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Dynamic Interactions Between Interest Rate, Credit, and Liquidity Risks:
Theory and Evidence from the Term Structure of Credit Default Swap Speads

ABSTRACT

Using a large data set on credit default swaps, we study hésuldeisk interacts with interest-rate
risk and liquidity risk to jointly determine the term struct of credit spreads. We classify the reference
companies into two broad industry sectors, two broad cratiitg classes, and two liquidity groups. We
develop a class of dynamic term structure models that irc(@dtwo benchmark interest-rate factors
to capture the libor and swap rates term structure, (ii) tvealit-risk factors to capture the credit swap
spreads of high-liquidity group of each industry and ratitags, and (iii) both an additional credit-risk
factor and a liquidity-risk factor to capture the differengetween the high- and low-liquidity groups.
Estimation shows that companies in different industry amedlit rating classes have different credit-risk
dynamics. Nevertheless, in all cases, credit risks exhitysicate dynamic interactions with the interest-
rate factors. Interest-rate factors both affect crediéag@s simultaneously, and impact subsequent moves
in the credit-risk factors. Within each industry and crediting class, we also find that the average
credit default swap spreads for the high-liquidity groug significantly higher than for the low-liquidity
group. Estimation shows that the difference is driven byhlmoedit risk and liquidity differences. The
low-liquidity group has a lower default arrival rate andeaésmuch heavier discounting induced by the
liquidity risk.

JEL CLASSIFICATION CODES. E43, G12, G13, C51.

KeEY WORDS: Credit default swap; credit risk; credit premium; term structure; irstergte risk; liquidity

risk; liquidity premium; maximum likelihood estimation.



Dynamic Interactions Between Interest Rate, Credit, and Liquidity Risks:
Theory and Evidence from the Term Structure of Credit Default Swap Speads

It is important to understand how credit risk interacts with interest-rate nidkiquidity risk in determining
the term structure of credit spreads on different reference entitiegertheless, limited data availability
has severely hindered the understanding. Since defaults are rauts #vat often lead to termination or
restructuring of the underlying reference entity, researchers neetytheavily on cross-sectional averages
of different entities over a long history to obtain any reasonable estimaggatistical default probabilities.
Although corporate bond prices contain useful information on the dgfenitiability and the price of credit
risk, the information is often mingled with the pricing of the underlying interet&-rigk and other factors

such as liquidity and tak.

The recent development in credit derivatives provides us with arllertepportunity to better under-
stand the pricing of credit risk, its interactions with interest-rate risk and ligu@nd the impacts on the
term structure of credit spreads. The most widely traded credit disevis in the form of credit default
swap (CDS), written on a reference entity such as a sovereign courdrgarporate company. According
to surveys by the International Swaps and Derivatives Associatian, the outstanding notional amount
of credit derivatives has reached $8.42 trillion by the end of 2004, thare doubling the size of the total

equity derivatives market at $4.15 trillion for the same time period.

In this paper, using a large data set on CDS spread quotes, we pexfimimt analysis of the term
structure of interest rates, credit spreads, and liquidity premia, withwsfon the dynamic interactions
between the three sources of risks. The data set includes daily CD&lspretes on hundreds of corporate
companies and across seven fixed maturities from one to ten years focempany. We classify the

reference companies along three dimensions: (i) industry sectorscffihand non-financial), (ii) credit

IMany researchers strive to identify and distinguish the different corpis of corporate bond yields. Prominent examples
include Fisher (1959), Jones, Mason, and Rosenfeld (1984) staffignd Schwartz (1995), Duffie and Singleton (1997), Duffee
(1999), Elton, Gruber, Agrawal, and Mann (2001), Collin-Dufreseldstein, and Martin (2001), Delianedis and Geske (2001),
Liu, Longstaff, and Mandell (2000), Eom, Helwege, and Huan®@@&0Huang and Huang (2003), Collin-Dufresne, Goldstein, and
Helwege (2003), Ericsson and Renault (2005), and Longstaff,dljigdmd Neis (2005).



ratings (A and BBB), and (iii) quote updating frequency (high and low ligyjd We also download from
Bloomberg the eurodollar libor and swap rates of matching maturities and saerds Through model
development and estimation, we address the following fundamental questgarsling credit risk and its

dynamic interactions with interest rate and liquidity:

How many factors govern the term structure of credit spreads?

How do the credit-risk factors interact with interest-rate factors?

How do the credit-risk dynamics and pricing differ across industry seetod credit rating classes?

What causes the liquidity difference in CDS trading across differepteate entities and how does

the different liquidity impact the pricing of CDS contracts?

To address these questions, we develop a class of dynamic term stmcieés of interest-rate risk,
credit risk, and liquidity risk. First, we model the term structure of the bevark libor and swap rates
using two interest-rate factors. Second, we assume that the defaudt arténsities of the high-liquidity
companies at each industry sector and credit rating class are govmgreéter one or two dynamic factors.
We allow changes in the interest-rate factors to affect both contemparaaed subsequent changes in the
credit-risk factors. We link these factors to the instantaneous benchnmar&shrate and credit spread via
both an affine and a quadratic specification, and compare their relatiegrpance via estimation. Finally,
we use an additional default-risk factor and a liquidity risk factor to cagheelifference between the credit

spreads of the high- and low-liquidity groups within each industry seciiceadit rating class.

We estimate the models using a three-step procedure. In the first stegimateshe interest-rate factor
dynamics using the benchmark libor and swap rates. In the second stépkenvine interest-rate factors
extracted from the first step as given, and estimate the credit-risk dyn&wnieach industry sector and
credit rating class using the average CDS spreads of the high-liquidity doo that sector and rating class.
In the third step, we identify the additional credit-risk factor and the liquidgi-factor using the average
CDS spreads in the low-liquidity group. At each step, we cast the models stiieaspace form, obtain

forecasts on the conditional mean and variance of observed inteieestairadl CDS spreads using an efficient

2There are also data on reference companies with ratings above A or BBIB, but they do not have enough critical mass to
be classified along the industry and liquidity dimensions.



nonlinear filtering technique, and build the likelihood function on the fotgog®rrors of the observed
series, assuming that the forecasting errors are normally distributedstiVate the model parameters by

maximizing the likelihood functions.

Comparing the affine and quadratic specifications, we find that the ditadpecification generates
better and more uniform performance across the term structure of intates and credit spreads. The
interest-rate and credit-risk dynamics are also estimated with more precislenthie quadratic specifica-

tion, an indication of less model mis-specification.

Our estimation shows that one affine credit-risk factor can price the meedesaturity CDS spread well,
but the performance deteriorates toward both ends of the credit spueasl Two affine credit-risk factors
can price the whole term structure of credit spreads well. In contradgruhe quadratic specification, one
default-risk factor is sufficient to explain over 90 percent of the vamatio each of the seven CDS spread
series for each industry sector and credit rating class. Adding an additipadratic credit risk factor
does not dramatically improve the performance. Hence, with a nonlindaey iiynamic specification, one

default-risk factor can explain the majority of the credit spread variationeimith-liquidity group.

Our estimation also shows that firms in different industry sectors and cagitligy classes exhibit differ-
ent credit-risk dynamics. In all cases, credit risk shows intricate dynent@actions with the interest-rate
factors. Interest-rate factors both have a contemporaneous impaet anetlit spread, and affect subsequent

changes in the credit-risk factors.

Within each industry sector and credit rating class, we find that the av&@B$ spreads for the high-
liquidity group are significantly higher than for the low-liquidity group. The mé&arm structure of credit
spreads is also more upward sloping for the high-liquidity group. Estimatmnussthat the different spreads
between the two groups are driven by both credit-risk differencedigudity differences. On average, the
low-liquidity group has lower default arrival rates, and hence a lon&aimtaneous credit spread. We iden-
tify an additional credit-risk factor for the low-liquidity group that is stronglgnificant. This credit-risk
factor shows strong risk-neutral persistence, indicating that it affeetserm structure of credit spreads
across both short and long maturities. We also identify a highly volatile buplessstent liquidity-risk
factor for the credit spreads on the low-liquidity group. This liquidity-rigktbr induces a strongly positive

instantaneous spread on the discount factor. Thus, low liquidity indueawy discounting as a compen-



sation for liquidity premium. Taken together, the lower credit risk and hedigieidity discounting jointly

determine the lower spread on the CDS contracts for the low-liquidity groups.

The remainder of this paper is organized as follows. The next sectimdpsosome background in-
formation on the CDS contract and the related literature. Section 2 destirbdata sets and documents
several interesting pieces of stylized evidence on the CDS spreads ttizitmour theoretical efforts in
Section 3, which develops the dynamic term structure models that allow intrigasenic interactions be-
tween interest-rate risk, credit risk, and liquidity premia. Section 4 descabemodel estimation strategy.

Section 5 discusses the estimation results. Section 6 concludes.

1. Background Information on Credit Default Swap Spreads

A credit default swap is an over-the-counter contract that provideggtion against credit risk. The pro-
tection buyer pays a fixed fee or premium, often termed as the “spread¢ seHer for a period of time. If

a certain pre-specified credit event occurs, the protection sellergoaiygensation to the protection buyer.
A credit event can be a bankruptcy of the reference entity, or a efisa bond or other debt issued by the
reference entity. If no credit event occurs during the term of the sthagrotection buyer continues to pay

the premium until maturity.

The premium paid by the protection buyer to the seller is quoted in basis poinenpam of the
contract’s notional value and is usually paid quarterly. There are no limiteesize or maturity of CDS
contracts. However, most contracts are $10 million in notional. Maturity usuatiges from one to ten

years, with the five-year maturity being the most common maturity.

Although the risk profile of a CDS is similar to that of a corporate bond of theeace entity, there are
several important differences. A CDS does not require an initial fupdumich allows leveraged positions.
A CDS transaction can be entered where a cash bond of the refergitgeata particular maturity is not
available. Furthermore, by entering a CDS contract as a protection sell@yestor can easily create a
short position in the reference credit. With all these attractive attributekngractivities on CDS contracts

have proliferated during the past few years.



This explosive development can be attributed to four sets of players.laftpest players in the CDS
market are commercial banks. Traditionally, a bank’s business invotedg cisk since the bank originates
loans to corporations. The CDS market offers a bank an attractive wagrtsfer the credit risk without
removing assets from its balance sheet and without involving borrowarthermore, a bank may use CDS
contracts to diversify its portfolios, which often are concentrated in iceimaustries or geographic areas.
Banks are the net buyers of credit derivatives. According to Fit2B@3 survey, global banks hold net

bought positions of $229 billion in credit derivatives, with gross soldtjprs of $1,324 billion.

On the other hand, insurance companies are increasingly becoming dopantcipants in the CDS
market, primarily as protection sellers, to enhance investment yields. Gloinallyance companies have
net sold positions of $137 billion in 2003. Other players include financiatajutors, who are also big
proection sellers, have net sold positions of $166 billion. Global hedu#sfare also rumored to be active

players in the CDS market, although their activities are opaque and notatktecany survey’s radar screen.

