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Dynamic Interactions Between Interest Rate, Credit, and Liquidity Risks:
Theory and Evidence from the Term Structure of Credit Default Swap Spreads

ABSTRACT

Using a large data set on credit default swaps, we study how default risk interacts with interest-rate

risk and liquidity risk to jointly determine the term structure of credit spreads. We classify the reference

companies into two broad industry sectors, two broad creditrating classes, and two liquidity groups. We

develop a class of dynamic term structure models that include (i) two benchmark interest-rate factors

to capture the libor and swap rates term structure, (ii) two credit-risk factors to capture the credit swap

spreads of high-liquidity group of each industry and ratingclass, and (iii) both an additional credit-risk

factor and a liquidity-risk factor to capture the difference between the high- and low-liquidity groups.

Estimation shows that companies in different industry and credit rating classes have different credit-risk

dynamics. Nevertheless, in all cases, credit risks exhibitintricate dynamic interactions with the interest-

rate factors. Interest-rate factors both affect credit spreads simultaneously, and impact subsequent moves

in the credit-risk factors. Within each industry and creditrating class, we also find that the average

credit default swap spreads for the high-liquidity group are significantly higher than for the low-liquidity

group. Estimation shows that the difference is driven by both credit risk and liquidity differences. The

low-liquidity group has a lower default arrival rate and also a much heavier discounting induced by the

liquidity risk.

JEL CLASSIFICATION CODES: E43, G12, G13, C51.

KEY WORDS: Credit default swap; credit risk; credit premium; term structure; interest rate risk; liquidity

risk; liquidity premium; maximum likelihood estimation.



Dynamic Interactions Between Interest Rate, Credit, and Liquidity Risks:

Theory and Evidence from the Term Structure of Credit Default Swap Spreads

It is important to understand how credit risk interacts with interest-rate risk and liquidity risk in determining

the term structure of credit spreads on different reference entities. Nevertheless, limited data availability

has severely hindered the understanding. Since defaults are rare events that often lead to termination or

restructuring of the underlying reference entity, researchers need torely heavily on cross-sectional averages

of different entities over a long history to obtain any reasonable estimates ofstatistical default probabilities.

Although corporate bond prices contain useful information on the defaultprobability and the price of credit

risk, the information is often mingled with the pricing of the underlying interest-rate risk and other factors

such as liquidity and tax.1

The recent development in credit derivatives provides us with an excellent opportunity to better under-

stand the pricing of credit risk, its interactions with interest-rate risk and liquidity, and the impacts on the

term structure of credit spreads. The most widely traded credit derivative is in the form of credit default

swap (CDS), written on a reference entity such as a sovereign country or a corporate company. According

to surveys by the International Swaps and Derivatives Association, Inc., the outstanding notional amount

of credit derivatives has reached $8.42 trillion by the end of 2004, morethan doubling the size of the total

equity derivatives market at $4.15 trillion for the same time period.

In this paper, using a large data set on CDS spread quotes, we performa joint analysis of the term

structure of interest rates, credit spreads, and liquidity premia, with a focus on the dynamic interactions

between the three sources of risks. The data set includes daily CDS spread quotes on hundreds of corporate

companies and across seven fixed maturities from one to ten years for each company. We classify the

reference companies along three dimensions: (i) industry sectors (financial and non-financial), (ii) credit

1Many researchers strive to identify and distinguish the different components of corporate bond yields. Prominent examples

include Fisher (1959), Jones, Mason, and Rosenfeld (1984), Longstaff and Schwartz (1995), Duffie and Singleton (1997), Duffee

(1999), Elton, Gruber, Agrawal, and Mann (2001), Collin-Dufresne, Goldstein, and Martin (2001), Delianedis and Geske (2001),

Liu, Longstaff, and Mandell (2000), Eom, Helwege, and Huang (2004), Huang and Huang (2003), Collin-Dufresne, Goldstein, and

Helwege (2003), Ericsson and Renault (2005), and Longstaff, Mithal, and Neis (2005).



ratings (A and BBB), and (iii) quote updating frequency (high and low liquidity).2 We also download from

Bloomberg the eurodollar libor and swap rates of matching maturities and sample periods. Through model

development and estimation, we address the following fundamental questionsregarding credit risk and its

dynamic interactions with interest rate and liquidity:

• How many factors govern the term structure of credit spreads?

• How do the credit-risk factors interact with interest-rate factors?

• How do the credit-risk dynamics and pricing differ across industry sectors and credit rating classes?

• What causes the liquidity difference in CDS trading across different reference entities and how does

the different liquidity impact the pricing of CDS contracts?

To address these questions, we develop a class of dynamic term structuremodels of interest-rate risk,

credit risk, and liquidity risk. First, we model the term structure of the benchmark libor and swap rates

using two interest-rate factors. Second, we assume that the default arrival intensities of the high-liquidity

companies at each industry sector and credit rating class are governedby either one or two dynamic factors.

We allow changes in the interest-rate factors to affect both contemporaneous and subsequent changes in the

credit-risk factors. We link these factors to the instantaneous benchmark interest rate and credit spread via

both an affine and a quadratic specification, and compare their relative performance via estimation. Finally,

we use an additional default-risk factor and a liquidity risk factor to capturethe difference between the credit

spreads of the high- and low-liquidity groups within each industry sector and credit rating class.

We estimate the models using a three-step procedure. In the first step, we estimate the interest-rate factor

dynamics using the benchmark libor and swap rates. In the second step, wetake the interest-rate factors

extracted from the first step as given, and estimate the credit-risk dynamicsfor each industry sector and

credit rating class using the average CDS spreads of the high-liquidity group for that sector and rating class.

In the third step, we identify the additional credit-risk factor and the liquidity-risk factor using the average

CDS spreads in the low-liquidity group. At each step, we cast the models into astate-space form, obtain

forecasts on the conditional mean and variance of observed interest rates and CDS spreads using an efficient

2There are also data on reference companies with ratings above A or below BBB, but they do not have enough critical mass to

be classified along the industry and liquidity dimensions.
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nonlinear filtering technique, and build the likelihood function on the forecasting errors of the observed

series, assuming that the forecasting errors are normally distributed. We estimate the model parameters by

maximizing the likelihood functions.

Comparing the affine and quadratic specifications, we find that the quadratic specification generates

better and more uniform performance across the term structure of interest rates and credit spreads. The

interest-rate and credit-risk dynamics are also estimated with more precision under the quadratic specifica-

tion, an indication of less model mis-specification.

Our estimation shows that one affine credit-risk factor can price the moderate-maturity CDS spread well,

but the performance deteriorates toward both ends of the credit spreadcurve. Two affine credit-risk factors

can price the whole term structure of credit spreads well. In contrast, under the quadratic specification, one

default-risk factor is sufficient to explain over 90 percent of the variation on each of the seven CDS spread

series for each industry sector and credit rating class. Adding an additional quadratic credit risk factor

does not dramatically improve the performance. Hence, with a nonlinear, richer dynamic specification, one

default-risk factor can explain the majority of the credit spread variation in the high-liquidity group.

Our estimation also shows that firms in different industry sectors and creditrating classes exhibit differ-

ent credit-risk dynamics. In all cases, credit risk shows intricate dynamicinteractions with the interest-rate

factors. Interest-rate factors both have a contemporaneous impact on the credit spread, and affect subsequent

changes in the credit-risk factors.

Within each industry sector and credit rating class, we find that the average CDS spreads for the high-

liquidity group are significantly higher than for the low-liquidity group. The mean term structure of credit

spreads is also more upward sloping for the high-liquidity group. Estimation shows that the different spreads

between the two groups are driven by both credit-risk differences andliquidity differences. On average, the

low-liquidity group has lower default arrival rates, and hence a lower instantaneous credit spread. We iden-

tify an additional credit-risk factor for the low-liquidity group that is stronglysignificant. This credit-risk

factor shows strong risk-neutral persistence, indicating that it affectsthe term structure of credit spreads

across both short and long maturities. We also identify a highly volatile but lesspersistent liquidity-risk

factor for the credit spreads on the low-liquidity group. This liquidity-risk factor induces a strongly positive

instantaneous spread on the discount factor. Thus, low liquidity induces aheavy discounting as a compen-
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sation for liquidity premium. Taken together, the lower credit risk and heavierliquidity discounting jointly

determine the lower spread on the CDS contracts for the low-liquidity groups.

The remainder of this paper is organized as follows. The next section provides some background in-

formation on the CDS contract and the related literature. Section 2 describesthe data sets and documents

several interesting pieces of stylized evidence on the CDS spreads that motivate our theoretical efforts in

Section 3, which develops the dynamic term structure models that allow intricate dynamic interactions be-

tween interest-rate risk, credit risk, and liquidity premia. Section 4 describes our model estimation strategy.

Section 5 discusses the estimation results. Section 6 concludes.

1. Background Information on Credit Default Swap Spreads

A credit default swap is an over-the-counter contract that provides protection against credit risk. The pro-

tection buyer pays a fixed fee or premium, often termed as the “spread,” to the seller for a period of time. If

a certain pre-specified credit event occurs, the protection seller payscompensation to the protection buyer.

A credit event can be a bankruptcy of the reference entity, or a default of a bond or other debt issued by the

reference entity. If no credit event occurs during the term of the swap, the protection buyer continues to pay

the premium until maturity.

The premium paid by the protection buyer to the seller is quoted in basis points per annum of the

contract’s notional value and is usually paid quarterly. There are no limits onthe size or maturity of CDS

contracts. However, most contracts are $10 million in notional. Maturity usuallyranges from one to ten

years, with the five-year maturity being the most common maturity.

Although the risk profile of a CDS is similar to that of a corporate bond of the reference entity, there are

several important differences. A CDS does not require an initial funding, which allows leveraged positions.

A CDS transaction can be entered where a cash bond of the reference entity at a particular maturity is not

available. Furthermore, by entering a CDS contract as a protection seller,an investor can easily create a

short position in the reference credit. With all these attractive attributes, trading activities on CDS contracts

have proliferated during the past few years.
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This explosive development can be attributed to four sets of players. Thelargest players in the CDS

market are commercial banks. Traditionally, a bank’s business involves credit risk since the bank originates

loans to corporations. The CDS market offers a bank an attractive way totransfer the credit risk without

removing assets from its balance sheet and without involving borrowers.Furthermore, a bank may use CDS

contracts to diversify its portfolios, which often are concentrated in certain industries or geographic areas.

Banks are the net buyers of credit derivatives. According to Fitch’s2003 survey, global banks hold net

bought positions of $229 billion in credit derivatives, with gross sold positions of $1,324 billion.

On the other hand, insurance companies are increasingly becoming dominant participants in the CDS

market, primarily as protection sellers, to enhance investment yields. Globally,insurance companies have

net sold positions of $137 billion in 2003. Other players include financial guarantors, who are also big

proection sellers, have net sold positions of $166 billion. Global hedge funds are also rumored to be active

players in the CDS market, although their activities are opaque and not detected on any survey’s radar screen.

Sovereign names were prevalent as reference entities in the early days of the CDS market, but the shares

of sovereigns as reference entities have declined from over 50 percent in 1997 to less than 10 percent by

2003. In contrast, corporate reference entities have become more common, accounting for over 70 percent

of all reference entities in 2003. This shift in reference entities reflects the rapid growth of the corporate

bond market after the mid-1990s.

