of data.  
 
The third problem deals with the need to supplement internal data with external data in order 
to improve the accuracy of the statistical measurements  (Baud, Frachot and Roncalli  (2002)). 
Generally, first generation external database only record the highest losses, i.e., the losses that 
are publicly released, while consortium-based data are anonymised data collected by a 
consortium of banks, see for example the ORX project (Peemoller (2002)). It means that 
pooling together internal and external data without adopting special statistical treatment may 
result in capital estimates that are over-stated. One characteristic common to both internal and 
external databases is the presence of a lower collection threshold which is generally different 
in the two databases. Thus a right methodology is needed in order to have data comparable.  
 
The fourth problem is concerned with the reality that operational losses may possess some 
dependence structure. For example, a failure in a bank’s computer system may interrupt its 
important financial transfers. However, in general the correlation is spurious and it is not a 
dominant feature, see Roher (2002). Therefore, in what follows the hypothesis of independent 
and identically distributed (i.i.d) data is considered.  
 
Finally, the recording date of an operational loss can be related to one of the three dates: the 
date when the loss took place (date of event occurrence), the date on which it was revealed 
that the event has taken place, and the date on which the loss amount was recorded. In our 
bank’s internal database, we are using the date corresponding to the date on which the loss 
took place.  
 
 
2.1 Loss Frequency Process 
 
One of the difficulties that arise with modeling operational losses has to do with the irregular 
nature of the event arrival process. Operational losses occur at irregular time intervals 
suggesting a process of a discrete nature. This makes it similar to the reduced-form models for 
credit risk, in which the frequency of default (i.e., failure to meet a credit agreement) is of 
non-trivial concern.  
One can adopt one of the two modelling methodologies: modeling the counting process, i.e., 
the distribution of the number events in a fixed time interval, or modeling the inter-arrival 
times’ distribution. We adopt the first approach. 
It is reasonable to assume that, in most situations, operational risk-related events arrive 
independently from each other. A common model to characterize such a process is a Poisson 
process3 (Bening and Korolev (2002), Grandell (1997), Wilmott (1990)). In the simplest 

                                                           
3 We recall the definition: of a Poisson process. A stochastic process Nt, t≥0, is called Poisson process if it satisfies the following properties: 
1. Nt has independent increments, i.e., for any natural n, any t0, t1, … , tn, such that 0≤t1≤t2≤…<∞, the random variables Nt1 − Nt0, Nt2 − Nt1, 
… ,Ntn − Ntn-1 are independent; 2. Nt is homogeneous, i.e., for any s0, t0 and h > 0, the random variables Nt+h − Nt and Ns+h − Ns are identically 
distributed; 
3. N0 = 0; 
4. the number of jumps in an interval t is Poisson distributed with mean λt, λ>0, i.e., for all t, s > 0, 
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scenario, the mean number of events per unit of time is constant in time. In practice, however, 
it is plausible to expect that the mean number of events in a given time interval does not 
remain constant but behaves in a more random fashion or even evolves and changes with 
time. For the counting process we are testing three possible discrete distributions, the Poisson 
distribution, Poisson Process with  a  lognormal-cdf like cumulative intensity and Poisson 
Process with  a  logweibull-cdf like cumulative intensity. 
 If λ (i.e., the intensity rate) is a constant, we have a homogeneous Poisson process (HPP) that 
has a cumulative intensity λt. The mean of a homogeneous Poisson distribution equals the 
variance. When λ is not constant, we have a non-homogeneous Poisson process (NHPP).  
 