Sovereign names were prevalent as reference entities in the earlyfdag<aDS market, but the shares
of sovereigns as reference entities have declined from over 50reénc&997 to less than 10 percent by
2003. In contrast, corporate reference entities have become more comoeonnting for over 70 percent
of all reference entities in 2003. This shift in reference entities refleetsapid growth of the corporate

bond market after the mid-1990s.

Given the nascent nature of the CDS contracts, academic studies usthda@®are relatively few. Our
work constitutes the first comprehensive analysis of the joint term stmuoftinterest rates, credit spreads,
and liquidity premia using the CDS data. In related studies, Skinner and D@38 %ok at early CDS
prices from September 1997 to February 1999 for 31 CDS contractey ddémpare the pricing results
of the Duffie and Singleton (1999) and Jarrow and Turnbull (1995)aisodBlanco, Brennan, and Marsh
(2004) compare the CDS spreads with credit spreads derived fngrarate bond yields and find that overall
the two sources of spreads match each other well. When the two sousyesadls deviate from each other,
they find that CDS spreads have a clear lead in price discovery. Ldinddithal, and Neis (2005) regard
the spread from the CDS prices as purely due to credit risk and uselieghmark to identify the liquidity
component of corporate yield spreads. They find that the majority of thporate spread is due to credit

spread. In addition to comparing bond spreads and CDS spreads, tddiéseu, and White (2004) examine



the relation between the CDS spreads and announcements by rating agéheieg (2005) uses sovereign
CDS to study the case of Argentine default. Cremers, Driessen, Magr@moliWeinbaum (2004) analyze

the link between CDS spreads and stock option prices.

2. Data and Evidence

The CDS data are from JP Morgan Chase. They are daily CDS spredéelsqun seven fixed maturities
at one, two, three, four, five, seven, and ten years from May 213 &9 May 12, 2004 on each reference
company. We obtain the credit rating information on each reference confimem Standard & Poors, and

its sector information from Reuters, publicly available on Yahoo.

The data set includes 592 reference companies, 409 of which havele¢lrant information for credit
rating and industry sector available. We classify these companies into tad brdustry sectors: financial
and corporate. Within each sector, we further classify the companiesvator@dit rating classes: (1) AA
and above, (2) A, including A+ and A-, (3) BBB, including BBB+ and BBB4) BB, including BB+ and
BB-, and (5) B and below. Furthermore, the CDS data show substanfexdegi€es in updating frequency.
Within each industry sector and credit rating class, active quote updatesacentrated on only a few
reference companies. To compare the quoting activity across diffémastand during different time peri-
ods, we first expand each series into daily frequency by filling missingpeatds with previously available
qguotes. Then, we take daily differences. If the quotes are not uptatagen two consecutive days, the
daily differences would be zero. Thus, we use the number of days &vatron-zero daily quote differ-
ences to capture the quote updating frequency for a certain CDS serieg d specific time period. As in

Collin-Dufresne, Goldstein, and Martin (2001), we use this measure g for liquidity.

To obtain a general idea on how the CDS spreads vary across diffederstry sectors, credit rating

classes, CDS maturities, and quoting frequencies, we estimate a serieglfggaessions:

Average CDS Spreads(i,t,t+n) = ag+aj Ratinga(i,t,t +n)+ ay Ratingggg(i,t,t +n)
+ag Ratinggg(i,t,t +N) + a4 Ratingg(i,t,t +n) 4 as Industry(i)

+ap Maturity(i) + a7 Updates(i,t,t +n) +e(i,t,t +n), (@)



wherei refers to a specific CDS serigls,t + n| denotes the sample averaging periBating, with j =
A,BBB, BB, B are dummy variables that are equal to one when the reference compmaay-beedit rating
during the specified sample period and zero otherWises Industrydummy variable is one for financial
firms and zero for non-financial firmb)aturity is in number of years, andpdatesdenotes the number of
guote updates for the series under the specified time period. We estimatad¢hesgaession with different
averaging periods af = 30,60,90,120,150 255 days. In the case af= 255, we average across the whole
sample and hence the regression becomes purely cross-sectional. futhage of the data, we generate
the average spreads with overlapping sample periods. We estimate equptising the generalized method
of moments, with the weighting matrix computed according to Newey and West Y488 the lags chosen
optimally according to Andrews (1991) based on an VAR(1) specificafiable 1 reports the estimates and
the absolute magnitudes of thatatistics (in parentheses) of the panel regressions. The regresbased
on 409 reference companies and across seven fixed maturities. Méegstmot all companies have CDS
guotes available across all seven maturities and over the whole samplespdirediast column in Table 1

reports the actual sample si2¢)(for each regression.

The estimates are relatively stable across different averaging perijpd$he estimates on the credit
rating dummy variablesaf to a;) become increasingly positive as the rating declines. Hence, as expected
the average CDS spreads are higher for lower-credit rating graupes estimates for the industry dummy
variable @s) are significantly positive except for the purely cross-sectionalessjon, the coefficient of
which becomes negative but insignificant. The positive estimates suggésinttaverage financial firms
have higher CDS spreads than non-financial firms. The slope estimaties maturity variabledg) are all
significantly positive, indicating that the mean term structure of the CDSdprsapward sloping. Finally,
the slope estimates on the updating frequergy 4re positive and highly significant, indicating that firms
with more frequently updated CDS quotes also have higher CDS spreaitsla$t piece of evidence is
interesting as it points to a liquidity effect on credit spreads that is diffdfrem what is observed from
corporate bonds, if we regard the updating frequency as a liquidity meeakdihas been documented that
low-liquidity corporate and Treasury bonds are priced with a discouhhance with a higher yield (Amihud

and Mendelson (1991) and Collin-Dufresne, Goldstein, and Martinl(g0Uhe estimates oay indicate an

3If a company experiences rating migrations durfng+ n), we exclude the company from the regression for this period.



opposite liquidity effect on the CDS spreads: The spreads are highmiofe frequently updated and hence

more liquid contracts.

To further control the difference in credit default probabilities nottaegxl by the discrete rating classi-
fication, we compute a “distance to default” (DD) measure according to trediyl® KMV default model.
For this calculation, we use COMPUSTAT quarterly data for the matching sapepied to obtain each
company’s book values of various liabilities, from which we compute a @@e-gquivalent debD) as half
of the short-term liabilities and total liabilities. We use weekly equity price and renmwishares outstand-
ing data from CRSP daily files from January 2001 to May 12, 2004 to obtaim#rket value of equityvg)
and its volatility og). Then, we solve for the firm valu&/{) and its standard deviatiowf) through the

following two equations:

V,
Ve = VaN(di)—De ""N(dy), o= GAV—AN(dl), )
E
where
INVa/D+ (r +0%/2)T
o = . dy=d;—oaVT.
1 O'A\/-T 2 1 A
The distance to default is computed as
DD = M (3)
VaOAV'T

With the computed distance to default, we re-estimate the cross-sectioredsiegr with DD as an addi-

tional explanatory variable:

Average CDS Spreads(i) = ap+ a1 Ratinga(i) + a2 Ratingggg(i) + az Ratinggg(i)

+as Industry(i) + as Maturity(i) + a; Updates(i) +ag DD(i) +€(i). (4)

We find the relevant information to compute the distance to default on 207 ciespaone of which belong
to the last credit rating class (B and below). Hence, we no longer haxdutheny variable for the B rating
class. The results for this regression are reported in the last two rolebte 1. The DD variable generates
a significantly negative coefficient, suggesting that the CDS spread éeahith increasing distance to

default. Nevertheless, the addition of the distance to default variablerdteshange the sign of other



coefficients. The coefficient on the industry sector becomes positiveemains insignificant, indicating
that the industry sector effect is not as strong as other effects. Inmtlgrténe positive effect of updating

frequency on the CDS spreads remains strong after controlling foitieaasain distance to default.

Based on the regression results, we classify the reference compeaoiediag the following three di-
mensions: (i) two broad industry classifications: financial and corpdigtevo broad credit rating groups:
A (including A+ and A-) and BBB (including BBB+ and BBB-), and (iii) two ligility groups: high and
low. We classify a firm into the high-liquidity group if the quotes on the firm hawdewer than 364 total
updates, corresponding to an average of one update per seriesgderThe low liquidity groups contains
firms with less than 364 total updates, but no fewer than 182 quote updatessponding to an average
updating frequency of at least once per series every two weeks, &heach date and maturity, we average
the spread quotes across all the firms with each industry sector, ctiditckass, and liquidity group. We
estimate the credit risk dynamics using the time series of these average @&a8sspn the seven maturities.
For this classification and averaging, we discard firms with quotes less &2atothl updates because we
regard these quotes as too illiquid to be informative. We also discard firms eidit catings higher than
A and lower than BB because we do not have enough companies withindteeerating classes to make

classifications along the industry and liquidity dimensions.

Figure 1 plots the time series of the average credit default swap sptessthdandustry sector and credit
rating class, with left panels for high-liquidity firms and right panels for lay#idity firms. The seven lines
in each panel correspond to the seven fixed maturities from one to tes yider spreads were high during
the start of our sample following the high default year of 2002. The sigrbave declined since then, but

have experienced significant variations during our sample period.

[Figure 1 about here.]

From Figure 1, we observe stronger co-movements between the sfreadthe two rating groups
within each industry sector than across the two industry sectors, evidégoenmon shocks within each
industry sector. Within each industry sector, spreads on the BBB ratiag ata higher than the correspond-
ing A group, corresponding to the higher default probabilities for the loating class. For each industry

sector and credit rating class, high-liquidity firms have markedly higheesisron low-liquidity firms. The



last two observations are consistent with our regression analysis ré3uéisll, the time-series plots show
that the behaviors of CDS spreads vary significantly across the threamslone: industry sector, credit

rating, and liquidity.

Figure 2 plots the term structure of the CDS spreads at different datasngDour sample period,
the CDS spreads mostly show upward sloping term structures, generatipgshive coefficientdg) on
maturity in the regression analysis. Within each industry sector and ratirgy wladind that high-liquidity

firms not only have wider CDS spreads, but also steeper term structures

[Figure 2 about here.]

Table 2 reports the summary statistics of the average CDS spreads ate¢hdized maturities under
each industry sector, credit rating class, and liquidity group. The meaadpare higher at longer maturities
and hence show upward-sloping mean term structures in all groups. Wabimsector and rating class, the
high-liquidity group generates much higher mean spreads than the low-liggidityp. The differences are
especially large in the financial sector, where the mean spreads on thkgjuiiglity groups approximately
double the mean spreads on the corresponding low-liquidity groups.sé\the two credit rating classes,
the mean spreads are larger for the BBB class than for the A class. Tareddes are again larger for the

financial sector than for the corporate sector.

The standard deviations of the spreads at various maturities is upwandgsfopfinancial sector and
A rating class, but either downward sloping or hump-shaped for otteepgt The skewness and excess
kurtosis estimates are mostly small. The daily autocorrelation estimates are bét@e@en 0.99, showing

that the spreads are highly persistent.