Given the nascent nature of the CDS contracts, academic studies using CDS data are relatively few. Our

work constitutes the first comprehensive analysis of the joint term structure of interest rates, credit spreads,

and liquidity premia using the CDS data. In related studies, Skinner and Diaz (2003) look at early CDS

prices from September 1997 to February 1999 for 31 CDS contracts. They compare the pricing results

of the Duffie and Singleton (1999) and Jarrow and Turnbull (1995) models. Blanco, Brennan, and Marsh

(2004) compare the CDS spreads with credit spreads derived from corporate bond yields and find that overall

the two sources of spreads match each other well. When the two sources ofspreads deviate from each other,

they find that CDS spreads have a clear lead in price discovery. Longstaff, Mithal, and Neis (2005) regard

the spread from the CDS prices as purely due to credit risk and use it as abenchmark to identify the liquidity

component of corporate yield spreads. They find that the majority of the corporate spread is due to credit

spread. In addition to comparing bond spreads and CDS spreads, Hull, Predescu, and White (2004) examine
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the relation between the CDS spreads and announcements by rating agencies. Zhang (2005) uses sovereign

CDS to study the case of Argentine default. Cremers, Driessen, Maenhout, and Weinbaum (2004) analyze

the link between CDS spreads and stock option prices.

2. Data and Evidence

The CDS data are from JP Morgan Chase. They are daily CDS spread quotes on seven fixed maturities

at one, two, three, four, five, seven, and ten years from May 21, 2003 to May 12, 2004 on each reference

company. We obtain the credit rating information on each reference company from Standard & Poors, and

its sector information from Reuters, publicly available on Yahoo.

The data set includes 592 reference companies, 409 of which have the relevant information for credit

rating and industry sector available. We classify these companies into two broad industry sectors: financial

and corporate. Within each sector, we further classify the companies into five credit rating classes: (1) AA

and above, (2) A, including A+ and A-, (3) BBB, including BBB+ and BBB-, (4) BB, including BB+ and

BB-, and (5) B and below. Furthermore, the CDS data show substantial differences in updating frequency.

Within each industry sector and credit rating class, active quote updates are concentrated on only a few

reference companies. To compare the quoting activity across differentfirms and during different time peri-

ods, we first expand each series into daily frequency by filling missing datapoints with previously available

quotes. Then, we take daily differences. If the quotes are not updatedbetween two consecutive days, the

daily differences would be zero. Thus, we use the number of days that have non-zero daily quote differ-

ences to capture the quote updating frequency for a certain CDS series during a specific time period. As in

Collin-Dufresne, Goldstein, and Martin (2001), we use this measure as a proxy for liquidity.

To obtain a general idea on how the CDS spreads vary across different industry sectors, credit rating

classes, CDS maturities, and quoting frequencies, we estimate a series of panel regressions:

Average CDS Spreads(i, t, t +n) = a0 +a1 RatingA(i, t, t +n)+a2 RatingBBB(i, t, t +n)

+a3 RatingBB(i, t, t +n)+a4 RatingB(i, t, t +n)+a5 Industry(i)

+a6 Maturity(i)+a7 Updates(i, t, t +n)+e(i, t, t +n), (1)
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wherei refers to a specific CDS series,[t, t + n] denotes the sample averaging period,Ratingj , with j =

A,BBB,BB,B are dummy variables that are equal to one when the reference company has a j-credit rating

during the specified sample period and zero otherwise,3 the Industrydummy variable is one for financial

firms and zero for non-financial firms,Maturity is in number of years, andUpdatesdenotes the number of

quote updates for the series under the specified time period. We estimate the panel regression with different

averaging periods ofn = 30,60,90,120,150,255 days. In the case ofn = 255, we average across the whole

sample and hence the regression becomes purely cross-sectional. To make full use of the data, we generate

the average spreads with overlapping sample periods. We estimate equation (1) using the generalized method

of moments, with the weighting matrix computed according to Newey and West (1987) and the lags chosen

optimally according to Andrews (1991) based on an VAR(1) specification.Table 1 reports the estimates and

the absolute magnitudes of thet-statistics (in parentheses) of the panel regressions. The regressionis based

on 409 reference companies and across seven fixed maturities. Nevertheless, not all companies have CDS

quotes available across all seven maturities and over the whole sample periods. The last column in Table 1

reports the actual sample size (N) for each regression.

The estimates are relatively stable across different averaging periods (n). The estimates on the credit

rating dummy variables (a1 to a4) become increasingly positive as the rating declines. Hence, as expected,

the average CDS spreads are higher for lower-credit rating groups.The estimates for the industry dummy

variable (a5) are significantly positive except for the purely cross-sectional regression, the coefficient of

which becomes negative but insignificant. The positive estimates suggest that on average financial firms

have higher CDS spreads than non-financial firms. The slope estimates onthe maturity variable (a6) are all

significantly positive, indicating that the mean term structure of the CDS spreads is upward sloping. Finally,

the slope estimates on the updating frequency (a7) are positive and highly significant, indicating that firms

with more frequently updated CDS quotes also have higher CDS spreads. This last piece of evidence is

interesting as it points to a liquidity effect on credit spreads that is different from what is observed from

corporate bonds, if we regard the updating frequency as a liquidity measure. It has been documented that

low-liquidity corporate and Treasury bonds are priced with a discount and hence with a higher yield (Amihud

and Mendelson (1991) and Collin-Dufresne, Goldstein, and Martin (2001)). The estimates ona7 indicate an

3If a company experiences rating migrations during(t, t +n), we exclude the company from the regression for this period.
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opposite liquidity effect on the CDS spreads: The spreads are higher for more frequently updated and hence

more liquid contracts.

To further control the difference in credit default probabilities not captured by the discrete rating classi-

fication, we compute a “distance to default” (DD) measure according to the Moody’s KMV default model.

For this calculation, we use COMPUSTAT quarterly data for the matching sampleperiod to obtain each

company’s book values of various liabilities, from which we compute a one-year equivalent debt (D) as half

of the short-term liabilities and total liabilities. We use weekly equity price and number of shares outstand-

ing data from CRSP daily files from January 2001 to May 12, 2004 to obtain the market value of equity (VE)

and its volatility (σE). Then, we solve for the firm value (VA) and its standard deviation (σA) through the

following two equations:

VE = VAN(d1)−De−rT N(d2), σE = σA
VA

VE
N(d1), (2)

where

d1 =
lnVA/D+(r +σ2

A/2)T

σA
√

T
, d2 = d1−σA

√
T.

The distance to default is computed as

DD =
VA−D

VAσA
√

T
. (3)

With the computed distance to default, we re-estimate the cross-sectional regression with DD as an addi-

tional explanatory variable:

Average CDS Spreads(i) = a0 +a1 RatingA(i)+a2 RatingBBB(i)+a3 RatingBB(i)

+a5 Industry(i)+a6 Maturity(i)+a7 Updates(i)+a8 DD(i)+e(i). (4)

We find the relevant information to compute the distance to default on 207 companies, none of which belong

to the last credit rating class (B and below). Hence, we no longer have thedummy variable for the B rating

class. The results for this regression are reported in the last two rows ofTable 1. The DD variable generates

a significantly negative coefficient, suggesting that the CDS spread declines with increasing distance to

default. Nevertheless, the addition of the distance to default variable doesnot change the sign of other
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coefficients. The coefficient on the industry sector becomes positive but remains insignificant, indicating

that the industry sector effect is not as strong as other effects. Importantly, the positive effect of updating

frequency on the CDS spreads remains strong after controlling for variations in distance to default.

Based on the regression results, we classify the reference companies according the following three di-

mensions: (i) two broad industry classifications: financial and corporate, (ii) two broad credit rating groups:

A (including A+ and A-) and BBB (including BBB+ and BBB-), and (iii) two liquidity groups: high and

low. We classify a firm into the high-liquidity group if the quotes on the firm haveno fewer than 364 total

updates, corresponding to an average of one update per series per week. The low liquidity groups contains

firms with less than 364 total updates, but no fewer than 182 quote updates,corresponding to an average

updating frequency of at least once per series every two weeks. Then, at each date and maturity, we average

the spread quotes across all the firms with each industry sector, credit rating class, and liquidity group. We

estimate the credit risk dynamics using the time series of these average CDS spreads on the seven maturities.

For this classification and averaging, we discard firms with quotes less than 182 total updates because we

regard these quotes as too illiquid to be informative. We also discard firms with credit ratings higher than

A and lower than BB because we do not have enough companies within thesecredit rating classes to make

classifications along the industry and liquidity dimensions.

Figure 1 plots the time series of the average credit default swap spreads at each industry sector and credit

rating class, with left panels for high-liquidity firms and right panels for low-liquidity firms. The seven lines

in each panel correspond to the seven fixed maturities from one to ten years. The spreads were high during

the start of our sample following the high default year of 2002. The spreads have declined since then, but

have experienced significant variations during our sample period.

[Figure 1 about here.]

From Figure 1, we observe stronger co-movements between the spreadsfrom the two rating groups

within each industry sector than across the two industry sectors, evidenceof common shocks within each

industry sector. Within each industry sector, spreads on the BBB rating class are higher than the correspond-

ing A group, corresponding to the higher default probabilities for the lower rating class. For each industry

sector and credit rating class, high-liquidity firms have markedly higher spreads on low-liquidity firms. The
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last two observations are consistent with our regression analysis results. Overall, the time-series plots show

that the behaviors of CDS spreads vary significantly across the three dimensions: industry sector, credit

rating, and liquidity.

Figure 2 plots the term structure of the CDS spreads at different dates. During our sample period,

the CDS spreads mostly show upward sloping term structures, generating the positive coefficient (a6) on

maturity in the regression analysis. Within each industry sector and rating class, we find that high-liquidity

firms not only have wider CDS spreads, but also steeper term structures.

[Figure 2 about here.]

Table 2 reports the summary statistics of the average CDS spreads at the seven fixed maturities under

each industry sector, credit rating class, and liquidity group. The mean spreads are higher at longer maturities

and hence show upward-sloping mean term structures in all groups. Withineach sector and rating class, the

high-liquidity group generates much higher mean spreads than the low-liquiditygroup. The differences are

especially large in the financial sector, where the mean spreads on the high-liquidity groups approximately

double the mean spreads on the corresponding low-liquidity groups. Across the two credit rating classes,

the mean spreads are larger for the BBB class than for the A class. The differences are again larger for the

financial sector than for the corporate sector.

The standard deviations of the spreads at various maturities is upward sloping for financial sector and

A rating class, but either downward sloping or hump-shaped for other groups. The skewness and excess

kurtosis estimates are mostly small. The daily autocorrelation estimates are between0.96 to 0.99, showing

that the spreads are highly persistent.

To obtain the benchmark libor interest rate dynamics, we also download fromBloomberg the eurodollar

libor and swap rates that match the maturity and sample period of the credit default swap spreads data.

Table 3 reports the summary statistics of the 12-month libor and swap rates at maturities of two, three, four,

five, seven, and ten years. The libor and swap rates are relatively low during our sample period, averaging at

1.39 percent for the 12-month libor and from 2.02 to 4.5 percent for the swap rates, generating an upward-

sloping mean term structure. The standard deviations of the swap rates at different maturities are close to

one another at around 0.4, but the standard deviation of the 12-month liboris about half as much. The
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skewness estimates are small, positive for the libor and negative for the six swap rates. The excess kurtosis

estimates for the swap rates are small, but the estimate for the libor is relatively large at 1.95. The daily

autocorrelation is about 0.96 for all the six swap rates, slightly lower at 0.95for the libor.

3. A Dynamic Term Structure Model of Interest Rate, Default, and Liquidity

We value the credit default swap contract using the framework of Duffieand Singleton (1999), and Duffie,

Pedersen, and Singleton (2003). First, we usert to denote the instantaneous benchmark interest rate. Histor-

ically, researchers often use Treasury yields to define the instantaneous interest rate and the benchmark yield

curve. Houweling and Vorst (2003) perform daily calibration of reduced-form models using credit default

swap spreads and find that eurodollar swap rates are better suited than the Treasury yields in defining the

benchmark yield curve. Here, we define the benchmark instantaneous interest rate based on the eurodollar

libor and swap rates. Libor and swap rates contain a credit-risk component. Using them as benchmarks, the

estimated credit risk can be regarded as relative credit risk.