In non-homogeneous Poisson processes, λ is believed to evolve with time in a fashion that can 
be expressed by a mathematical function, λ(t). For example, a possible cyclical component in 
the time series of the number of loss events may be captured by a sinusoidal rate function, an 
upward-sloping tendency may be captured by a quadratic function, and so on. Moreover, 
deviations from an assumed (or fitted) deterministic model may be further captured by a 
random stochastic process, such as Brownian motion.  
In our case we model the cumulative number of losses by the following Non-Homogenuos 
Poisson Process with cumulative intensity:  
  
Type I   lognormal-cdf like 
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c
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Type II  logweibull-cdf like 

)).(logexp()( tcbat d−−=Λ  
 
2.2 Loss Severity Process 

 
A variety of loss distributions can be used to model operational loss magnitudes: Lognormal, 
Gamma, Weibull, Logweibull, Generalised Pareto, Burr, Symmetric α-Stable (SymStable), 
and log α-stable. Heavy-tailed loss distributions such as Logweibull, Generalised Pareto, 
SymStable, and log α-stable (Rachev (2000), Rachev and Mittnik (2000), Rachev et al. 
(1998), Samorodnitsky (1994)) are expected to provide a superior fit (Chernobai et al. 
(2005b,c)).  
We can estimate the Maximum Likelihood parameters of all these distributions and assess the 
choice of the more appropriate severity distributions  with in-sample goodness-of-fit tests. We 
call this approach the naïve approach because it  forgets that operational risk data are 
incomplete data as banks record losses only above a certain threshold. As previously stated, 
operational loss data are subject to minimum collection threshold which is a fixed pre-
determined amount. For the data set used in this paper, the threshold is set at approximately 
Euro 500 for the internal database and approximately Euro 5,000 for the external database. 
We can characterise operational risk data as “left-truncated” data since neither the number 
(i.e., the frequency) nor the values (i.e., the severity) of such observations have been recorded. 
The incomplete data refers to the recorded observations all of which fall above a positive 
threshold of a specific amount. 
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Empirical studies have shown that ignoring the incompleteness of the data may result in 
severe under-estimation of the operational risk capital charge  (Moscadelli et al. (2005)),  
creating a so-called reporting bias.  
 
In this paper, the incompleteness of data is explicitly taken into account in the estimation of 
the severity distribution.  We call it the conditional approach. The severity is indeed estimated 
“conditionally” on the fact that the observed data are now recognised as actually truncated 
data set and no longer a complete data set. Under the reasoning, the truncated loss distribution 
is fitted to the severity data, with the density expressed as follows:  
 

( )
1 ( )( ) ( | )

0

c
f x x H
F Hf x f x x H

x H
θ

θ

θ θ

⎧ ≥⎪ −= ≥ = ⎨
⎪ <⎩

 

 
where H is the known threshold,  θ is the unknown parameter set, fθ (x) is the probability 
density function and Fθ (x) is the cumulative density function (in the following referred 
respectively as pdf and cdf). 
The frequency parameter is adjusted according to the estimated fraction of the data over the 
threshold, which is obtained using the parameters of the fitted conditional severity distribution   
In general, such fraction of data may be estimated on the basis of the pertinent value of the 
severity distribution. Indeed, under the true severity distribution, each data point (or, rather, 
each range of data since we are dealing with continuous distributions) would have a 
probability of falling under the threshold H equal to the distribution function computed at H, 
that is F(H), and 1- F(H) is the probability of falling over the threshold H.  
 
The unknown parameter set can be estimated in two ways: 

i. Using the Maximum Likelihood estimation procedure, the parameter set is estimated 
by directly maximizing the constrained log-likelihood function: 

1

( )ˆ arg max log
1 (MLE

n jc

j

f x
F H
θ

θθ
θ

=
=

−∏ )
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ii. Using the Expectation-Maximization algorithm, see Dempster et al. (1977), 
McLachlan  and Krishnan (1997), Meng and van Dyk (1997).  

 
 
The intensity rate λ(t) can be scaled up using the following transformation: 
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In the following we will estimate the parameter of  the conditional distributions and  perform 
the goodness-of-fit tests after necessary adjustments for the incomplete data (Chernobai et al. 
(2005d)). The goodness-of-fit tests are of two different type: supremum type (Kolmogorov-
Smirnov,  Kuiper, Anderson-Darling, max  Anderson-Darling max up) and quadratic type 
(Anderson-Darling integral, Anderson-Darling integral up, Cramer von Mises). 
 