To obtain the benchmark libor interest rate dynamics, we also downloadfteomberg the eurodollar
libor and swap rates that match the maturity and sample period of the crediltdefeap spreads data.
Table 3 reports the summary statistics of the 12-month libor and swap rates atissbd two, three, four,
five, seven, and ten years. The libor and swap rates are relativelyulomgdur sample period, averaging at
1.39 percent for the 12-month libor and from 2.02 to 4.5 percent for tlag sates, generating an upward-
sloping mean term structure. The standard deviations of the swap ratiéfer@nd maturities are close to

one another at around 0.4, but the standard deviation of the 12-monthdilbbout half as much. The

10



skewness estimates are small, positive for the libor and negative for theagixrates. The excess kurtosis
estimates for the swap rates are small, but the estimate for the libor is relativggyaif.95. The daily

autocorrelation is about 0.96 for all the six swap rates, slightly lower atforahe libor.

3. A Dynamic Term Structure Model of Interest Rate, Default, and Liquidity

We value the credit default swap contract using the framework of DaiffteSingleton (1999), and Duffie,
Pedersen, and Singleton (2003). First, wenyse denote the instantaneous benchmark interest rate. Histor-
ically, researchers often use Treasury yields to define the instantaimerest rate and the benchmark yield
curve. Houweling and Vorst (2003) perform daily calibration of rezti#orm models using credit default
swap spreads and find that eurodollar swap rates are better suited ¢htredéisury yields in defining the
benchmark yield curve. Here, we define the benchmark instantaneorestntite based on the eurodollar
libor and swap rates. Libor and swap rates contain a credit-risk compdsging them as benchmarks, the

estimated credit risk can be regarded as relative credit risk.

Second, we usf\! I, to denote the intensity of a Poisson process that governs the defautfefence
entityi. By modeling the dynamics of the Poisson intensigand their interactions with the benchmark
interest rates, we determine the term structure of credit default swaadspfor the high-liquidity group for

each industry sector and credit rating class

Third, we use{q{}i”:1 to denote an instantaneous liquidity spread that captures the liquidity differen
between the low-liquidity group and the high-liquidity group within each credihg and industry clads
To study whether the two liquidity groups also differ in credit risk, we alsoliporate an additional credit

risk componentr{ for the low-liquidity group.

Formally, let(Q, 7 , (#t)t>0,Q) be a complete stochastic basis &htbe a risk-neutral probability mea-
sure. Under this measug, the fair value of a benchmark zero-coupon bond with matariglates to the

instantaneous benchmark interest rate dynamics by,
T
P(1)=E [exp</ ruduﬂ , (5)
0

11



whereE [-] denotes the expectation operator under the risk-neutral me@s@ar notation implicitly states

our focus on time-homogeneous specifications.

We can represent the value of a defaultable coupon-bond in terms aéticbinark instantaneous inter-

est rata and the Poisson intensityof the default arrival by,

CB(c,w,1) = E [c/orexp<—/ot(ru+)\u)du> dt}
+E {exp(— /C)T(ru+)\u)du)] (6)
+E [(1—W)/OT)\texp<—/Ot(ru+)\u)du> dt},

wherec denotes the coupon rate amddenotes the loss rate, which is one minus the recovery rate. For

expositional clarity, we assume continuous coupon payments.

For a credit default swap contract, we US& denote the premium paid by the buyer of default pro-

tection. Assuming continuous payment, we can write the present value ofeiméum leg of the contract

Premium(T [S/ exp( / ru+Ay )du) dt} . @)

Similarly, the present value of the protection leg of the contract is

as,

Protection(T) [W/ At exp< /t(ru —H\u)du) dt] . (8)

Hence, by setting the present values of the two legs equal, we can sotiie foedit default swap spread as

E [w fg Arexp(— fo(ru+Au)du) di]
E[f5 exp(— fy(ru+A)du)dt]

(9)

which can be thought of as the weighted average of the expected de&sultn model estimation, we dis-
cretize the above equation according to quarterly premium payment inteffedlidwving industry standard,

we fix the recovery ratél —w) at 40 percent.

12



For an inactively traded credit default swap contract, the premium cai&hpally include a liquidity
component. This liquidity component can also be modeled via an instantaneaidgyigremium spread,

g, which enters the credit default swap spread as follows,

 Ew/ghexp(—fo(ru+Au+au)du) di]
~ E[Jgexp(— fo(ru+Au+au)du) di]

(10)

Under this framework, the benchmark libor and swap rate curve is detetrinthe dynamics of the
instantaneous benchmark interest nat&he CDS spreads of a certain reference entity are determined by
the joint dynamics of instantaneous benchmark interestrrated the default arrival rate. Furthermore,
when the CDS contract is illiquid, the spreads may also include a liquidity premianisticontrolled by
the dynamics of the instantaneous liquidity premium sprgatfe specify the three sets of dynamics in the

following subsections.

3.1. Benchmark interest rate dynamics and the term structure

We useX € R? to denote a two-dimensional vector Markov process that representgstieensitic state of
the benchmark yield curve. We assume that under the risk-neutral reé@silre state vector is governed

by an Ornstein-Uhlenbeck (OU) process,

dX = (Bx — KxX) dt 4+ dW, (11)

wherek € R?*? controls the mean reversion of the vector processigr@y, € R? controls the long-run
mean. For the OU process to be stationary, the real part of the eigesnafluemust be positive. For
identification reasons, we normalize the state vector to have identity diffusitixmé&/e also constraimi

to be a lower triangular matrix. Then, the diagonal values okthsatrix correspond to its eigenvalues. To

maintain stationarity, we constrain the diagonal values,db be positive in our estimation.

We further assume that the instantaneous benchmark interestisat#ine in the state vectot,

It :ar+b,TXt, (12)
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where the parametex € R is a scalar anth, € R?* is a vector. Our specifications in (11) and (12) belong
to the affine class of term structure models of Duffie and Kan (1996).nTdwel-implied fair value of the

zero-coupon bond with maturityis exponential affine in the current level of the state vec{gr,
P(Xo,T) = exp(—a(r) — b(r)TX()) , (13)
where the coefficienta(t) andb(t) are determined by the following ordinary differential equations:

d1) = a+b(t)"8x—b(1) b(1)/2,

b'(t) = by—k,b(1), (14)

subject to the boundary conditioag0) = 0 andb(0) = 0. The ordinary different equations can be solved
via standard numerical procedures. Given the solutions to the zepmiedaonds, the model-implied values

for the libor and swap rates can be computed as

~ 100

LIBOR(X,T) = T(

1
PO, T)

- 1) . SWARX,T) = 10thx =TT

iz1 P(X,i/h)

: (15)

wheret denotes the time-to-maturity ariddenotes the number of payments in each year for the swap
contract. The day counting convention for libor is actual over 360, startwo business days forward. For
the U.S. dollar swap rates that we use, the number of payments is twice pdr €2 and the day counting

convention is 30/360.

3.2. Default risk dynamics and the term structure of CDS sprads

We assume that the Poisson arrival rate of default underlying eachtigdiector and credit rating clags

AL, is governed by a vector of interest-rate factdrand credit-risk factory € RX:

A =a+b X+, (16)

whereb; € R? denotes the instantaneous response to the two benchmark interesttoagfaandc; ¢ R*+

denotes the instantaneous response to the credit-risk fattddyg allowing the default arrival intensity to
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be an explicit function of the benchmark interest-rate factors, our mpeelfgcation captures the empirical
evidence that credit spreads are related to interest rate levels. Forestd®tion, we consider both a one-

factor and a two factor structure of the credit-risk factoes 1,2 and compare their relative performance.

We assume the following dynamics for the credit-risk factors under thenaskral measur@,
d¥ = (ey — KxyXt — Kth) dt+ dW, (17)

where the benchmark interest-rate factdrare also allowed to impact subsequent changes in the credit-
risk factors throughky, € R?*K Thus, interest rate factors both have a contemporaneous effeefauitd
arrival rate and affect subsequent changes in the credit-riskréackor identification, we normalize the
instantaneous covariance¥fto an identity matrix. In the two-factor specification, we further constkgin

to be a lower-triangular matrix with positive diagonal values.

The jointQ-dynamics oZ = [XT,YT] € RZ*X s, in matrix form,

Oy Ky O
dz = (6 —kZ)dt+dW, with 6{ ], K|: ] (18)

By Kxy Ky

Given this compact specification, the present value of the premium leg @MDI$econtract becomes,

Premium(Zo,T) = [S/ exp< /ru+)\) > } [S/ exp( /az+bTZu)du>dt} (19)

with az = a +4a andbz = [(b + ;) ",¢'] . The solution is exponential affine in the state vedgr
T
Premium(Zp,T) = S/ exp(—a(t) - b(t)TZO> dt, (20)
0
where the coefficienta(t) andb(t) are determined by the following ordinary differential equations:

d(t) = az+bt) 0—b(t) b(t)/2,

b'(t) = bz—k'b(t), (21)

subject to the boundary conditioag0) = 0 andb(0) = 0.
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The present value of the protection leg becomes,

Protection(Zp,T) = E [W/OT At exp(—/()t(rqu)\u)du) dt}
- E [w/oT (cz +dZTZt) exp(—/ot(az + b;Zu)du> dt] , (22)

with ¢z = g anddz = [b,¢"]". The solution is (e.g., Duffie, Pan, and Singleton (2000)),
T
Protection(Zo, T) = W / (c(t) + d(t)Tzo) exp(—a(t) . b(t)Tzo) dt, (23)
0

where the coefficienti&(t), b(t)] are determined by the ordinary differential equations in (21) and the coef

ficients[c(t),d(t)] are determined by the following ordinary differential equations:
d(t) = dt)"e—b(t)'d(t), d'(t)=-«k'd(t), (24)

with ¢(0) = ¢z andd(0) = dz. The credit default swap spread can then be solved as,

W [y (c(t) +d(t) " Zo) exp(—a(t) —b(t) " Zo) dt.

H20.1) = JTexp(—a(t) — b(t) Zo)dt

(25)

3.3. Liquidity risk and the term structure of liquidity risk p remium

For each industry sector and credit rating class, we further classifgdahmanies into high- and low-
liquidity groups based on the quote updating frequency. We first estimasddwve credit-risk factors using
the credit spreads of the high-liquidity group, and then ask whether tfegatite in credit spreads for the
low-liquidity group is due to different credit risk, liquidity risk, or both.

To answer this question, we introduce both an additional credit-risk ¢grd and a liquidity risk

premium €4) for the low-liquidity group, with the following risk-neutral dynamics,

m = an+Cnfl, & = (Bm— Kmé}) dt+ Wy, (26)

G = aqt+bgll, dZl=(8q—Kql)dt+dWg. 27)
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Then, the time-0 value of the swap spread at matarisn be written as

E [w fg (At +m) exp(— fo(ru+Au+my+qu)du) di]

E [ 5 exp(— fo(ru+Au+my+qu)du) di] (28)

8(207T) =

)

whereA; here refers to the high-liquidity group default arrival rage denotes an instantaneous liquidity
spread induced by the liquidity difference between the high- and low-liquigtityp, andm captures the
difference in default arrival between the high- and low-liquidity grotipus,A; + m represents the default

arrival intensity of the low-liquidity group.