Second, we use{λi
t}n

i=1 to denote the intensity of a Poisson process that governs the default of a reference

entity i. By modeling the dynamics of the Poisson intensitiesλi and their interactions with the benchmark

interest rates, we determine the term structure of credit default swap spreads for the high-liquidity group for

each industry sector and credit rating classi.

Third, we use{qi
t}n

i=1 to denote an instantaneous liquidity spread that captures the liquidity difference

between the low-liquidity group and the high-liquidity group within each credit rating and industry classi.

To study whether the two liquidity groups also differ in credit risk, we also incorporate an additional credit

risk componentmi
t for the low-liquidity group.

Formally, let(Ω,F ,(F t)t≥0,Q) be a complete stochastic basis andQ be a risk-neutral probability mea-

sure. Under this measureQ, the fair value of a benchmark zero-coupon bond with maturityτ relates to the

instantaneous benchmark interest rate dynamics by,

P(τ) = E

[

exp

(

−
Z τ

0
rudu

)]

, (5)
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whereE [·] denotes the expectation operator under the risk-neutral measureQ. Our notation implicitly states

our focus on time-homogeneous specifications.

We can represent the value of a defaultable coupon-bond in terms of the benchmark instantaneous inter-

est rater and the Poisson intensityλ of the default arrival by,

CB(c,w,τ) = E

[

c
Z τ

0
exp

(

−
Z t

0
(ru +λu)du

)

dt

]

+E

[

exp

(

−
Z τ

0
(ru +λu)du

)]

(6)

+E

[

(1−w)
Z τ

0
λt exp

(

−
Z t

0
(ru +λu)du

)

dt

]

,

wherec denotes the coupon rate andw denotes the loss rate, which is one minus the recovery rate. For

expositional clarity, we assume continuous coupon payments.

For a credit default swap contract, we useS to denote the premium paid by the buyer of default pro-

tection. Assuming continuous payment, we can write the present value of the premium leg of the contract

as,

Premium(τ) = E

[

S
Z τ

0
exp

(

−
Z t

0
(ru +λu)du

)

dt

]

. (7)

Similarly, the present value of the protection leg of the contract is

Protection(τ) = E

[

w
Z τ

0
λt exp

(

−
Z t

0
(ru +λu)du

)

dt

]

. (8)

Hence, by setting the present values of the two legs equal, we can solve for the credit default swap spread as

S=
E

[

w
R τ

0 λt exp
(

−R t
0(ru +λu)du

)

dt
]

E
[R τ

0 exp
(

−R t
0(ru +λu)du

)

dt
] , (9)

which can be thought of as the weighted average of the expected defaultloss. In model estimation, we dis-

cretize the above equation according to quarterly premium payment intervals. Following industry standard,

we fix the recovery rate(1−w) at 40 percent.
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For an inactively traded credit default swap contract, the premium could potentially include a liquidity

component. This liquidity component can also be modeled via an instantaneous liquidity premium spread,

q, which enters the credit default swap spread as follows,

S=
E

[

w
R τ

0 λt exp
(

−R t
0(ru +λu +qu)du

)

dt
]

E
[R τ

0 exp
(

−R t
0(ru +λu +qu)du

)

dt
] . (10)

Under this framework, the benchmark libor and swap rate curve is determined by the dynamics of the

instantaneous benchmark interest rater. The CDS spreads of a certain reference entity are determined by

the joint dynamics of instantaneous benchmark interest rater and the default arrival rateλ. Furthermore,

when the CDS contract is illiquid, the spreads may also include a liquidity premium that is controlled by

the dynamics of the instantaneous liquidity premium spreadq. We specify the three sets of dynamics in the

following subsections.

3.1. Benchmark interest rate dynamics and the term structure

We useX ∈ R2 to denote a two-dimensional vector Markov process that represents the systematic state of

the benchmark yield curve. We assume that under the risk-neutral measure Q, the state vector is governed

by an Ornstein-Uhlenbeck (OU) process,

dXt = (θx−κxXt)dt+dWxt, (11)

whereκ ∈ R2×2 controls the mean reversion of the vector process andκ−1
x θx ∈ R2 controls the long-run

mean. For the OU process to be stationary, the real part of the eigenvalues of κ must be positive. For

identification reasons, we normalize the state vector to have identity diffusion matrix. We also constrainκ

to be a lower triangular matrix. Then, the diagonal values of theκ matrix correspond to its eigenvalues. To

maintain stationarity, we constrain the diagonal values ofκx to be positive in our estimation.

We further assume that the instantaneous benchmark interest rater is affine in the state vectorX,

rt = ar +b⊤r Xt , (12)
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where the parameterar ∈ R is a scalar andbr ∈ R2+ is a vector. Our specifications in (11) and (12) belong

to the affine class of term structure models of Duffie and Kan (1996). Themodel-implied fair value of the

zero-coupon bond with maturityτ is exponential affine in the current level of the state vector,X0,

P(X0,τ) = exp
(

−a(τ)−b(τ)⊤X0

)

, (13)

where the coefficientsa(τ) andb(τ) are determined by the following ordinary differential equations:

a′(τ) = ar +b(τ)⊤θx−b(τ)⊤b(τ)/2,

b′(τ) = br −κ⊤
x b(τ), (14)

subject to the boundary conditionsa(0) = 0 andb(0) = 0. The ordinary different equations can be solved

via standard numerical procedures. Given the solutions to the zero-coupon bonds, the model-implied values

for the libor and swap rates can be computed as

LIBOR(Xt ,τ) =
100

τ

(

1
P(Xt ,τ)

−1

)

, SWAP(Xt ,τ) = 100h× 1−P(Xt ,τ)
∑hτ

i=1P(Xt , i/h)
, (15)

whereτ denotes the time-to-maturity andh denotes the number of payments in each year for the swap

contract. The day counting convention for libor is actual over 360, starting two business days forward. For

the U.S. dollar swap rates that we use, the number of payments is twice per year, h= 2, and the day counting

convention is 30/360.

3.2. Default risk dynamics and the term structure of CDS spreads

We assume that the Poisson arrival rate of default underlying each industry sector and credit rating classi,

λi
t , is governed by a vector of interest-rate factorsX and credit-risk factorsY ∈ Rk:

λi
t = ai +b⊤i Xt +c⊤i Yt , (16)

wherebi ∈R2 denotes the instantaneous response to the two benchmark interest-rate factorsX, andci ∈Rk+

denotes the instantaneous response to the credit-risk factorsY. By allowing the default arrival intensity to
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be an explicit function of the benchmark interest-rate factors, our model specification captures the empirical

evidence that credit spreads are related to interest rate levels. For model estimation, we consider both a one-

factor and a two factor structure of the credit-risk factorsk = 1,2 and compare their relative performance.

We assume the following dynamics for the credit-risk factors under the risk-neutral measureQ,

dYt = (θy−κxyXt −κyYt)dt+dWyt, (17)

where the benchmark interest-rate factorsXt are also allowed to impact subsequent changes in the credit-

risk factors throughκxy ∈ R2×k. Thus, interest rate factors both have a contemporaneous effect on default

arrival rate and affect subsequent changes in the credit-risk factors. For identification, we normalize the

instantaneous covariance ofYt to an identity matrix. In the two-factor specification, we further constrainκy

to be a lower-triangular matrix with positive diagonal values.

The jointQ-dynamics ofZ = [X⊤,Y⊤] ∈ R2+k is, in matrix form,

dZt = (θ−κZt)dt+dWt , with θ =





θx

θy



 , κ =





κx 0

κxy κy



 . (18)

Given this compact specification, the present value of the premium leg of theCDS contract becomes,

Premium(Z0,τ) = E

[

S
Z τ

0
exp

(

−
Z t

0
(ru +λu)du

)

dt

]

= E

[

S
Z τ

0
exp

(

−
Z t

0
(aZ +b⊤Z Zu)du

)

dt

]

(19)

with aZ = ar +ai andbZ = [(br +bi)
⊤,c⊤i ]⊤. The solution is exponential affine in the state vectorZ0,

Premium(Z0,τ) = S
Z τ

0
exp

(

−a(t)−b(t)⊤Z0

)

dt, (20)

where the coefficientsa(t) andb(t) are determined by the following ordinary differential equations:

a′(t) = aZ +b(t)⊤θ−b(t)⊤b(t)/2,

b′(t) = bZ −κ⊤b(t), (21)

subject to the boundary conditionsa(0) = 0 andb(0) = 0.
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The present value of the protection leg becomes,

Protection(Z0,τ) = E

[

w
Z τ

0
λt exp

(

−
Z t

0
(ru +λu)du

)

dt

]

= E

[

w
Z τ

0

(

cZ +d⊤
Z Zt

)

exp

(

−
Z t

0
(aZ +b⊤Z Zu)du

)

dt

]

, (22)

with cZ = ai anddZ = [b⊤i ,c⊤i ]⊤. The solution is (e.g., Duffie, Pan, and Singleton (2000)),

Protection(Z0,τ) = w
Z τ

0

(

c(t)+d(t)⊤Z0

)

exp
(

−a(t)−b(t)⊤Z0

)

dt, (23)

where the coefficients[a(t),b(t)] are determined by the ordinary differential equations in (21) and the coef-

ficients[c(t),d(t)] are determined by the following ordinary differential equations:

c′(t) = d(t)⊤θ−b(t)⊤d(t), d′(t) = −κ⊤d(t), (24)

with c(0) = cZ andd(0) = dZ. The credit default swap spread can then be solved as,

S(Z0,τ) =
w
R τ

0

(

c(t)+d(t)⊤Z0
)

exp
(

−a(t)−b(t)⊤Z0
)

dtR τ
0 exp(−a(t)−b(t)⊤Z0)dt

. (25)

3.3. Liquidity risk and the term structure of liquidity risk p remium

For each industry sector and credit rating class, we further classify thecompanies into high- and low-

liquidity groups based on the quote updating frequency. We first estimate theabove credit-risk factors using

the credit spreads of the high-liquidity group, and then ask whether the difference in credit spreads for the

low-liquidity group is due to different credit risk, liquidity risk, or both.

To answer this question, we introduce both an additional credit-risk spread (mi
t) and a liquidity risk

premium (qi
t) for the low-liquidity group, with the following risk-neutral dynamics,

mi
t = am+cmξi

t , dξi
t =

(

θm−κmξi
t

)

dt+dWmt, (26)

qi
t = aq +bqζi

t , dζi
t =

(

θq−κqζi
t

)

dt+dWqt. (27)
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Then, the time-0 value of the swap spread at maturityτ can be written as

S(Z0,τ) =
E

[

w
R τ

0 (λt +mt)exp
(

−R t
0(ru +λu +mu +qu)du

)

dt
]

E
[R τ

0 exp
(

−R t
0(ru +λu +mu +qu)du

)

dt
] , (28)

whereλt here refers to the high-liquidity group default arrival rate,qt denotes an instantaneous liquidity

spread induced by the liquidity difference between the high- and low-liquiditygroup, andmt captures the

difference in default arrival between the high- and low-liquidity group.Thus,λt +mt represents the default

arrival intensity of the low-liquidity group.