2.3. EVT and  Mixed Severity Distributions 
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Related literature points out that the tail and the body of the loss distribution do not conform 
to the same law and need to be modelled separately. Three approaches can be used to deal 
with this issue: 

i. Use Extreme Value Theory (EVT) (Embrechts et al. (1997), Resnick (1987)) to 
model extreme losses that lie beyond a predetermined high threshold. Such model 
is referred to as the Peak Over Threshold model. Extreme losses are then assumed 
to follow a Generalized Pareto Distribution. The distribution is usually expressed 
in terms of the cumulative distribution function: 
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 Empirical studies that use EVT to model extreme operational losses generally report 
the tail parameter ξ>1 indicating a very heavy right tail of the loss distribution.  

ii. Mixture distributions dictate that the tail and the body of the distribution follow 
two separate laws. A mixture distribution is a weighted average of two 
distributions. The unknown parameters are the two parameter sets from the two 
separate distributions and the corresponding weights. Empirical studies have not 
applied such models to operational loss data  explained by short historical samples. 
When too many parameters are to be estimated, the result is a model with low 
validity. 

iii. Robust models (Huber (2004), Knez and Ready (1997), Martin and Simin (2003), 
Rousseeuw and Leroy (2003), and Chernobai and Rachev (2006)) dictate that 
extreme events are outliers and take them out of the data samples. Comparison of 
two models – the classical model in which all data are taken in the analysis and the 
robust model in which data are truncated from above – can reveal the economic 
impact of the highest operational losses.  Limited empirical studies in this area 
suggest that 5% of outlying extreme events account for over 50% of the aggregate 
capital charge (Chernobai and Rachev (2006)).  

 
The GPD belongs to the class of extreme value distributions (EVD) and has gained popularity 
as the most natural choice of distribution to fit extreme events far in the tail: in market risk 
and credit risk analysis the GPD has been adopted as reference parametric distribution in 
several applications domains. Its role in operational risk analysis is however even more 
natural. 
Two results provide the theoretical grounds for the adoption of an EVT approach. The first 
result, known as the Fisher-Tippett theorem (1928) clarifies under which conditions we can 
expect that a limit distribution belongs to the class of EVD. The second result, credited to 
Balkema and de Haan (1974) and Pickands (1975), motivates the adoption of GPD as 
reference distribution in EVT applications. The Fisher-Tippett theorem can be regarded as the 
central limit theorem for the class of EVD. In this set-up, the use of GPD is then justified by 
the fact that if, under the same assumptions, the distribution of the excesses 
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[ 0,|)( >>≤−= xuXxuXPxFu ]  beyond a certain threshold u  is such that an EVD exists, 
then it can be proven that this limit distribution is the two-parameter GPD denoted by 

. )()(, xG uβξ

 
Unbiased estimates of the two parameters of the GPD require a sufficient sample set for the 
estimation procedure: this is the crucial trade-off problem of any EVT applications. The 
threshold needs to be sufficiently far in the tail to apply the above mentioned EVT results, 
while the sample size needs to be sufficiently large to allow a correct  formulation and 
solution of the estimation problem.  
 
In this paper, we  discuss the applicability of EVT to our dataset, the procedure to determine u 
and then we apply the first two presented approaches, estimating explicitly the excesses over 
a threshold u and then introducing a mixed distribution. 
Let u be the selected threshold for the support partition, we then define the mixed distribution 
as : 

uxux xg
xF
xfxh >≤ −+= 1)()1(1
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)()( ππ  

 
where π and  1-π  can be seen respectively as the importance of the body and the tail and g(x) 
represent the probability distribution function of the GDP distribution. 
  
2.4 The compound Poisson Process 
 
Under the LDA approach the frequency and severity distributions are estimated separately 
since they are assumed to be independent, and afterwards the aggregate loss distribution is 
computed by the compound Poisson process. 
 