We further expand the definition of the state veder [X',YT & ] € R*K, with

eX Kx 0 O 0

0 K Ky 0 O
0— y K= xy Ry 7

Om 0 O km O

Bq 0 0 0 Kq

so that we can write the present values of the premium and protection ldgssafap contract in analogous
forms to equations (19) and (23):

E [w g (cz+0d] Z) exp(— fy(az + b Zy)du) d]

E [J5 exp(— f5(az + bJ Zy)du) di] (29)

S(ZO7T) =

Thus, the solution also takes the same form as in equation (25), with the fajloedefinitions induced by

the state vector expansions:

az=a +§g +am+aC]7 bZ:[(br+bi)T7CiT7cm7bq]T7

Cz =& +am, dz=[b',¢",cm,0]".
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3.4. Market prices of risks

Our estimation identifies both the risk-neutral and the statistical dynamics oftérestirate, credit-risk,
and liquidity-risk factors. To derive the statistical dynamics, we assum#éiaa market price of risk on all

the risk factors,

Y(Zt) = Yo+ (Y1) Z (30)

with yp andy; are both vectors of the relevant dimension &ndienotes a diagonal matrix, with the diagonal
elements given by the vector inside. The affine market price of risk speiniin dictates that the state vector

Z; remains Ornstein-Uhlenbeck under the statistical med@uvat with an adjustment to the drift term,
dz = <9+y0—KPZt) dt+dw, «kF=k—vy. (31)

For stationarity, we also constrain the diagonal elemenks o6 be positive. For identification, we normal-

ize the long-run mean of the state vecfoio zero under the statistical measiireo thatd = —yp.

3.5. Nonlinear interest-rate and default arrival dynamics A quadratic specification

The affine framework employed in the above specifications enjoys gnabiti@al tractability and popular-
ity. Nevertheless, several studies identify nonlinearity in interest ratardigs, e.g., &-Sahalia (1996a,b),
Hong and Li (2005), and Stanton (1997). In this subsection, we pmpo alternative class of models
that are equally tractable but can generate richer nonlinear interestachtiefault arrival dynamics. While
maintaining the same factor dynamics, we now let the instantaneous intereahdateedit spread be a

guadratic function of the factors:

re=a+X ()%, A =a+X (b)%+Y (G)X%. (32)
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The quadratic specification in (32) has the same number of model parametbesprevious affine specifi-
cation. According to Leippold and Wu (2002), the benchmark zero-@obpnd price becomes exponential

guadratic in the state vector,
P(Xo,T) = exp(—a(1) —b(1) "Xo — X B(1)X0), (33)
with the coefficients solving the following ordinary differential equations,

d(t) = a +b(t) 6x+trB(t)—b(t)"b(1)/2,
b'(t) = 2B(1)8x—K, b(t) —2B(1)b(1), (34)
B'(t1) = (by)—B(1)kx—K, B(T) — 2B(1)?,

starting at8(0) = 0, b(0) = 0 anda(0) = 0.
Analogously, we can derive the credit default swap premium as

w3 (c(t) +d(t)"Zo+Z3 D(t)20) exp(—a(t) — Zg b(t)Zo)

1) = T , 35
S i exp(—alt) — b(t) ' Zo— 2 B()Z0) (%)
with the coefficients solving the following ordinary differential equations:

A(t) = az+b(t)'8+trB(t)—b(t) "b(1)/2,

M(t) = lz+2B(1)0—K'b(T) —2B(T)b(T),

B'(t1) = (bz)—B(1)k—K'B(1) —2B(1)? (36)

= 2D(t)0—«kd(t) —2D(t)b(t) — 2B(t)d(t),

)
)
)
) = d(t)'8+trD(t) —d(t) "b(1),
)
) = —D(t)k—k'D(t)—4B(t)D(t),

starting ata(0) = 0, b(0) = 0, B(0) =0, ¢(0) = ¢z, d(0) = 0, andD(0) = (dz). In equation (36)|z is a
vector of zeros, which will become nonzero in the presence of linear liguid credit risk factors. The

details of the derivation are available upon request.

Since the signs of the idiosyncratic credit risk premium)(and the idiosyncratic liquidity premium

(o) can be either negative or positive, it is appropriate to maintain the origiaas$kan affine assumption
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on both. In the presence of these two risk factors, the pricing formulthéocredit default swap retains
the same form as in (35), only with a corresponding expansion on the steterZ = [X', Y &, {]"
and the following redefinitions on the coefficients: = a; + & + am+ aq, |z = [0,0, Cm, bq}T, bz = [(br +
bi)",¢",0,0]", cz = a +am, anddz = [b,¢,0,0]". Furthermore, the initial condition oth(0) adjusts
from zero tod(0) = [0,0,cm,0] .

4. Estimation Strategy

We estimate the dynamics of benchmark interest-rate risk, credit risk, amditjousk in three consecutive
steps, all using a quasi-maximum likelihood method. At each step, we cast thedsioto a state-space
form, obtain efficient forecasts on the conditional mean and variancbsgreed interest rates and credit
default swap spreads using an efficient nonlinear filtering techniquihaild the likelihood function on the
forecasting errors of the observed series, assuming that the fongoasors are normally distributed. The

model parameters are estimated by maximizing the likelihood function.

In the first step, we estimate the interest-rate factor dynamics using libomaprates. In the state-
space form, we regard the two interest-rate factdsgs the unobservable states and specify the state-
propagation equation using an Euler approximation of statistical dynamice daftdrest-rate factors em-

bedded in equation (31):
Xi = DOyXi-1+ v/ Qxéxts (37)

whered, = exp(—KLAt) denotes the autocorrelation matrix %f Qx = IAt denotes the instantaneous co-
variance matrix ofX, with | denoting an identity matrix of the relevant dimension &bg= 1/252 denot-

ing the daily frequency, angy; denotes a two-dimensional i.i.d. standard normal innovation vector. The
measurement equations are constructed based on the observed litewamdates, assuming additive,

normally-distributed measurement errors,

LIBOR(X, 1) i =12 months,
+&, cove)==R, (38)
SWARX, j) j=2,3,4,57,10years

<
1
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In the second step, we take the estimated interest-rate factor dynamics irstreefr as given, and
estimate the credit-risk factor dynamicé) @t each industry sector and credit rating class using the seven
average credit default swap spread series for the high-liquidity grotipe state-propagation equation is an

Euler approximation of statistical dynamics of the credit-risk factors emlokiddesquation (31):

Yo = PyYio1+ / QEyts (39)

with ®y = exp(—KE’At), Qy = |At, andey; being ak-dimensional i.i.d. standard normal innovation vector.
We estimate models with both= 1 andk = 2. The measurement equations are defined on the CDS spreads

at the seven maturities,
yt:S()(ththai)—i_Q’ COV(Q):R7T:172a3747577310year$ (40)

wherei = 1,2, 3,4 denotes théh industry sector and credit rating class. We repeat this step eight times, fo

both one and two credit risk factors and for each of two industry seatatdwo credit rating classes.

In the third step, we estimate the additional credit-risk faatey and liquidity-risk factor ¢;) dynamics
for each industry sector and credit rating class using the CDS spraate tow-liquidity firms. The state-

propagation equation is an Euler approximation of the factor dynamics ira(@b{27):

Et _ ch E.t—l I @Sqt, (41)
Gt (i1

with @y = <exp(—K],11’;At),exp(—K§At)), Qq = IAt, andeg being a two-dimensional i.i.d. standard normal
innovation vector. The measurement equations are on the seven a@&&ggpreads for the low-liquidity

firms at each industry and credit rating class
Yt:S(Xt,Yhéth,Li)"‘Qy CO\(Q):KJ T:17273747577710years (42)

We repeat this step on each of two industry sectors and two credit ratsgpsla
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Given the definition of the state-propagation equation and measuremexioaguat each step, we use
an extended version of the Kalman filter to filter out the mean and covariance wigthe state variables
conditional on the observed series, and construct the predictive mdaroaariance matrix of the observed
series based on the filtered state variables. Then, we define the daily Ibigolice function assuming

normal forecasting errors on the observed series:

1 L
lt11(@) = |09 {Vt+1‘ ( Vi1 — yt+1)T (Vt+1) 1(Yt+l —)7t+1)) ) (43)

wherey andV denote the conditional mean and variance forecasts on the obsernes sepectively. The

model parameter®), are estimated by maximizing the sum of the daily log likelihood values,

©=argmax (©,{yth,). Wth (O {yhiy) Zj'wl (44)

whereN = 256 denotes the number of observations for each series. For eachwstggssume that the

measurement errors on each series are independent but with distinotea

5. Term Structure of Interest Rates, Credit Spreads, and Liquidity Premia

First, we summarize the performance of the different dynamic term strutingels in pricing interest rates
and credit default swap spreads. Then, from the estimated model garame analyze the dynamics and
pricing of benchmark interest-rate risk, credit risk, and liquidity risk, #r&ik impacts on the term structure

of interest rates, credit spreads, and liquidity premia.

5.1. Model performance

Table 4 reports the summary statistics on the pricing errors of libor and saegounder the two-factor affine
and quadratic model specifications. The affine model explains the swepwall, but fails miserably in
explaining the 12-month libor. The discrepancy between libor and swapisateell known in the industry.
Nevertheless, the very poor performance reveals some deficiencg tlidhfactor affine specification. In

contrast, the quadratic model performs much better on the libor seriesrfiisrpance across the six swap
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rates is also more uniform. Thus, the richer, nonlinear dynamic specifiadtiba quadratic model captures

the joint term structure of the libor and swap rates better.

The maximized log likelihood valueg | are 5067.1 for the affine model and 5229.7 for the quadratic
model, also indicating superior performance from the quadratic model. 8iese two models are not
nested, we cannot employ the standard likelihood ratio tests to gauge thecaigrsfiof the likelihood
difference. Nevertheless, we follow Vuong (1989) in constructingtistitabased on the difference between

the daily log likelihood values from the two non-nested models:
Iry =12 1A (45)

WhereltQ and| denote the time-log likelihood value of the quadratic and affine models, respectively.

Vuong constructs a statistic based on the likelihood ratio:
M = \/_T—Hr/olra (46)

wherep, andoj, denote the sample mean and standard deviation of the log likelihood ratio. thedwssll
hypothesis that the two models are equivalent, Vuong provesithhas an asymptotic normal distribution
with zero mean and unit variance. We construct the log likelihood ratio, atich&e the sample mean
at 0.6352, and sample standard deviation at 3.0054. The standard degeltalation adjusts for serial
dependence according to Newey and West (1987), with the numberso€legen optimally according to
Andrews (1991) based on an AR(1) specification. Thestatistic is estimated at 3.38, indicating that the
guadratic model performs significantly better than the affine model in expipihénbenchmark libor term

structure.