We further expand the definition of the state vectorZ = [X⊤,Y⊤,ξ,ζ] ∈ R4+k, with

θ =



















θx

θy

θm

θq



















, κ =



















κx 0 0 0

κxy κy 0 0

0 0 κm 0

0 0 0 κq



















,

so that we can write the present values of the premium and protection legs ofthe swap contract in analogous

forms to equations (19) and (23):

S(Z0,τ) =
E

[

w
R τ

0

(

cZ +d⊤
Z Zt

)

exp
(

−R t
0(aZ +b⊤Z Zu)du

)

dt
]

E
[R τ

0 exp
(

−R t
0(aZ +b⊤Z Zu)du

)

dt
] . (29)

Thus, the solution also takes the same form as in equation (25), with the following redefinitions induced by

the state vector expansions:

aZ = ar +ai +am+aq, bZ = [(br +bi)
⊤,c⊤i ,cm,bq]

⊤,

cZ = ai +am, dZ = [b⊤i ,c⊤i ,cm,0]⊤.
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3.4. Market prices of risks

Our estimation identifies both the risk-neutral and the statistical dynamics of the interest-rate, credit-risk,

and liquidity-risk factors. To derive the statistical dynamics, we assume an affine market price of risk on all

the risk factors,

γ(Zt) = γ0 + 〈γ1〉Zt (30)

with γ0 andγ1 are both vectors of the relevant dimension and〈·〉 denotes a diagonal matrix, with the diagonal

elements given by the vector inside. The affine market price of risk specification dictates that the state vector

Zt remains Ornstein-Uhlenbeck under the statistical measureP, but with an adjustment to the drift term,

dZt =
(

θ+ γ0−κPZt

)

dt+dWt , κP = κ− γ1. (31)

For stationarity, we also constrain the diagonal elements ofκP to be positive. For identification, we normal-

ize the long-run mean of the state vectorZ to zero under the statistical measureP so thatθ = −γ0.

3.5. Nonlinear interest-rate and default arrival dynamics: A quadratic specification

The affine framework employed in the above specifications enjoys great analytical tractability and popular-

ity. Nevertheless, several studies identify nonlinearity in interest rate dynamics, e.g., Äıt-Sahalia (1996a,b),

Hong and Li (2005), and Stanton (1997). In this subsection, we propose an alternative class of models

that are equally tractable but can generate richer nonlinear interest-rateand default arrival dynamics. While

maintaining the same factor dynamics, we now let the instantaneous interest rateand credit spread be a

quadratic function of the factors:

rt = ar +X⊤
t 〈br〉Xt , λi

t = ai +X⊤
t 〈bi〉Xt +Y⊤

t 〈ci〉Yt . (32)
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The quadratic specification in (32) has the same number of model parametersas the previous affine specifi-

cation. According to Leippold and Wu (2002), the benchmark zero-coupon bond price becomes exponential

quadratic in the state vector,

P(X0,τ) = exp(−a(τ)−b(τ)⊤X0−X⊤
0 B(τ)X0), (33)

with the coefficients solving the following ordinary differential equations,

a′(τ) = ar +b(τ)⊤θx +trB(τ)−b(τ)⊤b(τ)/2,

b′(τ) = 2B(τ)θx−κ⊤
x b(τ)−2B(τ)b(τ),

B′(τ) = 〈br〉−B(τ)κx−κ⊤
x B(τ)−2B(τ)2,

(34)

starting atB(0) = 0, b(0) = 0 anda(0) = 0.

Analogously, we can derive the credit default swap premium as

S(Z0,τ) =
w
R τ

0

(

c(t)+d(t)⊤Z0 +Z⊤
0 D(t)Z0

)

exp
(

−a(t)−Z⊤
0 b(t)Z0

)R τ
0 exp

(

−a(t)−b(t)⊤Z0−Z⊤
0 B(t)Z0

) , (35)

with the coefficients solving the following ordinary differential equations:

a′(τ) = aZ +b(τ)⊤θ+trB(τ)−b(τ)⊤b(τ)/2,

b′(τ) = lZ +2B(τ)θ−κ⊤b(τ)−2B(τ)b(τ),

B′(τ) = 〈bZ〉−B(τ)κ−κ⊤B(τ)−2B(τ)2,

c′(t) = d(τ)⊤θ+trD(τ)−d(τ)⊤b(τ),

d′(t) = 2D(t)θ−κ⊤d(t)−2D(t)b(t)−2B(t)d(t),

D′(t) = −D(t)κ−κ⊤D(t)−4B(t)D(t),

(36)

starting ata(0) = 0, b(0) = 0, B(0) = 0, c(0) = cZ, d(0) = 0, andD(0) = 〈dZ〉. In equation (36),lZ is a

vector of zeros, which will become nonzero in the presence of linear liquidity or credit risk factors. The

details of the derivation are available upon request.

Since the signs of the idiosyncratic credit risk premium (mt) and the idiosyncratic liquidity premium

(qt) can be either negative or positive, it is appropriate to maintain the original Gaussian affine assumption
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on both. In the presence of these two risk factors, the pricing formula forthe credit default swap retains

the same form as in (35), only with a corresponding expansion on the state vector Z = [X⊤,Y⊤,ξ,ζ]⊤

and the following redefinitions on the coefficients:aZ = ar + ai + am+ aq, lZ = [0,0,cm,bq]
⊤, bZ = [(br +

bi)
⊤,c⊤i ,0,0]⊤, cZ = ai + am, anddZ = [b⊤i ,c⊤i ,0,0]⊤. Furthermore, the initial condition ond(0) adjusts

from zero tod(0) = [0,0,cm,0]⊤.

4. Estimation Strategy

We estimate the dynamics of benchmark interest-rate risk, credit risk, and liquidity risk in three consecutive

steps, all using a quasi-maximum likelihood method. At each step, we cast the models into a state-space

form, obtain efficient forecasts on the conditional mean and variance of observed interest rates and credit

default swap spreads using an efficient nonlinear filtering technique, and build the likelihood function on the

forecasting errors of the observed series, assuming that the forecasting errors are normally distributed. The

model parameters are estimated by maximizing the likelihood function.

In the first step, we estimate the interest-rate factor dynamics using libor and swap rates. In the state-

space form, we regard the two interest-rate factors (X) as the unobservable states and specify the state-

propagation equation using an Euler approximation of statistical dynamics of the interest-rate factors em-

bedded in equation (31):

Xt = ΦxXt−1 +
√

Q xεxt, (37)

whereΦx = exp(−κP
x ∆t) denotes the autocorrelation matrix ofX, Q x = I∆t denotes the instantaneous co-

variance matrix ofX, with I denoting an identity matrix of the relevant dimension and∆t = 1/252 denot-

ing the daily frequency, andεxt denotes a two-dimensional i.i.d. standard normal innovation vector. The

measurement equations are constructed based on the observed libor andswap rates, assuming additive,

normally-distributed measurement errors,

yt =





LIBOR(Xt , i)

SWAP(Xt , j)



+et , cov(et) = R ,
i = 12 months,

j = 2,3,4,5,7,10 years.
(38)
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In the second step, we take the estimated interest-rate factor dynamics in the first step as given, and

estimate the credit-risk factor dynamics (Y) at each industry sector and credit rating class using the seven

average credit default swap spread series for the high-liquidity groups. The state-propagation equation is an

Euler approximation of statistical dynamics of the credit-risk factors embedded in equation (31):

Yt = ΦyYt−1 +
√

Q yεyt, (39)

with Φy = exp(−κP
y ∆t), Q y = I∆t, andεyt being ak-dimensional i.i.d. standard normal innovation vector.

We estimate models with bothk = 1 andk = 2. The measurement equations are defined on the CDS spreads

at the seven maturities,

yt = S(Xt ,Yt ,τ, i)+et , cov(et) = R ,τ = 1,2,3,4,5,7,10 years, (40)

wherei = 1,2,3,4 denotes theith industry sector and credit rating class. We repeat this step eight times, for

both one and two credit risk factors and for each of two industry sectorsand two credit rating classes.

In the third step, we estimate the additional credit-risk factor (mt) and liquidity-risk factor (qt) dynamics

for each industry sector and credit rating class using the CDS spreads on the low-liquidity firms. The state-

propagation equation is an Euler approximation of the factor dynamics in (26)and (27):





ξt

ζt



 = Φq





ξt−1

ζt−1



+
√

Qqεqt, (41)

with Φq = 〈exp(−κP
m∆t),exp(−κP

q∆t)〉, Qq = I∆t, andεqt being a two-dimensional i.i.d. standard normal

innovation vector. The measurement equations are on the seven averageCDS spreads for the low-liquidity

firms at each industry and credit rating classi,

yt = S(Xt ,Yt ,ξt ,ζt ,τ, i)+et , cov(et) = R , τ = 1,2,3,4,5,7,10 years. (42)

We repeat this step on each of two industry sectors and two credit rating classes.
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Given the definition of the state-propagation equation and measurement equations at each step, we use

an extended version of the Kalman filter to filter out the mean and covariance matrix of the state variables

conditional on the observed series, and construct the predictive mean and covariance matrix of the observed

series based on the filtered state variables. Then, we define the daily log likelihood function assuming

normal forecasting errors on the observed series:

lt+1(Θ) = −1
2

log
∣

∣Vt+1
∣

∣− 1
2

(

(yt+1−yt+1)
⊤ (

Vt+1
)−1

(yt+1−yt+1)
)

, (43)

wherey andV denote the conditional mean and variance forecasts on the observed series, respectively. The

model parameters,Θ, are estimated by maximizing the sum of the daily log likelihood values,

Θ ≡ argmax
Θ
L (Θ,{yt}N

t=1), with L (Θ,{yt}N
t=1) =

N−1

∑
t=0

lt+1(Θ), (44)

whereN = 256 denotes the number of observations for each series. For each step, we assume that the

measurement errors on each series are independent but with distinct variance.

5. Term Structure of Interest Rates, Credit Spreads, and Liquidity Premia

First, we summarize the performance of the different dynamic term structuremodels in pricing interest rates

and credit default swap spreads. Then, from the estimated model parameters we analyze the dynamics and

pricing of benchmark interest-rate risk, credit risk, and liquidity risk, andtheir impacts on the term structure

of interest rates, credit spreads, and liquidity premia.

5.1. Model performance

Table 4 reports the summary statistics on the pricing errors of libor and swap rates under the two-factor affine

and quadratic model specifications. The affine model explains the swap rates well, but fails miserably in

explaining the 12-month libor. The discrepancy between libor and swap rates is well known in the industry.

Nevertheless, the very poor performance reveals some deficiency of the two-factor affine specification. In

contrast, the quadratic model performs much better on the libor series. Its performance across the six swap
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rates is also more uniform. Thus, the richer, nonlinear dynamic specificationof the quadratic model captures

the joint term structure of the libor and swap rates better.

The maximized log likelihood values (L ) are 5067.1 for the affine model and 5229.7 for the quadratic

model, also indicating superior performance from the quadratic model. Sincethese two models are not

nested, we cannot employ the standard likelihood ratio tests to gauge the significance of the likelihood

difference. Nevertheless, we follow Vuong (1989) in constructing a statistic based on the difference between

the daily log likelihood values from the two non-nested models:

lr t = lQ
t − lA

t (45)

where lQ
t and lA

t denote the time-t log likelihood value of the quadratic and affine models, respectively.

Vuong constructs a statistic based on the likelihood ratio:

M =
√

Tµlr /σlr , (46)

whereµlr andσlr denote the sample mean and standard deviation of the log likelihood ratio. Underthe null

hypothesis that the two models are equivalent, Vuong proves thatM has an asymptotic normal distribution

with zero mean and unit variance. We construct the log likelihood ratio, and estimate the sample mean

at 0.6352, and sample standard deviation at 3.0054. The standard deviation calculation adjusts for serial

dependence according to Newey and West (1987), with the number of lags chosen optimally according to

Andrews (1991) based on an AR(1) specification. TheM -statistic is estimated at 3.38, indicating that the

quadratic model performs significantly better than the affine model in explaining the benchmark libor term

structure.

Table 5 reports the summary statistics of the pricing errors of the credit default swap spreads on the

high-liquidity firms using one credit risk factor for both the affine and the quadratic specifications. The

affine model provides an almost perfect fit for the four-year CDS spread, but the performance deteriorates

toward both short (one year) and long (ten year) maturities. In contrast,the performance of the quadratic

specification is more uniform across different maturities. Under the quadratic specification, one credit risk

factor, together with the previously identified two benchmark interest-rate factors, can explain all CDS
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spread series by over 90 percent. The one-factor quadratic model also generates higher likelihood values

than the corresponding affine model for each of the four industry sector and credit rating classes, but the

differences are not statistically significant in terms of the Vuong (1989) statistic.