The concept of compound Poisson process provides an accurate analytical framework to 
address the modelling problem. The time of the event is captured by the intensity of the 
Poisson process and the loss by an appropriate state distribution.  Then the aggregated 
operational losses are considered to follow a random process { } 0)( ≥ttL  with 
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The operational loss distribution is thus jointly determined by the average number of losses 
per unit of time – the intensity λ  of the Poisson process tN , the counting process with 
integer variables – and by the loss magnitudes Xk – in monetary terms – observed over time. 
Xk  are in general assumed to belong to a family Fθ  of parametric continuous distributions. 
Finally, via Monte Carlo simulation it is possible to compute the distribution of the 
aggregated losses and compute expected aggregate loss (EL), unexpected aggregate loss (UL), 
and Value-at-Risk (VaR). 
 
3.   EMPIRICAL ANALYSIS 
 
In this section we apply the methodology to the data provided by a large European bank. The 
name of the bank is not disclosed to preserve its confidentiality. In the first part of this 
empirical study, we will present the description of internal and external data. We will then 
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apply a methodology to aggregate internal and external in presence of different thresholds and 
will estimate the frequency and the severity distributions for three business lines. Finally, we 
will discuss applications of EVT and mixture distributions. 
 
3.1  INTERNAL, EXTERNAL DATA AND INTEGRATED DATA 
 
The data set selected for the study consists of a total of slightly under 2700 observations. It is 
classified into three business lines:  Retail Banking (business line 3 or BL3), Commercial 
Banking (BL4), and Retail Brokerage (BL8). The data are further classified into seven event 
types (ET) as presented in Table 3.4 Table 4 describes the internal data. 
BL3 accounts for 77.7% of the data of the internal database, BL4 for 7.82%, and BL8 for 
8.18%.  

 

Internal data
BL3 BL4 BL8

ET1 0.68% 0.01% 0.01%
ET2 10.75% 0.19% 0.00%
ET3 2.19% 0.00% 0.08%
ET4 2.85% 0.57% 0.43%
ET5 1.11% 0.10% 0.00%
ET6 0.21% 0.00% 0.08%
ET7 4.25% 1.35% 1.72%

77.70% 7.82% 8.18%
 

Table 4: Description of Internal Data by 
business lines (BL3,BL4, and  BL8) and event types (ET1 to ET7) 

 
External data are shared within the financial community and provide a reliable data source for  
those intermediaries that for various reasons have no or little internal loss data. External 
databases can, to a certain extent, be regarded as a benchmark or loss collector for the average 
financial intermediary.  
 
Table 5 reports corresponding figures for external data whose sample is around 6 times the 
sample size for the internal data. BL3 accounts for 60.63% of the external data, BL4 for 
6.46% and BL8 for 28.71%.  
 

                                                           
4 The seven event types are as follows. ET1: Internal Fraud, ET2: External Fraud, ET3: Employment Practices 
and Workplace Safety, ET4: Clients, Products, and Business Practices, ET5: Damage to Physical Assets, ET6: 
Business Disruption and System Failures, and ET7: Execution, Delivery, and Process Management. 

External data
BL3 BL4 BL8

ET1 2.36% 0.04% 0.95%
ET2 62.11% 2.72% 0.17%
ET3 7.27% 0.34% 0.17%
ET4 6.27% 1.63% 40.81%
ET5 5.30% 0.10% 0.00%
ET6 0.74% 0.37% 0.28%
ET7 15.94% 5.46% 4.98%

60.63% 6.46% 28.71%
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Table 5: Description of External Database by 
business lines (BL3,BL4, and  BL8) and event types (ET1 to ET7) 

 
For the analysis of the data belonging to the three business lines and all events types, the 
internal data are sufficient as far as EVT is not concerned. This is not true, however, for the 
business lines that are not part of this study. Nevertheless, it is important to analyse the 
external data that are a benchmark for the bank and represent the operational risk of the entire 
financial system. Moreover, when investigating the behaviour in the tail, we need more data 
given that external data becomes essential when internal data sample is limited. 
 
Mixing internal and external data must be performed with caution. Very often external data 
are influenced by predominant high events in the industry. Mixing internal and external data 
together may produce spurious results tending to be over-pessimistic regarding the actual 
severity distribution and leading to over-stated capital provisions for individual banks.  
 