Table 5 reports the summary statistics of the pricing errors of the creditltisf@ap spreads on the
high-liquidity firms using one credit risk factor for both the affine and thadyatic specifications. The
affine model provides an almost perfect fit for the four-year CD®ahrbut the performance deteriorates
toward both short (one year) and long (ten year) maturities. In conthesperformance of the quadratic
specification is more uniform across different maturities. Under the qtiadipecification, one credit risk

factor, together with the previously identified two benchmark interest-raterta can explain all CDS
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spread series by over 90 percent. The one-factor quadratic modejexierates higher likelihood values
than the corresponding affine model for each of the four industry saeatb credit rating classes, but the

differences are not statistically significant in terms of the Vuong (1988¥8ta

For comparison, we also estimate models with two credit-risk factors. Tabfmé@sdhe summary sta-
tistics of the pricing errors. Adding one additional credit risk factor sigaiftly improves the performance
of the affine model at the two ends of the CDS term structure. Two affitterfaexplain over 98 percent
of the credit spread variations except for one series. With the quadpdification, since one credit risk
factor performs reasonably well, adding another credit-risk factos doegenerate as much improvement.
With two credit-risk factors, the maximized likelihood values from the affine quadratic specifications

are close to one another. The quadratic specification no longer dominatile specification.

To account for the different movements of CDS spreads for the low-liguitims, we introduce an
additional credit-risk factor and a liquidity factor in addition to the two benchniaterest-rate factors
and the two credit-risk factors identified from the CDS spreads on higlditgdirms. Table 7 reports the
summary statistics of the pricing errors on the CDS spreads for the low-ligfiitity. These two additional
factors can explain most of the different variations in the low-liquidity geoijost series can be explained

over 95 percent.

Overall, two interest-rate factors, especially in the quadratic forms, cplaiexhe term structure of
the benchmark interest rates well. Two additional credit-risk factors are than enough to explain the
term structure of credit spreads for high-liquidity firms under each imgsgctor and rating class. Finally,
by incorporating an additional credit risk factor and a liquidity risk factioe, model also performs well in

explaining the term structure of credit spreads on low-liquidity firms

5.2. Dynamics and term structure of benchmark interest rats

Table 8 reports the parameter estimates and the absolute magnitudes-sfatigtics (in parentheses) that
govern the dynamics and term structure of benchmark libor and swap rdieder both affine and the
guadratic specificationgy determines the mean-reversion of the interest-rate f&ctorder the risk-neutral

measurd). The small estimates on the diagonal elements,afpture the persistence of interest rates. The
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significantly negative estimates on the off-diagonal element suggestdkitive shocks to the first factor

impact positively on subsequent moves in the second factor.

The estimates for the constant part of the market price ofyglare negative for both factors under
the affine model. Under the quadratic model, the market price is positive dirghéactor and negative
on the second factor. The proportional coefficients estimgtgsare small and not statistically different
from zero for both factors under the affine specification, indicating ttreimarket price of risk does not
vary significantly with the factor level. The estimates under the quadratic nasdedlso small and only

statistically significant for the first factor.

The estimates o, capture the contemporaneous impact of the two interest-rate factors on-the in
stantaneous interest rate. Under both models, the estimates suggest getaihe factor has a stronger
contemporaneous impact on the instantaneous interest rate. The cotsffisteract with the risk-neutral
factor dynamicsKy) to determine the response of the whole yield curve to unit shocks fromtérest-rate
factors. Under the affine model, the contemporaneous responsescoitir@iously compounded spot rate
to the two dynamic factors are linear, wilit) /T measuring the mean term structure &(d) /Tt measuring
the response coefficients. Equation (14) shows bawyo, by, andk interact to determine(t) andb(t).
Figure 3 plotsa(t) /1 (left panel) and(t) /1 (right panel) as a function of maturityunder the affine model.
The solid line in the left panel shows an upward sloping mean term strudtutiee right panel, the solid line
represents the first elementlafft) /t, which captures the contemporaneous response of the spot rate curve
to the first interest-rate factor. This factor’s impact is stronger at lomggwurities than at shorter maturities.
The dashed line plots the impact of the second factor, which is stronger glhdint end of the yield curve.
The different impulse-response patterns relate not only to the diffemaghitudes of the two elements of
the by estimates, but also to the difference in risk-neutral persistence betwedéwdtfactors. Under the
affine model, the first factor is estimated to be more persistent than the sactord Hence, the impact of

the first factor extends to longer maturities.

[Figure 3 about here.]
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5.3. Default arrival dynamics and the term structure of credt spreads

Tables 9 and 10 report the parameter estimated-atatistics on the dynamics and pricing of the default
arrival rate for high-liquidity firms under each industry sector and itneding class. Tables 9 reports
estimates on the one-factor credit-risk specification. Tables 10 reptirtsates on the two-factor credit-

risk specification. The two tables reveal several common features d@odéfault arrival rate dynamics.

First, the default arrival intensity shows intricate dynamic interactions withirttezest-rate factors.
The Kyxy matrix captures the predictive power of interest-rate factors on the ltleisiufactors, whereas
the bj vector captures the contemporaneous impact of the interest-rate fantthe aefault arrival'.
Estimates on both sets of parameters are significant in most cases, indicatitigetinterest-rate factors
both predict default arrivals via the drift dynamikg, and impact the default arrivals contemporaneously

via the coefficients;.

Second, the estimates &g under the one-factor affine model are very small and not significantly dif
ferent from zero. Under the two-factor affine specification, the estsrfateone of the diagonal elements
of Ky are close to zero. The small estimates indicate a near unit root behavtheforedit risk dynamics.
The estimates under the quadratic specification are larger and also withgrettision (larget-values).
Thus, with a nonlinear structure under the quadratic model, we can maretaly identify a more station-
ary credit-risk dynamics, while delivering a better and more uniform pripggormance on CDS spreads

across all maturities.

Nevertheless, we also observe that the credit-risk dynamics and thetrpades vary significantly
across different industry sectors and rating classes. These difftyramics and pricing generate distinct
term structure behaviors for the CDS spreads. Based on the modeigiaraestimates for the two-factor
affine credit-risk specification in Table 10, we comphli@) /T as a function of maturity. Figure 4 plots the
third (solid lines) and fourth (dashed lines) elementb'¢f) /T under each industry sector and rating class.
These two lines represent the contemporaneous response of the cosljncompounded spot rate to unit
shocks in the two credit-risk factors. Since the credit-risk factors dentgr the benchmark interest-rate
curve, the lines also directly measure the impact on the credit spread betveemrporate spot rate and the

libor spot rate.
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[Figure 4 about here.]

Under all four industry and credit rating classifications, the contemgoaimpacts of the two credit-
risk factors are downward sloping along the term structure of credéasist Nevertheless, the impact
patterns show noticeable differences between the financial and atem@ctors. The factor responses in
the financial sector present an exponential decay with increasing matubitiein the corporate sector the
responses are approximately linear along the term structure. Furthethmifeading differences between
the two credit rating classes are much larger in the financial sector than aotperate sector, suggest-
ing that financial firms are more sensitive to rating changes between A BBdcBisses. A lower rating

generates much larger spreads for the financial firms.

5.4. Liquidity risk and liquidity premia

The liquidity of the CDS contracts as revealed by the quote updating fregwaries greatly across different
reference companies. Within each industry sector and credit rating tiadguidity is concentrated on a
few firms. An important question is what makes investors concentrate thiegrad one company versus
another. Also important is to understand whether and how the liquidity diféerémpacts the pricing of

CDS contracts.

Table 11 reports the parameter estimates tasi@tistics (in parentheses) on the additional credit-risk
factor and the liquidity-risk factor that account for the different movermefthe CDS spreads underlying
the low-liquidity firms. The loading parameter estimates on the additional creklfiadsor () are strongly
significant, showing that the default arrival rates for firms in the low-liguigroups have their own move-
ments that are independent of the default arrival dynamics identifiedtiie corresponding high-liquidity

group within the same industry sector and credit rating class.

The estimates on the intercegy, are negative under all four classifications and for both model spec-
ifications. The negative intercept estimates suggest that firms in the lowHiggiup on average have
lower default risk and hence experience lower instantaneous cree#dspthan firms in the corresponding
high-liquidity group. This observation is intriguing. It implies that, within the santeigtry and credit rat-

ing class, firms with active CDS trading activities are associated with higheeiged credit risk than firms
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with less active CDS trading activities. Either investors choose to trade ©biBacts on firms that they
perceive to have higher chances of downward rating migrations, ohitlatprofile firms generate more

awareness of its potential risk of default.

The instantaneous loading estimates on the liquidity-risk fadiQrdre large in magnitudes and also
highly significant, showing that liquidity plays a key role in the credit sprafidrdnces between the two
liquidity groups. The intercept estimates apare all positive, suggesting a higher discounting for the low-
liquidity contracts. Therefore, the lower average CDS spreads on laugiig firms can be attributed to a

combination of low credit risk and high liquidity discounting.

The estimates oRy,, which measures the risk-neutral mean-reversion behavior of thi-osdfactor,
are very small, suggesting that this credit-risk factor has highly persiss&gnteutral dynamics, similar to
the credit-risk factors identified from the high-liquidity groups. Hence, théslit-risk factor impacts the

term structure of credit spreads across all maturities.

In contrast, the estimates on the risk-neutral mean-reversion paramésethe liquidity-risk factor are
much larger and are highly significant, suggesting that the liquidity-risk fézte a more transient impact
on the term structure of discounting. Based on the parameter estimateg Figlots the contemporaneous
response of the continuously compounded spot rates to unit shockstimadditional credit-risk factor
(solid lines, in basis points) and the liquidity-risk factor (dashed lines, iogrd¢age points) under the affine
specification. Consistent with the difference in dynamics, the resporit&nsaon the two factors are
quite different. The impacts of the persistent credit-risk factor are relgtisniform across the whole term
structure, whereas the impacts of the more transient liquidity-risk factdindesteadily as the maturity

increases.

[Figure 5 about here.]

The market also prices the credit-risk factor and liquidity-risk factor ciffidly. The estimates fofy
are negative and statistically significant in most cases, indicating that thisoadticredit-risk factor has a
negative market price of risk. The negative market price of risk impliessitipe risk-neutral drift @) for
the credit-risk factor. As suggested by the ordinary differential eqousiio (21), a positivé for the credit-

risk factor helps generate an upward sloping mean term structure df speelads. On the other hand, the
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estimates on the pricing of the liquidity risig,¢) are significantly positive in five cases, and negative but
statistically insignificant in the other three cases. The positive market pricelse liquidity-risk factor
generate a downward-sloping effect on the term structure of cradiddp. As a result, the CDS spreads on

the low-liquidity firms have a flatter mean term structure than the CDS spreats bdigh-liquidity firms.

Overall, our estimation suggests that within the same industry sector andrateditclass, firms with
active CDS trading activities tend to have higher credit risks than firms withQ®& trading activities.
Furthermore, low-liquidity firms induce heavier discounting on the yield camve generate lower CDS
spreads. Finally, positive market pricing on the liquidity-risk renders theerterm structure of CDS spreads

flatter on low-liquidity firms.