For comparison, we also estimate models with two credit-risk factors. Table 6 reports the summary sta-

tistics of the pricing errors. Adding one additional credit risk factor significantly improves the performance

of the affine model at the two ends of the CDS term structure. Two affine factors explain over 98 percent

of the credit spread variations except for one series. With the quadraticspecification, since one credit risk

factor performs reasonably well, adding another credit-risk factor does not generate as much improvement.

With two credit-risk factors, the maximized likelihood values from the affine andquadratic specifications

are close to one another. The quadratic specification no longer dominates the affine specification.

To account for the different movements of CDS spreads for the low-liquidity firms, we introduce an

additional credit-risk factor and a liquidity factor in addition to the two benchmark interest-rate factors

and the two credit-risk factors identified from the CDS spreads on high-liquidity firms. Table 7 reports the

summary statistics of the pricing errors on the CDS spreads for the low-liquidityfirms. These two additional

factors can explain most of the different variations in the low-liquidity groups. Most series can be explained

over 95 percent.

Overall, two interest-rate factors, especially in the quadratic forms, can explain the term structure of

the benchmark interest rates well. Two additional credit-risk factors are more than enough to explain the

term structure of credit spreads for high-liquidity firms under each industry sector and rating class. Finally,

by incorporating an additional credit risk factor and a liquidity risk factor,the model also performs well in

explaining the term structure of credit spreads on low-liquidity firms

5.2. Dynamics and term structure of benchmark interest rates

Table 8 reports the parameter estimates and the absolute magnitudes of thet-statistics (in parentheses) that

govern the dynamics and term structure of benchmark libor and swap rates. Under both affine and the

quadratic specifications,κx determines the mean-reversion of the interest-rate factorX under the risk-neutral

measureQ. The small estimates on the diagonal elements ofκx capture the persistence of interest rates. The
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significantly negative estimates on the off-diagonal element suggest that positive shocks to the first factor

impact positively on subsequent moves in the second factor.

The estimates for the constant part of the market price of riskγx0 are negative for both factors under

the affine model. Under the quadratic model, the market price is positive on thefirst factor and negative

on the second factor. The proportional coefficients estimates,γx1, are small and not statistically different

from zero for both factors under the affine specification, indicating thatthe market price of risk does not

vary significantly with the factor level. The estimates under the quadratic modelare also small and only

statistically significant for the first factor.

The estimates onbr capture the contemporaneous impact of the two interest-rate factors on the in-

stantaneous interest rate. Under both models, the estimates suggest that thesecond factor has a stronger

contemporaneous impact on the instantaneous interest rate. The coefficients interact with the risk-neutral

factor dynamics (κx) to determine the response of the whole yield curve to unit shocks from the interest-rate

factors. Under the affine model, the contemporaneous responses of thecontinuously compounded spot rate

to the two dynamic factors are linear, witha(τ)/τ measuring the mean term structure andb(τ)/τ measuring

the response coefficients. Equation (14) shows howar , γx0, br , andκ interact to determinea(τ) andb(τ).

Figure 3 plotsa(τ)/τ (left panel) andb(τ)/τ (right panel) as a function of maturityτ under the affine model.

The solid line in the left panel shows an upward sloping mean term structure.In the right panel, the solid line

represents the first element ofb(τ)/τ, which captures the contemporaneous response of the spot rate curve

to the first interest-rate factor. This factor’s impact is stronger at longermaturities than at shorter maturities.

The dashed line plots the impact of the second factor, which is stronger at the short end of the yield curve.

The different impulse-response patterns relate not only to the differentmagnitudes of the two elements of

the br estimates, but also to the difference in risk-neutral persistence between the two factors. Under the

affine model, the first factor is estimated to be more persistent than the secondfactor. Hence, the impact of

the first factor extends to longer maturities.

[Figure 3 about here.]
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5.3. Default arrival dynamics and the term structure of credit spreads

Tables 9 and 10 report the parameter estimates andt-statistics on the dynamics and pricing of the default

arrival rate for high-liquidity firms under each industry sector and credit rating class. Tables 9 reports

estimates on the one-factor credit-risk specification. Tables 10 reports estimates on the two-factor credit-

risk specification. The two tables reveal several common features aboutthe default arrival rate dynamics.

First, the default arrival intensity shows intricate dynamic interactions with theinterest-rate factors.

The κxy matrix captures the predictive power of interest-rate factors on the default risk factors, whereas

the bi vector captures the contemporaneous impact of the interest-rate factors on the default arrivalλi .

Estimates on both sets of parameters are significant in most cases, indicating that the interest-rate factors

both predict default arrivals via the drift dynamicsκxy and impact the default arrivals contemporaneously

via the coefficientsbi .

Second, the estimates onκy under the one-factor affine model are very small and not significantly dif-

ferent from zero. Under the two-factor affine specification, the estimates for one of the diagonal elements

of κy are close to zero. The small estimates indicate a near unit root behavior forthe credit risk dynamics.

The estimates under the quadratic specification are larger and also with betterprecision (largert-values).

Thus, with a nonlinear structure under the quadratic model, we can more accurately identify a more station-

ary credit-risk dynamics, while delivering a better and more uniform pricingperformance on CDS spreads

across all maturities.

Nevertheless, we also observe that the credit-risk dynamics and the market prices vary significantly

across different industry sectors and rating classes. These different dynamics and pricing generate distinct

term structure behaviors for the CDS spreads. Based on the model parameter estimates for the two-factor

affine credit-risk specification in Table 10, we computebi(τ)/τ as a function of maturityτ. Figure 4 plots the

third (solid lines) and fourth (dashed lines) elements ofbi(τ)/τ under each industry sector and rating class.

These two lines represent the contemporaneous response of the continuously compounded spot rate to unit

shocks in the two credit-risk factors. Since the credit-risk factors do notenter the benchmark interest-rate

curve, the lines also directly measure the impact on the credit spread between the corporate spot rate and the

libor spot rate.
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[Figure 4 about here.]

Under all four industry and credit rating classifications, the contemporaneous impacts of the two credit-

risk factors are downward sloping along the term structure of credit spreads. Nevertheless, the impact

patterns show noticeable differences between the financial and corporate sectors. The factor responses in

the financial sector present an exponential decay with increasing maturities, but in the corporate sector the

responses are approximately linear along the term structure. Furthermore, the loading differences between

the two credit rating classes are much larger in the financial sector than in thecorporate sector, suggest-

ing that financial firms are more sensitive to rating changes between A and BBB classes. A lower rating

generates much larger spreads for the financial firms.

5.4. Liquidity risk and liquidity premia

The liquidity of the CDS contracts as revealed by the quote updating frequency varies greatly across different

reference companies. Within each industry sector and credit rating class, the liquidity is concentrated on a

few firms. An important question is what makes investors concentrate the trading on one company versus

another. Also important is to understand whether and how the liquidity difference impacts the pricing of

CDS contracts.

Table 11 reports the parameter estimates andt-statistics (in parentheses) on the additional credit-risk

factor and the liquidity-risk factor that account for the different movements of the CDS spreads underlying

the low-liquidity firms. The loading parameter estimates on the additional credit-risk factor (cm) are strongly

significant, showing that the default arrival rates for firms in the low-liquidity groups have their own move-

ments that are independent of the default arrival dynamics identified from the corresponding high-liquidity

group within the same industry sector and credit rating class.

The estimates on the interceptam are negative under all four classifications and for both model spec-

ifications. The negative intercept estimates suggest that firms in the low-liquidity group on average have

lower default risk and hence experience lower instantaneous credit spreads than firms in the corresponding

high-liquidity group. This observation is intriguing. It implies that, within the same industry and credit rat-

ing class, firms with active CDS trading activities are associated with higher perceived credit risk than firms
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with less active CDS trading activities. Either investors choose to trade CDS contracts on firms that they

perceive to have higher chances of downward rating migrations, or thathigh-profile firms generate more

awareness of its potential risk of default.

The instantaneous loading estimates on the liquidity-risk factor (bq) are large in magnitudes and also

highly significant, showing that liquidity plays a key role in the credit spread differences between the two

liquidity groups. The intercept estimates onaq are all positive, suggesting a higher discounting for the low-

liquidity contracts. Therefore, the lower average CDS spreads on low-liquidity firms can be attributed to a

combination of low credit risk and high liquidity discounting.

The estimates onκm, which measures the risk-neutral mean-reversion behavior of the credit-risk factor,

are very small, suggesting that this credit-risk factor has highly persistentrisk-neutral dynamics, similar to

the credit-risk factors identified from the high-liquidity groups. Hence, thiscredit-risk factor impacts the

term structure of credit spreads across all maturities.

In contrast, the estimates on the risk-neutral mean-reversion parameterκq for the liquidity-risk factor are

much larger and are highly significant, suggesting that the liquidity-risk factor has a more transient impact

on the term structure of discounting. Based on the parameter estimates, Figure 5 plots the contemporaneous

response of the continuously compounded spot rates to unit shocks from the additional credit-risk factor

(solid lines, in basis points) and the liquidity-risk factor (dashed lines, in percentage points) under the affine

specification. Consistent with the difference in dynamics, the response patterns on the two factors are

quite different. The impacts of the persistent credit-risk factor are relatively uniform across the whole term

structure, whereas the impacts of the more transient liquidity-risk factor decline steadily as the maturity

increases.

[Figure 5 about here.]

The market also prices the credit-risk factor and liquidity-risk factor differently. The estimates forγm0

are negative and statistically significant in most cases, indicating that this additional credit-risk factor has a

negative market price of risk. The negative market price of risk implies a positive risk-neutral drift (θ) for

the credit-risk factor. As suggested by the ordinary differential equations in (21), a positiveθ for the credit-

risk factor helps generate an upward sloping mean term structure of credit spreads. On the other hand, the
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estimates on the pricing of the liquidity risk (γq0) are significantly positive in five cases, and negative but

statistically insignificant in the other three cases. The positive market priceson the liquidity-risk factor

generate a downward-sloping effect on the term structure of credit spreads. As a result, the CDS spreads on

the low-liquidity firms have a flatter mean term structure than the CDS spreads onthe high-liquidity firms.

Overall, our estimation suggests that within the same industry sector and creditrating class, firms with

active CDS trading activities tend to have higher credit risks than firms with lowCDS trading activities.

Furthermore, low-liquidity firms induce heavier discounting on the yield curveand generate lower CDS

spreads. Finally, positive market pricing on the liquidity-risk renders the mean term structure of CDS spreads

flatter on low-liquidity firms.

6. Conclusion

Using a large data set on CDS spread quotes, we perform a comprehensive analysis of the term structure of

interest rates, credit spreads, and liquidity premia. Through model construction and estimation, we find that

credit-risk dynamics differ across different industry sectors and credit rating groups, but in all cases they

show intricate interactions with the interest-rate dynamics and liquidity.