Our approach involves estimation of the distributions separately for internal and external 
losses that are collected with different thresholds, and then rescale the external data in order to 
make comparisons and aggregation meaningful. 
 
The methodology applies to any loss sample, by business line, and relies on the following 
steps: 
 

• Select a given distribution and estimate by the method of Maximum Likelihood 
the conditional distribution parameters of internal and external data separately, 

• Standardize internal and external data using the the dispersion and location 
parameters from the fitted conditional distribution, 

• Rescale the external losses by internal dispersion and location parameters, 
• Compute the new threshold H  as the rescaled value of the max( internal threshold, 

external threshold)  and cancel out the data below the new threshold. 
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External Internal Aggregated
data log(data) data log(data) data log(data)

BL3
min 5000.00 8.52 500.00 6.21 1230.40 7.12
max 8547484.00 15.96 2965535.00 14.90 2965535.00 14.90
mean 37917.35 9.71 15888.12 8.12 11021.80 8.36
median 13200.00 9.49 2500.00 7.82 3406.98 8.13
std.dev 184787.23 0.99 97668.29 1.39 59968.38 1.03
skewness 26.53 1.29 20.17 1.02 26.60 1.32
kurtosis 910.88 5.23 516.07 4.16 953.26 5.41
BL4   
min 5000.00 8.52 500.00 6.21 521.54 6.26
max 20000000.00 16.81 1206330.00 14.00 2086142.29 14.55

mean 61880.06 9.73 28682.11 8.11 10175.51 7.59
median 12080.00 9.40 2235.60 7.71 1347.44 7.21
std.dev 653409.10 1.11 133873.92 1.67 83252.98 1.24
skewness 29.65 1.44 7.60 1.13 19.11 1.53
kurtosis 904.11 5.70 63.14 4.01 413.87 6.02
BL8

min 5000.00 8.52 500.00 6.21 2396.93 7.78
max 15437000.00 16.55 606551.63 13.32 7400277.16 15.82
mean 40808.30 9.60 13089.05 8.11 19674.84 8.87
median 11000.00 9.31 2755.90 7.92 5273.24 8.57

std.dev 305524.49 0.99 48801.21 1.40 144912.26 0.99
skewness 35.67 1.59 9.49 0.89 35.87 1.58
kurtosis 1642.25 6.81 108.83 3.62 1668.56 6.71
Table 6. Descriptive statistics for internal and external operational loss data: BL3, BL4, 

and BL8. 
 
From a statistical viewpoint, the integration of internal and external data is beneficial in 
particular for BL4 and BL8, where the internal data sample is limited. BL3 would also benefit 
in terms of statistical robustness by the database expansion, whereas internal data may be 
considered sufficient. 

 
Without doubt, the external loss data influence the aggregate loss estimation for the three 
business lines: the mean, maximum and minimum losses, the skewness and kurtosis 
coefficients are higher for the external than internal data. 

  
3.2. LOSS SEVERITY AND FREQUENCY ANALISYS FOR THE THREE BUSINESS LINES 
 
In this section, we compare different parametric distributions fitted to the data from different 
sources employing the previously described procedure and focusing on the conditional 
estimates. We assume that the relevant frequency distribution is the one estimated on internal 
data. For the loss severity distribution, we will analyse separately internal and external data in 
order to find the distribution which better fits  the empirical loss data. We use four criteria to 
select the best distribution:  
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1) graphical inspection of the cumulative distribution function, especially in the upper 
tail, 
2) goodness-of-fit tests that we omit for brevity, 
3) the convergence of the MLE procedure (value of the exit-flag =1), 
4) the value F(H), a proxy for the fraction of missing data (losses below H), must be 
acceptable for the bank. 

 
After selection of the best distribution for internal and external data, we compute and analyze 
aggregate losses. For the aggregated data we present results for the Lognormal, generalised 
Pareto, Weibull, log-Weibull, and the Symmetric Stable distributions.  
 