6. Conclusion

Using a large data set on CDS spread quotes, we perform a compvehemalysis of the term structure of
interest rates, credit spreads, and liquidity premia. Through modeiraotisn and estimation, we find that
credit-risk dynamics differ across different industry sectors anditcrating groups, but in all cases they

show intricate interactions with the interest-rate dynamics and liquidity.

Interest-rate factors both affect credit spreads simultaneously, aracinspbsequent moves in the
credit-risk factors. Within each industry and credit rating class, we aishtfiat the average credit default
swap spreads for the high-liquidity group are significantly higher thathsfow-liquidity group. Estima-
tion shows that the difference is driven by both credit risk and liquidityedéfhces. The low-liquidity group

has a lower default arrival rate and also a much heavier discountingadday the liquidity risk.
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Table 1

Regression analysis of the CDS spreads

Entries report the estimates and the absolute magnitudes bfsthéstics (in parentheses) of various ver-
sions of the following panel regressions:

Average CDS Spreads(i,t,t+n) = ap+a; Ratinga(i,t,t+n)+ az Ratingggg(i,t,t +n)
+ag Ratinggg(i,t,t + n) + a4 Ratingg(i,t,t +n) + as Industry(i)
+ag Maturity(i) + a7 Updates(i,t,t +n) +agDD + e(i,t,t +n),

wherei refers to a specific CDS serieft,,t + n) denotes the sample averaging peri&ting, j =
A,BBB BB,B are dummy variables that are equal to one when the reference compmmayj{taedit rat-

ing during the specified sample period and zero otherwisdnthestrydummy variable is one for financial
firms and zero for non-financial firm$Jaturity is in number of yearsUpdatesdenotes the number of
guote updates for the series under the specified time periodpBndenotes the distance to default com-
puted using Moody’s default model. We estimate the panel regression wighedif averaging periods of

n = 30,60,90,120 150,255 days. In the case of= 255, we average across the whole sample and hence
the regression becomes purely cross-sectional. We estimate the equatimntha generalized method of
moments, with the weighting matrix constructed according to Newey and W&t 19he last column
reports the sample siz8l) for each regression.

n a0 a ap ag y as ag az ag N

30 -16.609 6.132  53.025 238538 547.290 18.239  4.314  3.928 414,926
(40.02) (25.17) (155.07) (267.74) (92.95) (57.54) (53.7§§9.82) —

60 -17.588  4.173  47.843 231.050 677.572 17.496  4.216  2.306 349,254
(42.21) (17.07) (131.72) (234.59) (66.96) (55.12) (54.69Y7.23) —

90 -18.706  3.062  45.054 219.100 764.298 17.692  4.137  1.710 299,545
(42.92) (12.47) (116.07) (205.63) (61.87) (54.56) (54.2183.43) —

120 -19.321 2476  43.388 213.024 790.661 17.741  4.086  1.372 — 234,482
(41.24) (9.49) (101.18) (186.98) (58.45) (51.85) (51.05p2L5) —

150 -19.599  2.294  43.051 213.497 809.851 17.844  4.038  1.125— 178,916
(37.20) (7.86) (87.92) (168.63) (53.00) (47.02) (45.40)5@B) —

180 -20.022  2.237  43.299 216.469 832.460 18110 3.996  0.953 — 123,356
(3154) (6.43) (73.45) (142.23) (45.38) (40.02) (37.74)4(8) —

255 -4.972 5213  21.085 231.191 1499.524 -0.559  4.205  0.445 — 1,425
(1.89) (4.44) (9.15) (19.89) (21.63) (-0.37) (7.97) (950) —

255 2631 11505 50.218 223.584 — 5416 2805 0498 -1.391 0 62
(0.36) (1.94) (7.88) (25.80) —  (1.02) (3.12) (10.69) (4.00)
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Table 2

Summary statistics of credit default swap spreads

Entries report the summary statistics of the credit default swap spreadagispoints) at the seven fixed
maturities under each credit rating class, industry sector, and liquiditypgrddean, Std, Skew, Kurtosis,
and Auto denote the sample estimates of the mean, standard deviation, skesxgess kurtosis, and the
first-order autocorrelation, respectively. Data are daily from May2B03 to May 12, 2004.

Maturity High Liquidity Low Liquidity

Years Mean Std Skew Kurtosis Auto Mean Std Skew Kurtosis Auto

(i) Sector: Financial; Rating: A

1 30.16 872 1.00 -0.33 0.98 1453 470 1.59 246 0.97
2 39.41 10.34 0.95 -0.38 0.98 20.13 6.27 151 220 0.97
3 43.03 11.04 0.96 -0.36 0.98 22.08 6.85  1.47 213 0.97
4 49.69 1241 0.91 -0.43 0.98 25.75 7.31 1.54 257 0.97
5 54.42 13.36 0.89 -0.49 0.98 28.35 7.67 158 275 0.97
7 61.29 13.43 0.84 -0.39 0.98 31.92 7.85 155 296 0.97
10 68.68 13.67 0.71 -0.57 0.98 3530 816  1.47 295 0.97
(i) Sector: Financial; Rating: BBB
1 92.68 25.42 0.27 -1.16  0.98 51.64 12.62 0.76 -0.62 0.98
2 100.30 25,51 0.39 -1.13 0.98 55.65 14.09 0.74 -0.77 0.98
3 103.69 25.87 0.39 -1.13  0.98 56.89 14.73 0.73 -0.81 0.98
4 108,55 25.00 0.46 -1.08 0.98 58,50 12.94 0.82 -0.54 0.98
5 111.83 2461 0.48 -1.04 0.98 60.01 11.76 0.88 -0.32 0.98
7 117.29 2251 0.32 -1.17  0.98 60.96 9.23 0.85 0.04 0.97
10 123.18 20.52 0.16 -1.28 0.98 63.56 7.04 0.28 -0.22 0.96
(ii) Sector: Corporate; Rating: A
1 28.85 817 0.78 -0.43 0.98 2693 5.07 097 0.92 0.98
2 39.67 955 0.64 -0.77 0.98 3137 539 054 0.23 0.98
3 43.77 10.01 0.64 -0.79 0.98 32.93 554 0.44 0.09 0.98
4 48.88 10.38 0.72 -0.56 0.98 3652 578 0.32 -0.04 0.98
5 52.34 10.62 0.76 -0.42 0.98 39.06 592 0.23 -0.15 0.98
7 58.29 10.31 0.67 -0.42 0.98 41.78 5.62 -0.07 -1.02  0.99
10 64.46 9.57 0.46 -0.50 0.98 45.25 6.11 0.34 -1.06  0.99
(iv) Sector: Corporate; Rating: BBB
1 63.35 17.89 1.30 0.88 0.98 39.55 6.49 051 0.05 0.98
2 75.09 1931 1.22 0.64 0.98 46.26 7.04 0.37 0.12 0.98
3 79.17 19.76 1.20 0.58 0.98 48.61 7.16 0.31 0.12 0.98
4 83.66 19.28 1.15 0.38 0.98 52.21 6.92 0.00 -0.11  0.98
5 86.71 19.00 1.11 0.28 0.98 54.79 6.82 -0.16 -0.31 0.98
7 91.97 17.14 1.08 0.28 0.98 58.41 6.51 -0.31 -0.94 0.98
10 97.23 1531 0.97 0.19 0.98 62.89 7.13 -0.00 -1.19 0.98
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Table 3

Summary statistics of libor and swap rates

Entries report the summary statistics of the U.S. dollar libor at one-year ma&mityswap rates at two,
three, four, five, seven, and ten years. Mean, Std, Skew, KurtmsisAuto denote the sample estimates
of the mean, standard deviation, skewness, excess kurtosis, andttoedar autocorrelation, respectively.
Data are daily from May 21, 2003 to May 12, 2004.

Maturity (Years) Mean Std Skew Kurtosis Auto
1 1.39 0.18 0.68 1.95 0.95
2 2.02 0.33 -0.01 0.45 0.96
3 2.60 0.39 -0.38 0.28 0.96
4 3.07 0.42 -0.55 0.23 0.96
5 3.45 0.43 -0.62 0.16 0.96
7 3.99 0.42 -0.68 0.11 0.96
10 4.50 0.40 -0.73 0.09 0.96
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Table 4

Summary statistics of pricing errors on the libor and swap rates

Entries report the summary statistics of the pricing errors on the U.S. dollarditmb swap rates under
the two-factor Gaussian affine model (left hand side under “Affina®) the two-factor Gaussian quadratic
model (left hand side under “Quadratic”). We estimate both models by usiagi-gnaximum likelihood
method joint with unscented Kalman filter. We define the pricing error as thereiifte between the ob-
served interest rate quotes and the model-implied fair values, in basis gdietsolumns titled Mean, Std,
Auto, Max, and VR denote, respectively, the sample mean, the standaatiale the first-order autocorre-
lation, the maximum absolute error, and the explained percentage varitficesd as one minus the ratio
of pricing error variance to interest rate variance, in percentages.lash row reports the maximized log
likelihood for each model.

Maturity Affine Quadratic

Years Mean Std  Auto Max VR Mean Std  Auto Max VR

1 756 17.35 0.91 46.89 5.08 -1.53 7.99 0.78 33.21 79.85
2 -0.23 4.09 0.88 10.38 98.46 -0.23 281 0.66 1156 99.27
3 -0.05 0.22 0.16 1.11  99.99 0.30 1.59 0.57 7.33 99.84
4 0.08 0.95 0.41 5.05 99.95 -0.13 1.15 0.40 7.81 99.93
5 0.36 0.85 0.30 6.51 99.96 0.06 0.70 0.34 5.75 99.97
7 -0.72 1.03 0.74 3.87 99.94 -0.48 1.15 0.60 446 99.93
10 0.50 1.85 0.76 6.60 99.78 0.70 2.10 0.70 757 99.72
Average 1.07 3.76 0.59 1149 86.17 -0.19 2.50 0.58 11.10 396.9
L 5067.1 5229.7
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Table 5

Summary statistics of pricing errors on credit default swap spread with one credit risk factor

Entries report the summary statistics of the pricing errors on the creditldsfaap spreads under both
affine and quadratic specifications. Both specifications use one deddiaictor to price the high-liquidity
credit-default swap spread at each industry and credit rating clagsestimate both models by using
guasi-maximum likelihood method joint with unscented Kalman filter. We define tbmgrerror as the
difference between the spread quotes and the model-implied fair valuessishgmints. The columns titled
Mean, Std, Auto, Max, and VR denote, respectively, the sample meanatidasd deviation, the first-order
autocorrelation, the maximum absolute error, and the explained percestagece, defined as one minus
the ratio of pricing error variance to interest rate variance.