Interest-rate factors both affect credit spreads simultaneously, and impact subsequent moves in the

credit-risk factors. Within each industry and credit rating class, we also find that the average credit default

swap spreads for the high-liquidity group are significantly higher than forthe low-liquidity group. Estima-

tion shows that the difference is driven by both credit risk and liquidity differences. The low-liquidity group

has a lower default arrival rate and also a much heavier discounting induced by the liquidity risk.
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Table 1
Regression analysis of the CDS spreads
Entries report the estimates and the absolute magnitudes of thet-statistics (in parentheses) of various ver-
sions of the following panel regressions:

Average CDS Spreads(i, t, t +n) = a0 +a1 RatingA(i, t, t +n)+a2 RatingBBB(i, t, t +n)

+a3 RatingBB(i, t, t +n)+a4 RatingB(i, t, t +n)+a5 Industry(i)

+a6 Maturity(i)+a7 Updates(i, t, t +n)+a8DD+e(i, t, t +n),

where i refers to a specific CDS series,(t, t + n) denotes the sample averaging period,Ratingj , j =
A,BBB,BB,B are dummy variables that are equal to one when the reference company has a j-credit rat-
ing during the specified sample period and zero otherwise, theIndustrydummy variable is one for financial
firms and zero for non-financial firms,Maturity is in number of years,Updatesdenotes the number of
quote updates for the series under the specified time period, andDD denotes the distance to default com-
puted using Moody’s default model. We estimate the panel regression with different averaging periods of
n = 30,60,90,120,150,255 days. In the case ofn = 255, we average across the whole sample and hence
the regression becomes purely cross-sectional. We estimate the equations using the generalized method of
moments, with the weighting matrix constructed according to Newey and West (1987). The last column
reports the sample size (N) for each regression.

n a0 a1 a2 a3 a4 a5 a6 a7 a8 N

30 -16.609 6.132 53.025 238.538 547.290 18.239 4.314 3.928 —414,926
( 40.02 ) ( 25.17 ) ( 155.07 ) ( 267.74 ) ( 92.95 ) ( 57.54 ) ( 53.78 )( 69.82 ) —

60 -17.588 4.173 47.843 231.050 677.572 17.496 4.216 2.306 —349,254
( 42.21 ) ( 17.07 ) ( 131.72 ) ( 234.59 ) ( 66.96 ) ( 55.12 ) ( 54.69 )( 77.23 ) —

90 -18.706 3.062 45.054 219.100 764.298 17.692 4.137 1.710 —290,545
( 42.92 ) ( 12.47 ) ( 116.07 ) ( 205.63 ) ( 61.87 ) ( 54.56 ) ( 54.21 )( 83.43 ) —

120 -19.321 2.476 43.388 213.024 790.661 17.741 4.086 1.372 — 234,482
( 41.24 ) ( 9.49 ) ( 101.18 ) ( 186.98 ) ( 58.45 ) ( 51.85 ) ( 51.05 ) (82.25 ) —

150 -19.599 2.294 43.051 213.497 809.851 17.844 4.038 1.125 — 178,916
( 37.20 ) ( 7.86 ) ( 87.92 ) ( 168.63 ) ( 53.00 ) ( 47.02 ) ( 45.40 ) ( 75.35 ) —

180 -20.022 2.237 43.299 216.469 832.460 18.110 3.996 0.953 — 123,356
( 31.54 ) ( 6.43 ) ( 73.45 ) ( 142.23 ) ( 45.38 ) ( 40.02 ) ( 37.74 ) ( 64.73 ) —

255 -4.972 5.213 21.085 231.191 1499.524 -0.559 4.205 0.445 — 1,425
( 1.89 ) ( 4.44 ) ( 9.15 ) ( 19.89 ) ( 21.63 ) ( -0.37 ) ( 7.97 ) ( 9.50 ) —

255 2.631 11.505 50.218 223.584 — 5.416 2.805 0.498 -1.391 620
( 0.36 ) ( 1.94 ) ( 7.88 ) ( 25.80 ) — ( 1.02 ) ( 3.12 ) ( 10.69 ) ( 4.00 )
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Table 2
Summary statistics of credit default swap spreads
Entries report the summary statistics of the credit default swap spreads (inbasis points) at the seven fixed
maturities under each credit rating class, industry sector, and liquidity groups. Mean, Std, Skew, Kurtosis,
and Auto denote the sample estimates of the mean, standard deviation, skewness, excess kurtosis, and the
first-order autocorrelation, respectively. Data are daily from May 21,2003 to May 12, 2004.

Maturity High Liquidity Low Liquidity

Years Mean Std Skew Kurtosis Auto Mean Std Skew Kurtosis Auto

(i) Sector: Financial; Rating: A
1 30.16 8.72 1.00 -0.33 0.98 14.53 4.70 1.59 2.46 0.97
2 39.41 10.34 0.95 -0.38 0.98 20.13 6.27 1.51 2.20 0.97
3 43.03 11.04 0.96 -0.36 0.98 22.08 6.85 1.47 2.13 0.97
4 49.69 12.41 0.91 -0.43 0.98 25.75 7.31 1.54 2.57 0.97
5 54.42 13.36 0.89 -0.49 0.98 28.35 7.67 1.58 2.75 0.97
7 61.29 13.43 0.84 -0.39 0.98 31.92 7.85 1.55 2.96 0.97
10 68.68 13.67 0.71 -0.57 0.98 35.30 8.16 1.47 2.95 0.97

(ii) Sector: Financial; Rating: BBB
1 92.68 25.42 0.27 -1.16 0.98 51.64 12.62 0.76 -0.62 0.98
2 100.30 25.51 0.39 -1.13 0.98 55.65 14.09 0.74 -0.77 0.98
3 103.69 25.87 0.39 -1.13 0.98 56.89 14.73 0.73 -0.81 0.98
4 108.55 25.00 0.46 -1.08 0.98 58.50 12.94 0.82 -0.54 0.98
5 111.83 24.61 0.48 -1.04 0.98 60.01 11.76 0.88 -0.32 0.98
7 117.29 22.51 0.32 -1.17 0.98 60.96 9.23 0.85 0.04 0.97
10 123.18 20.52 0.16 -1.28 0.98 63.56 7.04 0.28 -0.22 0.96

(iii) Sector: Corporate; Rating: A
1 28.85 8.17 0.78 -0.43 0.98 26.93 5.07 0.97 0.92 0.98
2 39.67 9.55 0.64 -0.77 0.98 31.37 5.39 0.54 0.23 0.98
3 43.77 10.01 0.64 -0.79 0.98 32.93 5.54 0.44 0.09 0.98
4 48.88 10.38 0.72 -0.56 0.98 36.52 5.78 0.32 -0.04 0.98
5 52.34 10.62 0.76 -0.42 0.98 39.06 5.92 0.23 -0.15 0.98
7 58.29 10.31 0.67 -0.42 0.98 41.78 5.62 -0.07 -1.02 0.99
10 64.46 9.57 0.46 -0.50 0.98 45.25 6.11 0.34 -1.06 0.99

(iv) Sector: Corporate; Rating: BBB
1 63.35 17.89 1.30 0.88 0.98 39.55 6.49 0.51 0.05 0.98
2 75.09 19.31 1.22 0.64 0.98 46.26 7.04 0.37 0.12 0.98
3 79.17 19.76 1.20 0.58 0.98 48.61 7.16 0.31 0.12 0.98
4 83.66 19.28 1.15 0.38 0.98 52.21 6.92 0.00 -0.11 0.98
5 86.71 19.00 1.11 0.28 0.98 54.79 6.82 -0.16 -0.31 0.98
7 91.97 17.14 1.08 0.28 0.98 58.41 6.51 -0.31 -0.94 0.98
10 97.23 15.31 0.97 0.19 0.98 62.89 7.13 -0.00 -1.19 0.98
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Table 3
Summary statistics of libor and swap rates
Entries report the summary statistics of the U.S. dollar libor at one-year maturityand swap rates at two,
three, four, five, seven, and ten years. Mean, Std, Skew, Kurtosis,and Auto denote the sample estimates
of the mean, standard deviation, skewness, excess kurtosis, and the first-order autocorrelation, respectively.
Data are daily from May 21, 2003 to May 12, 2004.

Maturity (Years) Mean Std Skew Kurtosis Auto

1 1.39 0.18 0.68 1.95 0.95
2 2.02 0.33 -0.01 0.45 0.96
3 2.60 0.39 -0.38 0.28 0.96
4 3.07 0.42 -0.55 0.23 0.96
5 3.45 0.43 -0.62 0.16 0.96
7 3.99 0.42 -0.68 0.11 0.96
10 4.50 0.40 -0.73 0.09 0.96
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Table 4
Summary statistics of pricing errors on the libor and swap rates
Entries report the summary statistics of the pricing errors on the U.S. dollar libor and swap rates under
the two-factor Gaussian affine model (left hand side under “Affine”) and the two-factor Gaussian quadratic
model (left hand side under “Quadratic”). We estimate both models by using quasi-maximum likelihood
method joint with unscented Kalman filter. We define the pricing error as the difference between the ob-
served interest rate quotes and the model-implied fair values, in basis points.The columns titled Mean, Std,
Auto, Max, and VR denote, respectively, the sample mean, the standard deviation, the first-order autocorre-
lation, the maximum absolute error, and the explained percentage variance,defined as one minus the ratio
of pricing error variance to interest rate variance, in percentages. The last row reports the maximized log
likelihood for each model.

Maturity Affine Quadratic

Years Mean Std Auto Max VR Mean Std Auto Max VR

1 7.56 17.35 0.91 46.89 5.08 -1.53 7.99 0.78 33.21 79.85
2 -0.23 4.09 0.88 10.38 98.46 -0.23 2.81 0.66 11.56 99.27
3 -0.05 0.22 0.16 1.11 99.99 0.30 1.59 0.57 7.33 99.84
4 0.08 0.95 0.41 5.05 99.95 -0.13 1.15 0.40 7.81 99.93
5 0.36 0.85 0.30 6.51 99.96 0.06 0.70 0.34 5.75 99.97
7 -0.72 1.03 0.74 3.87 99.94 -0.48 1.15 0.60 4.46 99.93
10 0.50 1.85 0.76 6.60 99.78 0.70 2.10 0.70 7.57 99.72
Average 1.07 3.76 0.59 11.49 86.17 -0.19 2.50 0.58 11.10 96.93

L 5067.1 5229.7
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Table 5
Summary statistics of pricing errors on credit default swap spreads with one credit risk factor
Entries report the summary statistics of the pricing errors on the credit default swap spreads under both
affine and quadratic specifications. Both specifications use one credit risk factor to price the high-liquidity
credit-default swap spread at each industry and credit rating class. We estimate both models by using
quasi-maximum likelihood method joint with unscented Kalman filter. We define the pricing error as the
difference between the spread quotes and the model-implied fair values, in basis points. The columns titled
Mean, Std, Auto, Max, and VR denote, respectively, the sample mean, the standard deviation, the first-order
autocorrelation, the maximum absolute error, and the explained percentagevariance, defined as one minus
the ratio of pricing error variance to interest rate variance.