 
3.2.1 BL3 – SEVERITY AND FREQUENCY ANALYSIS 
 
We include the results of the conditional severity distributions estimated separately on 
internal, external, and pooled data. Figures 1 and 2 present the graphical fittings on the tails of 
the conditional distributions estimated for the internal and external datasets. It is worth noting 
that the ranges for probability support are rather different for internal against external 
datasets: for the latter the x-axis goes up to , for the former to . Table 7 reports 
the ML estimates for the different distributions.  The last column summarizes the ML 
coefficients for the aggregated data,  also referred as total dataset  (see Figure 3, here next).   
Missing entries in Table  7 indicate that the MLE procedure did not converge (exit flag=0).  
After applying our four criteria selection, the Symmetric Stable distribution provided the best 
fitting. 

6105.2 ⋅ 51014 ⋅

 
Following the methodology described earlier, we perform required standardization and 
rescaling of the external data. We then fit various distributions to the combined data. 
We limit the analysis to the five selected distributions. 
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 Figure 1. BL3 External loss distribution (upper tail)

 

 

Figure 2. BL3 Internal loss distribution Table 7. BL3 cond.l parameter estimation
 

Figure 3 demonstrates that collected losses are concentrated within the lower 90% of the 
probability distribution and few extreme losses are located in the upper 1% of the tail: the 
resulting parametric distribution are very steep up to the 95% and are almost 
indistinguishable, and then far in the tail the GPD and the SymStable appear to provide the 
best fit.  
 

 
Figure 3. BL3 Total loss distribution (upper tail) 
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The frequency distribution is chosen taking into account internal data only: we again consider 
three assumptions5 for the loss cumulative number of losses. The model providing the lowest 
approximation error, measured by the mean squared error (MSE), is chosen. Step size is 
chosen to be one week. Table 8 presents the parameter estimates for λ(t). For the Poisson 
case, par1 refers to λ. 

 

 

par1 par2 par3 par4 mse mae
Type 1 97.7266 7846.17 1.15988 6.14317 1993.15 38.5637
Type II 2815.52 2717.47 1.2E-05 7.01935 1952.41 38.1942
Poisson 10.5079    20642.2 117.528

Table 8. BL3 Frequency distribution, internal data only 
 
Figure 4 supports the results tabulated in Table 8 that homogenous or time-independent 
counting process is heavily inconsistent with the observed statistical evidence.  
 

 
Figure 4. BL3 Loss events frequency distribution 

 
The operational loss generating process, from the above evidence, is thus assumed to follow a 
non-homogenous Poisson process of Type II and a SymStable severity distribution. We select 
Symstable because the value of F(H) is more realistic. 
 
 
3.2.2 BL4 – SEVERITY AND FREQUENCY ANALYSIS 
 
A similar analysis can now be performed for the other two business lines. Consider first the 
operational losses generated by the Commercial Banking business line in which less then 200 
losses have been recorded internally over a four year period with an impact above 500 euros 
each, while the external dataset includes less then 1,000 losses with a threshold of 5,000 
euros. Determination of the best fit on the joint dataset again requires a standardisation 
procedure.  
 

                                                           
5 Constant intensity with Poisson distribution, time dependent intensity with lognormal like (type I) frequency 
distribution, and time dependent intensity with logWeibull-like (type II) frequency distribution. 
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Figures 5 and 6 illustrate the fittings of the complete set of parametric distributions analysed 
on external and internal data respectively and Table 9 reports the associated ML estimation 
results for the considered distributions.  
 
Following the information from Table 6, internal operational losses recorded during the 
sample period present high dispersion and asymmetry with respect to the other business lines, 
with rather extreme outliers. Internal loss data collection results in a rather irregular empirical 
distribution. The fitting on internal data, see Figure 6, is very bad, while the large sample of 
external data allows a good estimation procedure, see Figure 5.  Missing entries in Table 9 
indicate that the MLE procedure did not converge (exit flag=0) and the graphical evidence 
supports the lack of convergence specifically on internal data by the SymStable estimator.  
The GPD proves to provide the best fitting on the internal and external dataset supporting 
results provided in Figure 7. However, the SymStable is the more appropriate distribution 
when the aggregated data are analysed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. BL4 External loss distribution (upper tail) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Table 9. BL4 conditional parameter 
 

    Figure 6. BL4 Internal loss distribution (upper tail) 
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Figure 7. BL4 total loss distribution (upper tail) 

Finally, we estimate the pooled data frequency distribution. Table 10 and Figure 8 support the 
choice of the non-homogeneous Poisson process of Type I for this BL.  
 