Maturity Affine Quadratic
Years Mean Std  Auto Max VR Mean Std  Auto Max VR
(i) Sector: Financial; Rating: A
1 -0.35 3.86 0.97 1255 80.41 -1.31 2.69 0.83 18.98 90.49
2 1.33 2.07 0.97 5.48 96.01 1.58 1.74 0.57 17.96 97.15
3 -1.37  1.36 0.96 6.07 98.47 -1.16  1.50 0.35 2259 98.14
4 -0.00 0.02 0.66 0.08 100.00 -0.06 1.14 0.09 18.07 99.16
5 0.25 1.00 0.96 2.48 99.44 -0.04 1.19 0.27 1585 99.21
7 0.02 1.26 0.93 3.59 99.12 -0.35 1.21 0.43 13.07 99.19
10 -0.26  2.44 0.95 7.77 96.81 0.09 2.20 0.84 10.89 97.40
(iif) Sector: Corporate; Rating: A
1 -4.66 1.88 0.96 8.89 94.72 -3.66 2.23 0.75 20.74 92.55
2 0.10 0.84 0.91 2.51 99.23 0.33 1.40 0.39 1753 97.86
3 -0.85 0.66 0.93 2.93 99.56 -0.62 1.37 0.35 19.63 98.13
4 0.00 0.01 0.80 0.02 100.00 019 111 0.19 16.72 98.86
5 -0.13 0.35 0.90 1.40 99.89 -0.06 0.94 0.07 1491 99.22
7 0.03 1.28 0.95 4.36 98.47 -0.03 1.04 0.39 13.14 98.98
10 -0.24  3.23 0.97 8.73 88.59 0.23 1.97 0.86 11.00 95.78
(ii) Sector: Financial; Rating: BBB
1 -2.26  4.00 0.96 1581 97.52 -1.19  6.37 0.79 47.22 93.73
2 0.33 2.32 0.95 7.69 99.17 0.37 3.62 0.41 4579 97.99
3 -0.82 2.08 0.96 7.64 99.35 -1.01  3.30 0.38 4458 98.37
4 0.01 0.01 0.84 0.04 100.00 -0.14  2.47 0.08 39.28 99.03
5 -0.26 1.25 0.96 3.86 99.74 -0.26  2.44 0.24 34.00 99.02
7 -0.57 297 0.97 6.92 98.26 -0.21  2.57 0.45 29.23 98.70
10 -0.40 5.52 0.97 12.38 92.75 0.05 3.78 0.79 23.08 96.61
(iv) Sector: Corporate; Rating: BBB

1 -5.81 2.68 0.96 11.90 97.75 -2.98 5.54 0.58 63.04 90.40
2 0.19 1.29 0.95 3.91 99.56 055 3.72 0.23 5439 96.29
3 -0.51 1.09 0.95 4.35 99.70 -0.57 3.23 0.16 49.68 97.33
4 0.00 0.00 0.65 0.01 100.00 -0.09 2.88 0.11 4570 97.76
5 -0.27 0.68 0.96 2.18 99.87 -0.32  2.62 0.13 40.86 98.10
7 -0.17 2.88 0.98 6.62 97.18 -0.07 2.65 0.38 34.19 9761
10 -0.16  5.38 0.98 12.13 87.64 0.32 3.35 0.73 26.09 95.22
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Table 6

Summary statistics of pricing errors on credit default swap spread with two credit risk factor

Entries report the summary statistics of the pricing errors on the crediltsiaap spreads under both
affine and quadratic specifications. Both specifications use two crddfadtors to price the high-liquidity
credit-default swap spread at each industry and credit rating classlefhe the pricing error as the dif-
ference between the spread quotes and the model-implied fair valuesjsrpbags. The columns titled
Mean, Std, Auto, Max, and VR denote, respectively, the sample meanatidasd deviation, the first-order
autocorrelation, the maximum absolute error, and the explained percesmtagece, defined as one minus
the ratio of pricing error variance to interest rate variance.

Maturity Affine Quadratic
Years Mean Std  Auto Max VR Mean Std  Auto Max VR
(i) Sector: Financial; Rating: A
1 0.01 0.08 0.43 0.38 99.99 -040 1.64 0.85 5.45 96.46
2 1.39 0.72 0.91 2.62 99.52 1.26 1.09 0.72 6.36 98.89
3 -1.38 0.80 0.94 411 99.48 -1.44  1.02 0.61 12.27 99.15
4 0.00 0.00 0.22 0.00 100.00 -0.05 0.57 0.08 8.96 99.79
5 0.27 0.76 0.93 2.09 99.68 0.21 0.93 0.65 8.02 99.52
7 0.05 0.75 0.89 2.02 99.68 -0.04 0.50 0.06 795 99.86
10 -0.20 1.72 0.95 3.88 98.42 -0.25 1.50 0.85 9.58 98.80
(i) Sector: Corporate; Rating: A
1 -0.44 1.88 0.98 3.98 94.72 -0.65 2.16 0.69 19.36 93.00
2 1.94 0.92 0.95 3.64 99.07 1.73 156 0.39 18.15 97.34
3 -0.28 0.53 0.93 2.01 99.72 -041 1.37 0.21 21.07 98.12
4 0.00 0.00 0.50 0.01 100.00 -0.02 1.15 0.08 18.24 98.77
5 -0.30 0.30 0.94 0.81 99.92 -0.25 1.04 0.09 16.18 99.03
7 0.01 0.09 0.43 0.38 99.99 0.08 0.96 0.17 13.89 99.13
10 -0.14 0.98 0.96 2.39 98.95 -0.02 1.10 051 12.05 98.69
(ii) Sector: Financial; Rating: BBB
1 -0.64 1.59 0.93 3.85 99.61 -0.10 1.83 0.74 10.63 99.48
2 0.07 0.11 0.39 0.53 100.00 -0.00 0.44 0.02 6.74 99.97
3 142  1.20 0.94 459 99.78 -1.18  1.32 0.90 6.41 99.74
4 -0.32 1.06 0.93 2.84 99.82 -0.00 0.25 0.01 3.68 99.99
5 -0.16 1.68 0.97 3.13 99.53 0.03 0.82 0.91 1.74 99.89
7 0.01 0.03 0.41 0.20 100.00 -0.05 1.53 0.91 421 99.54
10 -0.51 1.56 0.94 3.97 99.43 -0.27 3.05 0.94 7.00 97.79
(iv) Sector: Corporate; Rating: BBB

1 -3.39  4.22 0.98 15.16 94.44 -0.60 3.14 052 3752 96.92
2 1.18 1.75 0.98 3.46 99.18 192 211 0.36 26.61 98.81
3 -0.24 0.63 0.96 2.06 99.90 -0.19 1.38 0.13 21.21 99.51
4 0.00 0.00 0.04 0.00 100.00 -0.05 1.12 0.06 17.76 99.67
5 -0.30 0.56 0.98 1.04 99.91 -0.31 1.03 0.27 1429 99.70
7 0.00 0.00 0.08 0.01 100.00 -0.03 0.72 0.07 11.42 99.82
10 -0.00 0.54 0.92 2.40 99.88 -0.05 0.95 0.66 9.01 99.62
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Table 7

Summary statistics of pricing errors on the low-liquidity credit default swap spreads

Entries report the summary statistics of the pricing errors on the low-liquidityitdefault swap spreads. In
addition to two interest rate factors and two credit risk factors that hase identified using the benchmark
interest rates and the high-liquidity credit default swap spreads, weraddditional idiosyncratic credit
risk factor and a liquidity risk factor to account for the credit spread mmrds in the low-liquidity groups.
We define the pricing error as the difference between the spread qumtéise model-implied fair values, in
basis points. The columns titled Mean, Std, Auto, Max, and VR denote,atbsglg, the sample mean, the
standard deviation, the first-order autocorrelation, the maximum absalateaard the explained percentage
variance, defined as one minus the ratio of pricing error variance to shtate variance.

Maturity Affine Quadratic
Years Mean Std  Auto Max VR Mean Std  Auto Max VR
(i) Sector: Financial; Rating: A
1 2.82 1.29 0.96 5.93 97.82 0.10 159 0.97 3.77 96.69
2 2.13 0.78 0.95 3.62 99.43 0.80 0.87 0.95 2.53 99.29
3 -0.37  0.32 0.93 1.27 99.92 -0.78 0.35 0.94 1.76 99.90
4 -0.00 0.00 0.29 0.02 100.00 -0.00 0.00 0.01 0.04 100.00
5 0.07 0.28 0.94 0.66 99.96 0.17 0.31 0.95 0.82 99.95
7 0.02 0.17 0.88 0.45 99.98 0.02 0.20 0.89 0.46 99.98
10 -0.00 0.04 0.49 0.15 100.00 0.00 0.01 0.07 0.05 100.00
(iii) Sector: Corporate; Rating: A
1 -0.08 3.47 0.99 7.27 81.96 0.62 2.82 0.98 5.91 88.14
2 -0.06 1.93 0.99 4.61 95.93 029 1.82 0.98 4.20 96.35
3 -1.33 0.78 0.98 3.48 99.39 -1.23 0.76 0.98 3.35 99.42
4 0.00 0.01 0.49 0.10 100.00 -0.00 0.02 0.55 0.16 100.00
5 0.60 0.69 0.98 2.27 99.57 0.58 0.69 0.98 2.28 99.58
7 0.02 0.10 0.53 0.88 99.99 0.03 0.09 0.56 0.77 99.99
10 -0.24  0.73 0.96 1.49 99.42 -0.35 0.65 0.95 1.41 99.55
(ii) Sector: Financial; Rating: BBB
1 -1.45 254 0.99 5.92 99.00 -1.05 2.53 0.99 5.50 99.01
2 0.00 0.16 0.13 2.23 100.00 0.01 0.18 0.17 2.52 100.00
3 -0.29 1.39 0.97 2.70 99.71 -0.29 1.39 0.97 2.78 99.71
4 0.00 0.10 0.03 1.53 100.00 0.01 0.09 0.12 1.42 100.00
5 0.21 0.77 0.98 1.25 99.90 0.19 0.76 0.98 1.32 99.90
7 -1.63 281 0.99 6.00 98.45 -1.68 2.82 0.98 6.14 98.43
10 -352 485 098 1141 94.41 -3.37 5.01 0.98 11.68 94.04
(iv) Sector: Corporate; Rating: BBB

1 0.66 2.87 0.98 7.72 97.43 038 171 0.91 7.98 99.09
2 133 1.34 0.98 3.46 99.51 0.77 1.09 0.96 291 99.68
3 -0.50 0.40 0.95 1.45 99.96 -0.76  0.29 0.92 1.57 99.98
4 -0.00 0.00 0.27 0.03 100.00 0.00 0.00 0.23 0.04 100.00
5 0.15 0.36 0.97 0.88 99.96 0.26 0.35 0.96 1.19 99.97
7 0.00 0.05 0.57 0.20 100.00 0.02 0.07 0.35 0.53 100.00
10 0.01 0.28 0.91 0.95 99.97 -0.16 0.42 0.92 1.00 99.93

39



Table 8

Dynamic and term structure of the benchmark libor interest rates

Entries report the parameter estimates and the absolute magnituded-statistics (in parentheses) that
determine the dynamics and term structure of the benchmark libor interest Thie estimations are based
on 12-month libor and swap rates of two, three, five, seven, and tes, yeigh quasi-maximum likelihood

method.
Model Kx Yo Vi a br
02365 0 | [ -01987] [ 0.0819 0.0000 ]
Afine (522) (4.45) (0.05) 1000461 | (0.04)
09338 03073 09752 00321 | | (104) | | 00116
| (1287) (535 | (3.77) (0.00 | (202) |
07597 0 11885 ] [ 0.7581 [ 0.0006 ]
N L - (157) (3.79) 000817 | (8.20)
Quadratic |5 6567 01196 16100 00774 | | (797) | | 00025
| (3817) (266) | (258) (0.06) | (229) |
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Table 9

One-factor default arrival dynamics and the term structure of credit spreads

Entries report the second-stage parameter estimates and the absolutedeagiitbe-statistics (in paren-
theses) that determine the one-factor default arrival dynamics andrthestieicture of credit spreads. The
estimations are based on high-liquidity credit default swap spreadsabé#uee four industry and credit
rating classes with quasi-maximum likelihood method.