Maturity Affine Quadratic

Years Mean Std Auto Max VR Mean Std Auto Max VR

(i) Sector: Financial; Rating: A
1 -0.35 3.86 0.97 12.55 80.41 -1.31 2.69 0.83 18.98 90.49
2 1.33 2.07 0.97 5.48 96.01 1.58 1.74 0.57 17.96 97.15
3 -1.37 1.36 0.96 6.07 98.47 -1.16 1.50 0.35 22.59 98.14
4 -0.00 0.02 0.66 0.08 100.00 -0.06 1.14 0.09 18.07 99.16
5 0.25 1.00 0.96 2.48 99.44 -0.04 1.19 0.27 15.85 99.21
7 0.02 1.26 0.93 3.59 99.12 -0.35 1.21 0.43 13.07 99.19
10 -0.26 2.44 0.95 7.77 96.81 0.09 2.20 0.84 10.89 97.40

(iii) Sector: Corporate; Rating: A
1 -4.66 1.88 0.96 8.89 94.72 -3.66 2.23 0.75 20.74 92.55
2 0.10 0.84 0.91 2.51 99.23 0.33 1.40 0.39 17.53 97.86
3 -0.85 0.66 0.93 2.93 99.56 -0.62 1.37 0.35 19.63 98.13
4 0.00 0.01 0.80 0.02 100.00 0.19 1.11 0.19 16.72 98.86
5 -0.13 0.35 0.90 1.40 99.89 -0.06 0.94 0.07 14.91 99.22
7 0.03 1.28 0.95 4.36 98.47 -0.03 1.04 0.39 13.14 98.98
10 -0.24 3.23 0.97 8.73 88.59 0.23 1.97 0.86 11.00 95.78

(ii) Sector: Financial; Rating: BBB
1 -2.26 4.00 0.96 15.81 97.52 -1.19 6.37 0.79 47.22 93.73
2 0.33 2.32 0.95 7.69 99.17 0.37 3.62 0.41 45.79 97.99
3 -0.82 2.08 0.96 7.64 99.35 -1.01 3.30 0.38 44.58 98.37
4 0.01 0.01 0.84 0.04 100.00 -0.14 2.47 0.08 39.28 99.03
5 -0.26 1.25 0.96 3.86 99.74 -0.26 2.44 0.24 34.00 99.02
7 -0.57 2.97 0.97 6.92 98.26 -0.21 2.57 0.45 29.23 98.70
10 -0.40 5.52 0.97 12.38 92.75 0.05 3.78 0.79 23.08 96.61

(iv) Sector: Corporate; Rating: BBB
1 -5.81 2.68 0.96 11.90 97.75 -2.98 5.54 0.58 63.04 90.40
2 0.19 1.29 0.95 3.91 99.56 0.55 3.72 0.23 54.39 96.29
3 -0.51 1.09 0.95 4.35 99.70 -0.57 3.23 0.16 49.68 97.33
4 0.00 0.00 0.65 0.01 100.00 -0.09 2.88 0.11 45.70 97.76
5 -0.27 0.68 0.96 2.18 99.87 -0.32 2.62 0.13 40.86 98.10
7 -0.17 2.88 0.98 6.62 97.18 -0.07 2.65 0.38 34.19 97.61
10 -0.16 5.38 0.98 12.13 87.64 0.32 3.35 0.73 26.09 95.22
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Table 6
Summary statistics of pricing errors on credit default swap spreads with two credit risk factor
Entries report the summary statistics of the pricing errors on the credit default swap spreads under both
affine and quadratic specifications. Both specifications use two credit risk factors to price the high-liquidity
credit-default swap spread at each industry and credit rating class. We define the pricing error as the dif-
ference between the spread quotes and the model-implied fair values, in basis points. The columns titled
Mean, Std, Auto, Max, and VR denote, respectively, the sample mean, the standard deviation, the first-order
autocorrelation, the maximum absolute error, and the explained percentagevariance, defined as one minus
the ratio of pricing error variance to interest rate variance.

Maturity Affine Quadratic

Years Mean Std Auto Max VR Mean Std Auto Max VR

(i) Sector: Financial; Rating: A
1 0.01 0.08 0.43 0.38 99.99 -0.40 1.64 0.85 5.45 96.46
2 1.39 0.72 0.91 2.62 99.52 1.26 1.09 0.72 6.36 98.89
3 -1.38 0.80 0.94 4.11 99.48 -1.44 1.02 0.61 12.27 99.15
4 0.00 0.00 0.22 0.00 100.00 -0.05 0.57 0.08 8.96 99.79
5 0.27 0.76 0.93 2.09 99.68 0.21 0.93 0.65 8.02 99.52
7 0.05 0.75 0.89 2.02 99.68 -0.04 0.50 0.06 7.95 99.86
10 -0.20 1.72 0.95 3.88 98.42 -0.25 1.50 0.85 9.58 98.80

(iii) Sector: Corporate; Rating: A
1 -0.44 1.88 0.98 3.98 94.72 -0.65 2.16 0.69 19.36 93.00
2 1.94 0.92 0.95 3.64 99.07 1.73 1.56 0.39 18.15 97.34
3 -0.28 0.53 0.93 2.01 99.72 -0.41 1.37 0.21 21.07 98.12
4 0.00 0.00 0.50 0.01 100.00 -0.02 1.15 0.08 18.24 98.77
5 -0.30 0.30 0.94 0.81 99.92 -0.25 1.04 0.09 16.18 99.03
7 0.01 0.09 0.43 0.38 99.99 0.08 0.96 0.17 13.89 99.13
10 -0.14 0.98 0.96 2.39 98.95 -0.02 1.10 0.51 12.05 98.69

(ii) Sector: Financial; Rating: BBB
1 -0.64 1.59 0.93 3.85 99.61 -0.10 1.83 0.74 10.63 99.48
2 0.07 0.11 0.39 0.53 100.00 -0.00 0.44 0.02 6.74 99.97
3 -1.42 1.20 0.94 4.59 99.78 -1.18 1.32 0.90 6.41 99.74
4 -0.32 1.06 0.93 2.84 99.82 -0.00 0.25 0.01 3.68 99.99
5 -0.16 1.68 0.97 3.13 99.53 0.03 0.82 0.91 1.74 99.89
7 0.01 0.03 0.41 0.20 100.00 -0.05 1.53 0.91 4.21 99.54
10 -0.51 1.56 0.94 3.97 99.43 -0.27 3.05 0.94 7.00 97.79

(iv) Sector: Corporate; Rating: BBB
1 -3.39 4.22 0.98 15.16 94.44 -0.60 3.14 0.52 37.52 96.92
2 1.18 1.75 0.98 3.46 99.18 1.92 2.11 0.36 26.61 98.81
3 -0.24 0.63 0.96 2.06 99.90 -0.19 1.38 0.13 21.21 99.51
4 0.00 0.00 0.04 0.00 100.00 -0.05 1.12 0.06 17.76 99.67
5 -0.30 0.56 0.98 1.04 99.91 -0.31 1.03 0.27 14.29 99.70
7 0.00 0.00 0.08 0.01 100.00 -0.03 0.72 0.07 11.42 99.82
10 -0.00 0.54 0.92 2.40 99.88 -0.05 0.95 0.66 9.01 99.62
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Table 7
Summary statistics of pricing errors on the low-liquidity credit default swap spreads
Entries report the summary statistics of the pricing errors on the low-liquidity credit default swap spreads. In
addition to two interest rate factors and two credit risk factors that have been identified using the benchmark
interest rates and the high-liquidity credit default swap spreads, we addone additional idiosyncratic credit
risk factor and a liquidity risk factor to account for the credit spread movements in the low-liquidity groups.
We define the pricing error as the difference between the spread quotesand the model-implied fair values, in
basis points. The columns titled Mean, Std, Auto, Max, and VR denote, respectively, the sample mean, the
standard deviation, the first-order autocorrelation, the maximum absolute error, and the explained percentage
variance, defined as one minus the ratio of pricing error variance to interest rate variance.

Maturity Affine Quadratic

Years Mean Std Auto Max VR Mean Std Auto Max VR

(i) Sector: Financial; Rating: A
1 2.82 1.29 0.96 5.93 97.82 0.10 1.59 0.97 3.77 96.69
2 2.13 0.78 0.95 3.62 99.43 0.80 0.87 0.95 2.53 99.29
3 -0.37 0.32 0.93 1.27 99.92 -0.78 0.35 0.94 1.76 99.90
4 -0.00 0.00 0.29 0.02 100.00 -0.00 0.00 0.01 0.04 100.00
5 0.07 0.28 0.94 0.66 99.96 0.17 0.31 0.95 0.82 99.95
7 0.02 0.17 0.88 0.45 99.98 0.02 0.20 0.89 0.46 99.98
10 -0.00 0.04 0.49 0.15 100.00 0.00 0.01 0.07 0.05 100.00

(iii) Sector: Corporate; Rating: A
1 -0.08 3.47 0.99 7.27 81.96 0.62 2.82 0.98 5.91 88.14
2 -0.06 1.93 0.99 4.61 95.93 0.29 1.82 0.98 4.20 96.35
3 -1.33 0.78 0.98 3.48 99.39 -1.23 0.76 0.98 3.35 99.42
4 0.00 0.01 0.49 0.10 100.00 -0.00 0.02 0.55 0.16 100.00
5 0.60 0.69 0.98 2.27 99.57 0.58 0.69 0.98 2.28 99.58
7 0.02 0.10 0.53 0.88 99.99 0.03 0.09 0.56 0.77 99.99
10 -0.24 0.73 0.96 1.49 99.42 -0.35 0.65 0.95 1.41 99.55

(ii) Sector: Financial; Rating: BBB
1 -1.45 2.54 0.99 5.92 99.00 -1.05 2.53 0.99 5.50 99.01
2 0.00 0.16 0.13 2.23 100.00 0.01 0.18 0.17 2.52 100.00
3 -0.29 1.39 0.97 2.70 99.71 -0.29 1.39 0.97 2.78 99.71
4 0.00 0.10 0.03 1.53 100.00 0.01 0.09 0.12 1.42 100.00
5 0.21 0.77 0.98 1.25 99.90 0.19 0.76 0.98 1.32 99.90
7 -1.63 2.81 0.99 6.00 98.45 -1.68 2.82 0.98 6.14 98.43
10 -3.52 4.85 0.98 11.41 94.41 -3.37 5.01 0.98 11.68 94.04

(iv) Sector: Corporate; Rating: BBB
1 0.66 2.87 0.98 7.72 97.43 0.38 1.71 0.91 7.98 99.09
2 1.33 1.34 0.98 3.46 99.51 0.77 1.09 0.96 2.91 99.68
3 -0.50 0.40 0.95 1.45 99.96 -0.76 0.29 0.92 1.57 99.98
4 -0.00 0.00 0.27 0.03 100.00 0.00 0.00 0.23 0.04 100.00
5 0.15 0.36 0.97 0.88 99.96 0.26 0.35 0.96 1.19 99.97
7 0.00 0.05 0.57 0.20 100.00 0.02 0.07 0.35 0.53 100.00
10 0.01 0.28 0.91 0.95 99.97 -0.16 0.42 0.92 1.00 99.93
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Table 8
Dynamic and term structure of the benchmark libor interest rates
Entries report the parameter estimates and the absolute magnitudes of thet-statistics (in parentheses) that
determine the dynamics and term structure of the benchmark libor interest rates. The estimations are based
on 12-month libor and swap rates of two, three, five, seven, and ten years, with quasi-maximum likelihood
method.

Model κx γx0 γx1 ar br

Affine









0.2365 0
(5.22) −−

−0.9338 0.3073
(12.87) (5.35)

















−0.1987
(4.45)

−0.9752
(3.77)

















0.0819
(0.05)

−0.0321
(0.00)









[

0.0046
(1.04)

]









0.0000
(0.04)
0.0116
(20.2)









Quadratic









0.7597 0
(64.5) −−

−0.6567 0.1196
(38.17) (26.6)

















1.1885
(15.7)

−1.6100
(25.8)

















0.7581
(3.79)
0.0774
(0.06)









[

0.0081
(79.7)

]









0.0006
(8.20)
0.0025
(22.9)








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Table 9
One-factor default arrival dynamics and the term structure of credit spreads
Entries report the second-stage parameter estimates and the absolute magnitudes of thet-statistics (in paren-
theses) that determine the one-factor default arrival dynamics and the term structure of credit spreads. The
estimations are based on high-liquidity credit default swap spreads at each of the four industry and credit
rating classes with quasi-maximum likelihood method.