 

par1 par2 par3 par4 mse mae
Type I 4.82938 1.4E+07 3.2591 18.9404 20.2075 3.50501
Type II 78928.3 78919.8 7E-08 6.44017 21.7972 3.74619
Poisson 1.24528    161.273 11.0271

Table 10. BL4 Frequency distribution, internal data only 
 
 

 
Figure 8. BL4 Loss events frequency distribution 

 
We can conclude that for the losses recorded on this business line (all event types), although 
the GDP provides the best fitting on internal and external data, the SymStable is the 
distribution that fits the pooled data best. The preferable frequency distribution is the type I 
non-homogeneous.  

 
 

3.2.3. BL8 – – SEVERITY AND FREQUENCY ANALYSIS 
 
Finally, we analyse the collected evidence for the Retail Brokerage business line. As in 
previous sections,  we first examine internal and external loss datasets independently and then 
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pool the data across all event types. The dataset includes around 200 loss events recorded 
internally and around 4,000 events collected in the external database. All remarks on the 
statistical properties of internal versus external losses remain valid here. We consider first the 
two datasets separately.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. BL8 external loss distribution (upper tail) 

        Figure 10. BL8 internal loss distribution (upper tail) Table 11. BL8 cond.l parameter estimation
 
 
Figures 9 and 10 illustrate the fit of a variety of loss distributions fitted, respectively, to 
external and internal datasets. In the first case again we have a rather large loss sample within 
the core of the distribution and then very large losses in the extremes: all distributions provide 
a good fit far from the tail and then on the tail, with the exception of the exponential, the 
others provide a good fit. On the contrary, for the internal losses only the SymStable 
distribution presents a sufficient fitting accuracy.  
 
Goodness-of-fit tests suggest that none of the distributions provide a good fitting, but the 
estimates of the percentage of missing data (Table 11) support the choice of the SymStable 
for this business line. 
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Figure 11. BL8 total loss distribution (upper tail) 

 
Table 12 and Figure 12 report the numerical results and graphical evidence regarding the 
choice of the frequency distribution.  The type II, logWeibull like, distribution is slightly 
more precise than the type I distribution as seen from lower error estimates as presented in 
Table 12.   
 

par1 par2 par3 par4 mse mae
Type I 16.5887 695.9 1.17536 5.92135 20.4766 3.44717
Type II 258.197 241.009 3.2E-05 6.58742 19.877 3.35849
Poisson 1.14835   392.515 17.5465

 
 

Table 12. BL8 Frequency distribution, internal data only 
 
 

 
Figure 12. BL8 Loss events frequency distribution 
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Figure 12 shows that for BL8 loss events are irregularly distributed across the different 
weeks, with from the best fit achieved when the non-homogenous model is used instead of the 
time homogeneous model. Summarizing, the analysis legitimizes the selection of the 
SymStable distribution as preferable severity distribution and the type II frequency model. 
 
 
3.3 MIXED SEVERITY DISTRIBUTION 
 
As a final step, we investigate the possibility to model the tail of the severity distribution by 
EVT. 
The idea is to model the body of the distribution for each business line with the best 
distribution that we have identified in the previous step and the tail with a GPD. As 
mentioned in Section 2,  the problem is solved introducing a mixed distribution. 
Let u be the selected threshold for the support partition that identify the beginning of the tail, 
we then assume: 
 