S Kxy Ky Vy0 Vy1 a b Ci

(i) Affine Models
Financial A -0.0363 0.1033 0.0001 -0.0230 0.0232 0.014300D4 0.0015 0.0038
(1.00) (557) (0.03) (0.07) (0.04) (1.62) (5.39) (415) (Qp
Corporate A 0.1974 0.0618 0.0001 -0.0226 0.0227 0.0128 0@.000.0015 0.0035
(7.72) (6.49) (0.03) (0.05) (0.04) (1.69) (0.67) (15.0) (&B
Financial BBB 0.0486 -0.0421 0.0001 -0.0175 0.0176 0.0369001¥ 0.0021 0.0137
(2.13) (5.28) (0.02) (0.01) (0.01) (2.71) (2.53) (16.3) (ug
Corporate BBB -0.1196 0.0735 0.0001 -0.0224 0.0225 0.03@80029 0.0008 0.0056
(290) (3.55) (0.01) (0.08) (0.04) (6.36) (7.08) (10.0) (ap

(i) Quadratic Models
Financial A 0.3922 -0.0211 0.0718 0.0181 0.0537 0.0061 @&BO0-0.0007 0.0032
(28.7) (11.3) (9.24) (0.00) (0.02) (28.1) (23.00) (12.6) O(®)
Corporate A 0.1108 0.0079 0.1396 0.0875 0.0521 0.0050 ©8.060.0010 0.0083
(20.5) (594) (245) (0.00) (0.01) (27.6) (459) (20.7) (o
Financial BBB 0.2768 0.0947 0.2043 0.1493 0.0551 0.0186 0020 -0.0030 0.0112
(24.2) (32.1) (28.9) (0.02) (0.02) (47.0) (5.32) (457) (Ap
Corporate BBB 0.1906 0.0646 0.2056 0.1536 0.0520 0.0125001d. -0.0020 0.0140
(249) (48.8) (30.3) (0.01) (0.01) (21.6) (19.8) (20.2) Ay
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Table 10

Two-factor default arrival dynamics and the term structure of credit spreads

Entries report the second-stage parameter estimates and the absoluteaeagifithd-statistics (in paren-
theses) that determine the two-factor default arrival dynamics and thestancture of credit spreads. The
estimations are based on high-liquidity credit default swap spreads labé#te four industry and credit
rating classes with quasi-maximum likelihood method.

o Kxy Ky Yyo Yy1 e bi Ci

(i) Affine Models
Financial A -0.1694 0.0686 0.0001 0 0.0287 -0.0060 0.006900@5 0.0003

(3.36) (3.43) (0.01) — (0.42) (0.06) (1.27) (0.41) (0.13)
0.2931 -0.2120 0.4474 0.7912 -1.9590 0.7815 —  0.0004 0.0067
(1.95) (4.90) (2.58) (857) (1.92) (0.02) —  (269) (4.07)
Corporate A -0.1975 0.6094 0.0005 0  -1.8568 -0.0019 0.0103002 0.0012
(0.61) (5.27) (0.01) — (7.00) (0.00) (1.79) (0.32) (0.30)
0.4848 -0.1206 0.0965 0.0418 -0.1767 0.0325 —  0.0034 0.0055
(3.32) (0.28) (3.15) (0.60) (0.13) (0.01) —  (195) (5.74)
Financial BBB 0.6387 0.1686 0.4582 0  -0.2490 0.4515 0.0342004 0.0089
(7.80) (5.37) (10.29) — (0.15) (0.02) (0.25) (2.33) (3.99)
0.2125 0.0112 0.1718 0.0947 0.0573 0.0873 —  0.0071 0.0172
(2.13) (0.39) (3.60) (11.6) (0.19) (0.03) —  (125) (10.1)
Corporate BBB -0.3278 0.2385 0.0006 0  -0.5814 -0.0041 @03®.0029 0.0011
(4.37) (5.70) (0.01) — (4.64) (0.00) (0.45) (6.34) (0.52)
0.0480 0.0277 0.1494 0.0147 -0.1889 0.0104 —  0.0016 0.0055
(0.47) (0.34) (7.50) (0.27) (0.05) (0.01) — (17.2) (12.4)

(i) Quadratic Models
Financial A -0.0407 -0.0320 0.5577 0 0.5019 0.5520 0.004100@B 0.0067

(1.74) (2.03) (9.85) — (4.93) (0.02) (12.2) (6.48) (9.05)
-0.4381 0.0742 -0.1412 0.0120 -1.2139 0.0032 —  -0.0011 2000
(21.3) (21.1) (257) (1.31) (21.6) (0.00) —  (68.4) (205)
Corporate A 0.6625 -0.0392 0.0004 0  1.1627 -0.0054 0.003900i0 0.0006
(28.0) (7.08) (0.06) — (17.1) (0.00) (23.3) (59.0) (11.95)
-0.2741 0.0274 -0.0621 0.1090 -0.7897 0.1001 —  -0.0008 4900
(13.8) (6.40) (7.25) (5.99) (18.1) (0.02) — (105.7) (21.2)
Financial BBB 0.0159 0.0628 0.1034 0  -0.2342 0.0980 0.00920008 0.0002
(0.37) (138) (145) — (230) (0.13) (7.3) (4.68) (1.01)
-0.0261 -0.2045 0.4805 1.6345 -1.5258 1.6254 —  -0.0015 25,03
(0.96) (7.89) (9.31) (14.2) (89) (0.07) —  (496) (12.1)
Corporate BBB -0.0569 0.0087 0.0846 0  -0.1380 0.0846 0.0098006 0.0001
(1.60) (1.36) (6.44) — (1.83) (0.07) (15.0) (9.46) (0.74)
-0.1874 -0.0738 0.1988 0.4640 -0.8735 0.4640 —  -0.0011 20,01
(9.76) (8.12) (12.3) (17.6) (11.0) (0.02) —  (79.9) (11.4)
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Table 11

Idiosyncratic credit and liquidity risk

Entries report the third-stage parameter estimates-atatistics (in parentheses) that determine the idiosyn-
cratic credit and liquidity risk dynamics in accounting for the idiosyncratiditisgpreads embedded in the
low-liquidity credit default swaps. The parameters are estimated usingmpaxgmum likelihood method.

Credit Risk Liquidity Risk

o Km Ym0 Ymi am Cm Kq Yoo Y1 aq by

(i) Affine Models

Financial A 0.0010 -0.0275 -0.0500 -0.0062 0.0030  0.33121299 0.2832 0.3423 0.2822
(0.06) (0.51) (0.01) (13.9) (26.3) (9.55) (0.47) (0.16) 48) (7.89)

Corporate A 0.0012 -1.0741 -0.0577 -0.0011 0.0028 0.8452606 0.8448 6.0187 0.9083
(0.01) (158) (0.01) (2.00) (9.92) (36.34) (4.14) (1.38).0%) (17.1)

Financial BBB 0.0001 -0.0732 -0.0381 -0.0150 0.0093  0.937%4433 0.9374 2.9285 2.7536
(0.00) (2.53) (0.01) (1.24) (30.7) (10.6) (0.75) (0.11) 42) (9.07)

Corporate BBB 0.0009 -0.0991 -0.0434 -0.0176 0.0042 0.330%776 0.2911 1.0670 0.3245
(0.10) (5.08) (0.19) (9.67) (27.9) (15.6) (3.48) (0.44) 7¥) (11.8)

(i) Quadratic Models

Financial A 0.0008 -0.5700 -0.0502 -0.0067 0.0038  0.94948194 0.9003 2.3761 0.8999
(0.02) (6.08) (0.01) (1.08) (45.2) (28.0) (2.72) (0.45) &>5) (8.67)

Corporate A 0.0102 -0.2178 -0.0399 -0.0043 0.0052 0.674®258 0.6735 4.2633 0.8047
(0.11) (1.40) (0.01) (21.49) (176) (28.3) (3.46) (1.60) 3IB) (14.0)

Financial BBB 0.0001 -0.0902 -0.0381 -0.0166 0.0105 0.90/®@4327 0.9070 2.9863 2.6709
(0.00) (2.52) (0.01) (4.01) (26.5) (17.0) (0.91) (0.12) §®) (11.6)

Corporate BBB 0.0068 -0.2343 -0.0087 -0.0229 0.0082  0.5233088 0.5204 2.7831 0.3963
(0.22) (6.28) (0.00) (0.56) (17.8) (39.4) (857) (1.61) (1p (19.1)
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Sector: Financial; Rating: A; High Liquidity Sector: Financial; Rating: A; Low Liquidity
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Figure 1
Time series of credit default swap spreads.
The seven lines in each panel plot the time-series of the average quotesditndefault swap spreads at

seven fixed maturities for each industry sector, credit rating class, anditiggroup. Data are from JP
Morgan Chase, daily from May 21, 2003 to May 12, 2004.
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Sector: Financial; Rating: A; High Liquidity Sector: Financial; Rating: A; Low Liquidity
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Figure 2

Term structure of credit default swap spreads.
Lines in each panel plot the term structure of the average quotes ahdéalilt swap spreads at different

days for each credit rating class, industry sector, and liquidity growta Bre are from JP Morgan Chase,
daily from May 21, 2003 to May 12, 2004.
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Benchmark libor and swap rates Benchmark libor and swap rates
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Figure 3

Mean term structure and impulse-response of benchmark interesrates.

Solid line in the left panel plots the mean term structure of continuously condeauspot rate. The two
lines in the right panel depict the contemporaneous response of theumurgiy compounded benchmark
spot rate to unit shocks from the first (solid line) and second (dashe)dfiterest-rate factors. The lines are
computed based on the estimated two-factor affine model.
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Credit-risk factor loading on the term structure of credit spreads under affine specifications.

Solid lines denote the contemporaneous response of the continuously wshepocorporate spot rate to
unit shocks from the first credit-risk factor. Dashed lines plot theaesp to unit shocks from the second
credit-risk factor. The loadings are computed based on the parametertestiofidghe two-factor affine

credit-risk specification.
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Sector: Financial; Rating: A Sector: Financial; Rating: BBB
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Figure 5

Idiosyncratic default risk and liquidity risk factor loading.

Lines plot the contemporaneous response of the spot rate on the lowitliquidup to unit shocks from
the additional credit-risk factor (solid lines, in basis points) and the liquidstyfiactor (dashed lines, in
percentages), respectively.

48