Θ κxy κy γy0 γy1 ai b⊤i ci

(i) Affine Models
Financial A -0.0363 0.1033 0.0001 -0.0230 0.0232 0.0143 -0.0014 0.0015 0.0038

( 1.00 ) ( 5.57 ) ( 0.03 ) ( 0.07 ) ( 0.04 ) ( 1.62 ) ( 5.39 ) ( 41.5 ) ( 19.5 )
Corporate A 0.1974 0.0618 0.0001 -0.0226 0.0227 0.0128 0.0002 0.0015 0.0035

( 7.72 ) ( 6.49 ) ( 0.03 ) ( 0.05 ) ( 0.04 ) ( 1.69 ) ( 0.67 ) ( 15.0 ) ( 23.1 )
Financial BBB 0.0486 -0.0421 0.0001 -0.0175 0.0176 0.0369 0.0017 0.0021 0.0137

( 2.13 ) ( 5.28 ) ( 0.02 ) ( 0.01 ) ( 0.01 ) ( 1.71 ) ( 1.53 ) ( 16.3 ) ( 18.1 )
Corporate BBB -0.1196 0.0735 0.0001 -0.0224 0.0225 0.0308 -0.0029 0.0008 0.0056

( 2.90 ) ( 3.55 ) ( 0.01 ) ( 0.08 ) ( 0.04 ) ( 6.36 ) ( 7.08 ) ( 10.0 ) ( 14.4 )

(ii) Quadratic Models
Financial A 0.3922 -0.0211 0.0718 0.0181 0.0537 0.0061 0.0006 -0.0007 0.0032

( 28.7 ) ( 11.3 ) ( 9.24 ) ( 0.00 ) ( 0.02 ) ( 28.1 ) ( 23.00 ) ( 12.6 ) ( 20.7 )
Corporate A 0.1108 0.0079 0.1396 0.0875 0.0521 0.0050 -0.0008 -0.0010 0.0083

( 20.5 ) ( 5.94 ) ( 24.5 ) ( 0.00 ) ( 0.01 ) ( 27.6 ) ( 45.9 ) ( 20.7 ) ( 44.0 )
Financial BBB 0.2768 0.0947 0.2043 0.1493 0.0551 0.0186 0.0009 -0.0030 0.0112

( 24.2 ) ( 32.1 ) ( 28.9 ) ( 0.02 ) ( 0.02 ) ( 47.0 ) ( 5.32 ) ( 45.7 ) ( 16.4 )
Corporate BBB 0.1906 0.0646 0.2056 0.1536 0.0520 0.0125 -0.0014 -0.0020 0.0140

( 24.9 ) ( 48.8 ) ( 30.3 ) ( 0.01 ) ( 0.01 ) ( 21.6 ) ( 19.8 ) ( 20.2 ) ( 17.3 )
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Table 10
Two-factor default arrival dynamics and the term structure of credit spreads
Entries report the second-stage parameter estimates and the absolute magnitudes of thet-statistics (in paren-
theses) that determine the two-factor default arrival dynamics and the term structure of credit spreads. The
estimations are based on high-liquidity credit default swap spreads at each of the four industry and credit
rating classes with quasi-maximum likelihood method.

Θ κxy κy γy0 γy1 ai bi ci

(i) Affine Models
Financial A -0.1694 0.0686 0.0001 0 0.0287 -0.0060 0.0069 0.0005 0.0003

( 3.36 ) ( 3.43 ) ( 0.01 ) — ( 0.42 ) ( 0.06 ) ( 1.27 ) ( 0.41 ) ( 0.13 )
0.2931 -0.2120 0.4474 0.7912 -1.9590 0.7815 — 0.0004 0.0067
( 1.95 ) ( 4.90 ) ( 2.58 ) ( 8.57 ) ( 1.92 ) ( 0.02 ) — ( 2.69 ) ( 4.07 )

Corporate A -0.1975 0.6094 0.0005 0 -1.8568 -0.0019 0.0103 0.0002 0.0012
( 0.61 ) ( 5.27 ) ( 0.01 ) — ( 7.00 ) ( 0.00 ) ( 1.79 ) ( 0.32 ) ( 0.30 )
0.4848 -0.1206 0.0965 0.0418 -0.1767 0.0325 — 0.0034 0.0055
( 3.32 ) ( 0.28 ) ( 3.15 ) ( 0.60 ) ( 0.13 ) ( 0.01 ) — ( 19.5 ) ( 5.74 )

Financial BBB 0.6387 0.1686 0.4582 0 -0.2490 0.4515 0.0342 0.0044 0.0089
( 7.80 ) ( 5.37 ) ( 10.29 ) — ( 0.15 ) ( 0.02 ) ( 0.25 ) ( 2.33 ) ( 3.99 )
0.2125 0.0112 0.1718 0.0947 0.0573 0.0873 — 0.0071 0.0172
( 2.13 ) ( 0.39 ) ( 3.60 ) ( 11.6 ) ( 0.19 ) ( 0.03 ) — ( 12.5 ) ( 10.1 )

Corporate BBB -0.3278 0.2385 0.0006 0 -0.5814 -0.0041 0.0320 -0.0029 0.0011
( 4.37 ) ( 5.70 ) ( 0.01 ) — ( 4.64 ) ( 0.00 ) ( 0.45 ) ( 6.34 ) ( 0.52 )
0.0480 0.0277 0.1494 0.0147 -0.1889 0.0104 — 0.0016 0.0055
( 0.47 ) ( 0.34 ) ( 7.50 ) ( 0.27 ) ( 0.05 ) ( 0.01 ) — ( 17.2 ) ( 12.4 )

(ii) Quadratic Models
Financial A -0.0407 -0.0320 0.5577 0 0.5019 0.5520 0.0041 0.0003 0.0067

( 1.74 ) ( 2.03 ) ( 9.85 ) — ( 4.93 ) ( 0.02 ) ( 12.2 ) ( 6.48 ) ( 9.05 )
-0.4381 0.0742 -0.1412 0.0120 -1.2139 0.0032 — -0.0011 0.0021
( 21.3 ) ( 21.1 ) ( 2.57 ) ( 1.31 ) ( 21.6 ) ( 0.00 ) — ( 68.4 ) ( 20.5 )

Corporate A 0.6625 -0.0392 0.0004 0 1.1627 -0.0054 0.0039 -0.0010 0.0006
( 28.0 ) ( 7.08 ) ( 0.06 ) — ( 17.1 ) ( 0.00 ) ( 23.3 ) ( 59.0 ) ( 11.95 )
-0.2741 0.0274 -0.0621 0.1090 -0.7897 0.1001 — -0.0008 0.0049
( 13.8 ) ( 6.40 ) ( 7.25 ) ( 5.99 ) ( 18.1 ) ( 0.02 ) — ( 105.7 ) ( 21.2 )

Financial BBB 0.0159 0.0628 0.1034 0 -0.2342 0.0980 0.0092 -0.0008 0.0002
( 0.37 ) ( 13.8 ) ( 14.5 ) — ( 2.30 ) ( 0.13 ) ( 7.3 ) ( 4.68 ) ( 1.01 )
-0.0261 -0.2045 0.4805 1.6345 -1.5258 1.6254 — -0.0015 0.0325
( 0.96 ) ( 7.89 ) ( 9.31 ) ( 14.2 ) ( 8.9 ) ( 0.07 ) — ( 49.6 ) ( 12.1 )

Corporate BBB -0.0569 0.0087 0.0846 0 -0.1380 0.0846 0.00980.0006 0.0001
( 1.60 ) ( 1.36 ) ( 6.44 ) — ( 1.83 ) ( 0.07 ) ( 15.0 ) ( 9.46 ) ( 0.74 )
-0.1874 -0.0738 0.1988 0.4640 -0.8735 0.4640 — -0.0011 0.0120
( 9.76 ) ( 8.12 ) ( 12.3 ) ( 17.6 ) ( 11.0 ) ( 0.02 ) — ( 79.9 ) ( 11.4 )
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Table 11
Idiosyncratic credit and liquidity risk
Entries report the third-stage parameter estimates andt-statistics (in parentheses) that determine the idiosyn-
cratic credit and liquidity risk dynamics in accounting for the idiosyncratic credit spreads embedded in the
low-liquidity credit default swaps. The parameters are estimated using quasi-maximum likelihood method.

Credit Risk Liquidity Risk

Θ κm γm0 γm1 am cm κq γq0 γq1 aq bq

(i) Affine Models
Financial A 0.0010 -0.0275 -0.0500 -0.0062 0.0030 0.3312 -0.1299 0.2832 0.3423 0.2822

( 0.06 ) ( 0.51 ) ( 0.01 ) ( 13.9 ) ( 26.3 ) ( 9.55 ) ( 0.47 ) ( 0.16 ) ( 1.48 ) ( 7.89 )
Corporate A 0.0012 -1.0741 -0.0577 -0.0011 0.0028 0.8452 4.9606 0.8448 6.0187 0.9083

( 0.01 ) ( 1.58 ) ( 0.01 ) ( 2.00 ) ( 9.92 ) ( 36.34 ) ( 4.14 ) ( 1.38 ) ( 6.08 ) ( 17.1 )
Financial BBB 0.0001 -0.0732 -0.0381 -0.0150 0.0093 0.9375-0.4433 0.9374 2.9285 2.7536

( 0.00 ) ( 2.53 ) ( 0.01 ) ( 1.24 ) ( 30.7 ) ( 10.6 ) ( 0.75 ) ( 0.11 ) ( 2.44 ) ( 9.07 )
Corporate BBB 0.0009 -0.0991 -0.0434 -0.0176 0.0042 0.33760.6776 0.2911 1.0670 0.3245

( 0.10 ) ( 5.08 ) ( 0.19 ) ( 9.67 ) ( 27.9 ) ( 15.6 ) ( 3.48 ) ( 0.44 ) ( 7.73 ) ( 11.8 )

(ii) Quadratic Models
Financial A 0.0008 -0.5700 -0.0502 -0.0067 0.0038 0.9494 1.8194 0.9003 2.3761 0.8999

( 0.02 ) ( 6.08 ) ( 0.01 ) ( 1.08 ) ( 45.2 ) ( 28.0 ) ( 2.72 ) ( 0.45 ) ( 5.82 ) ( 8.67 )
Corporate A 0.0102 -0.2178 -0.0399 -0.0043 0.0052 0.6745 2.9258 0.6735 4.2633 0.8047

( 0.11 ) ( 1.40 ) ( 0.01 ) ( 1.49 ) ( 17.6 ) ( 28.3 ) ( 3.46 ) ( 1.60 ) ( 5.38 ) ( 14.0 )
Financial BBB 0.0001 -0.0902 -0.0381 -0.0166 0.0105 0.9070-0.4327 0.9070 2.9863 2.6709

( 0.00 ) ( 2.52 ) ( 0.01 ) ( 4.01 ) ( 26.5 ) ( 17.0 ) ( 0.91 ) ( 0.12 ) ( 3.50 ) ( 11.6 )
Corporate BBB 0.0068 -0.2343 -0.0087 -0.0229 0.0082 0.52733.3088 0.5204 2.7831 0.3963

( 0.22 ) ( 6.28 ) ( 0.00 ) ( 0.56 ) ( 17.8 ) ( 39.4 ) ( 8.57 ) ( 1.61 ) ( 19.1 ) ( 19.1 )
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Figure 1
Time series of credit default swap spreads.
The seven lines in each panel plot the time-series of the average quotes oncredit default swap spreads at
seven fixed maturities for each industry sector, credit rating class, and liquidity group. Data are from JP
Morgan Chase, daily from May 21, 2003 to May 12, 2004.
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Figure 2
Term structure of credit default swap spreads.
Lines in each panel plot the term structure of the average quotes on credit default swap spreads at different
days for each credit rating class, industry sector, and liquidity group. Data are are from JP Morgan Chase,
daily from May 21, 2003 to May 12, 2004.
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Figure 3
Mean term structure and impulse-response of benchmark interest rates.
Solid line in the left panel plots the mean term structure of continuously compounded spot rate. The two
lines in the right panel depict the contemporaneous response of the continuously compounded benchmark
spot rate to unit shocks from the first (solid line) and second (dashed line) interest-rate factors. The lines are
computed based on the estimated two-factor affine model.
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Figure 4
Credit-risk factor loading on the term structure of credit spreads under affine specifications.
Solid lines denote the contemporaneous response of the continuously compounded corporate spot rate to
unit shocks from the first credit-risk factor. Dashed lines plot the response to unit shocks from the second
credit-risk factor. The loadings are computed based on the parameter estimates of the two-factor affine
credit-risk specification.
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Figure 5
Idiosyncratic default risk and liquidity risk factor loading.
Lines plot the contemporaneous response of the spot rate on the low-liquidity group to unit shocks from
the additional credit-risk factor (solid lines, in basis points) and the liquidity-risk factor (dashed lines, in
percentages), respectively.
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