uxux xg
xF
xfxh >≤ −+= 1)()1(1
)(
)()( ππ  

 
where in our applications, following the results in Section 3.2, f(x) is the body distribution and 
g(x)  is the GPD. We note that the two distributions work on disjoint datasets once the 
threshold is identified. Several techniques can be employed to isolate such critical value: all 
of them, however, require a sufficient dataset of extreme losses and implies thus the solution 
of a trade-off problem. The extreme loss events exceeding u for BL3 in the internal dataset are 
sufficient to perform with the required statistical accuracy the GPD ML estimation procedure, 
while in the case of BL4 and BL8 both internal and external data must be used for the solution 
of the identification problem. In Figure 13 we report the evidence on the threshold selection 
on the internal data only for BL3, BL4 and BL8. 
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Top left: the estimation iterative procedure for 
BL3 for increasing threshold does converge to a 
sufficiently stable value with a sample of 
roughly 50 losses: the convergence is studied 
through the Hill estimator, common in this type 
of applications. On the contrary, top right and 
bottom, respectively for BL4 and BL8, we do 
not have any convergence of the estimator on 
the limited internal dataset suggesting the 
adoption of the integrated dataset. 

Figure 13. Selection of the extreme threshold for the GPD fitting far in the tail 
 
Following the indications in Section 3, we will rely on the total or pooled dataset and again 
consider the two options for all business lines:  the single SymStable or the mixed SymStable-
GPD as parametric severity distribution.  
Given a threshold u, it is possible to estimate π  using ML in order to identify the optimal 
convex combination of the SymStyable density f(x) and the GPD  g(x). Table 13 defines the 
outcome of this procedure and provides an input to the Monte Carlo scenario generator. In 
Table 13 we report initial points F(u) of the optimization procedure; however, we tried 
different starting points.  The optimal solutions turn out to be robust. 
 

 -LogL π 
BL3   

Starting point -1.6765 0.9922 
Optimal -1.677 0.9901 

   
BL4   

Starting point 3.378 0.9871 
Optimal 3.377 0.957 

   
BL8   

Starting point 0.0614 0.9799 
Optimal 0.0552 0.9512 

 
Table 13. Optimal partition of the loss events for the mixed distribution 

 
 
Relying on the above results we can now consider both procedures for the generation of the 
marginal distributions, to be interfaced with the copula estimator for the estimation at a given 
risk horizon of the global operational loss distribution for the bank. On the right  column of 
Table 13,  we also have now a relative measure of the number of scenarios, relative to the 
total simulated loss scenarios, that generate the very extreme losses, for which the GPD 
severity distribution must be sampled. 
 
4.  CONCLUSIONS 
 
In this paper we discuss an approaches suggested by Basel II to compute the operational risk 
capital charge. In the presence of a reasonable number of data (i.e., losses classified by 
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business line and event type),  the only approach that properly considers the characteristics of 
the bank data is the LDA  approach.   
The LDA methodology allows to estimate the frequency and severity distributions separately  
for each “business line/event type” combination. 
For the severity distribution, we use a large number of candidate distributions and propose a 
methodology to select the one which fits the observed data best. At the same time the 
frequency model is selected among three different models with constant intensity or  
deterministically varying intensity.  
 
For the three business lines used in the empirical study, that account for large part of the 
bank’s operational losses, the following severity distributions and frequency models have 
been  determined as the preferable marginal distributions. 
 
 

 External Internal Pooled Frequency 
BL3 SymStable SymStable SymStable Type II 
BL4 GPD GPD SymStable Type I 
BL8 SymStable SymStable SymStable Type II 

 
Table 14. Final evidence on the BL’s preferable parametric approximations 
 
Overall, the SymStable distribution provides the best parametric fitting on all three business 
lines once internal and external data are pooled. With respect to the frequency distribution, the 
most accurate frequency model for all three business lines, the non-homogeneous frequency 
model, a result that agrees with findings in our previous studies. 
 
Once that the best combination severity/intensity has being selected, we can compute via 
Monte Carlo simulation the distribution of the aggregated losses and the capital requirement 
as the VaR and the  Cvar of the distribution at the 99.9% confidence level for each BL 
separately. Namely we can generate the marginal distribution of the losses deriving from 
different BL. Basel II suggests to add up the individual VaR figures, however the inclusion of 
a copula function will permit to move from an underlying perfectly correlated assumption  to 
a system in which the possibility of more realistic correlated operational events is taken into 
account.  
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