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Abstract

The probability of default (PD) is one of the key variables in credit risk

management. By using PD estimates as input to pricing and capital require-

ment calculations, one should be concerned of how good these estimates are.

Confidence intervals are thereby a convenient way to assess the range that cov-

ers the true, but unknown parameter with a certain confidence probability. In

this paper, we discuss the issues occurring in the construction of confidence

intervals for a binomial proportion, and assess the magnitude of estimation

uncertainty for exemplary but representative credit portfolios. To give an eco-

nomic meaning to the range of errors, we translate the PD confidence interval

into a risk-weight confidence interval by applying the Basel II IRB approach.

The two main conclusions are: (i) The magnitude of estimation uncertainty

can be substantial and is economically relevant. (ii) The choice of confidence

interval matters and differences between intervals can be large.
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Assessing the estimation uncertainty of

default probabilities.

1 Introduction

Credit risk management is a central task for commercial banks. Within a quantita-

tive approach, the key variable in quantifying credit risk is the probability of default

(PD), which one may assign to a specific obligor or to a certain rating category.

The focus on the PD may be either as considering it to be an output variable or

an input variable. The former is related to the extensive research on credit risk

modelling, where highly sophisticated models are formulated to predict the PD of

individual obligers or entire portfolios. The latter is more related to the allocation

of economic and regulatory capital and risk-adjusted pricing. When treating the

PD as an input, it may be model-based or estimated from actual default history. If

it is estimated from historical data two natural questions arise: (i) How is the PD

estimated?, and (ii) How good is this estimate?1

The issue of assessing the reliability of a PD estimates has only recently received

heightened attention in the academic literature.2 Not at least due to the revised

framework of the Basel Capital Accord (Basel II).3 Under Basel II, banks may

choose to apply an internal ratings based (IRB) approach to assess the regulatory

capital requirement needed to cover their credit risk. Basically, the (foundation)

IRB approach consists of a risk-weight function which is defined as a function of

the PD. However, little is said about how to estimate this PD and how to deal

with estimation uncertainty.4

This issue is especially relevant for banks with small portfolios, as it is the case

for the majority of regionally active banks. Note, that exactly for those banks the

standard approach, which relies on external ratings, is hardly applicable since their

portfolio will only contain few if any obligers with a rating from a major rating

agency. But even if we consider banks with a reasonable large portfolio, the distri-

bution across rating categories is far from uniform, so that some categories - notably

the low-risk categories - contain only a small number of data points. BBA et al.

(2004) for example report, that among the seven largest UK banks, 48% of corpo-

rate assets will suffer from insufficient default data to give a statistically significant

1 Obviously, the issue of estimation precision is also present in the model-based PD, since any

model requires some input data, but we will not focus on this more involved problem here.
2 See Christensen et al. (2004), Hanson and Schuermann (2006), Stein (2003), Pluto and Tasche

(2005)
3 BCBS (2004)
4 BCBS (2004), sec. 451 tells us that: “In general, estimates of PDs, LGDs, and EADs are likely to

involve unpredictable errors. In order to avoid over-optimism, a bank must add to its estimates

a margin of conservatism that is related to the likely range of errors.” But what exactly ’margin

of conservatism’ and ’likely range of errors’ means, is left open to interpretation.
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estimate. For other asset classes, like sovereigns and banks, percentage figures are

even worse, being 90% and 62% respectively.

In this paper, we provide an assessment of the PD estimation uncertainty for

different credit portfolio structure and size. The usual way to quantify the ’likely

range of errors’ is to calculate statistical confidence intervals, i.e. upper and lower

limits, that cover the true unknown parameter with a certain given probability. The

length of the confidence interval depends on the actual estimate, the chosen confi-

dence probability and most notably on the sample size. And as intuition suggests,

the interval will be shorter for larger samples. Therefore, for a given PD estimate

of a certain rating category and given the number of observations in that category,

one can show how reliable this estimate is in terms of calculating the length of the

confidence interval. As the PD estimation uncertainty is especially important in

the context of Basel II, we give an economic taste for the estimation uncertainty by

calculating the regulatory capital requirement at the upper and lower limits.5

Furthermore, it is important to recognize that confidence intervals are not unique,

i.e. there is not one single way of constructing interval estimators, but several al-

ternatives are available. Thereby, the most common approach consists of inverting

a test statistic. In particular, the so-called Wald interval is obtained by inverting a

test statistic based on the normal distribution. Besides test statistic inversion, there

is the Bayesian approach, which assumes a prior distribution for the parameter and

then uses the observed data to obtain the updated (posterior) distribution. The

Bayesian approach necessitates the choice of the prior distribution and thus reflects

the experimenter’s beliefs.6 Within this approach, we discuss the so-called Jeffrey’s

interval.

Discussing the impact of interval choice is not only an theoretical issue, but is also

of practical importance. For example, OeNB (2004), a publication by the Austrian

central bank (OeNB), which gives an outline on the validation of rating systems

recommends to use the Wald interval, unless the sample size is small, in which case

the Clopper-Pearson interval should be used. Our contribution should help to clar-

ify if this is an adequate recommendation.

Our contribution adds to the growing literature on PD estimation. Stein (2003)

gives a simple but instructive example about the accuracy of probability estimates

and especially poses the question of how large a data set needs to be in order to

give reliable estimates. However, he largely relies on the normal approximation to

the binomial distribution, which provides doubtful results as will be discussed later.

Höse and Huschens (2003) and Huschens (2004) also use the asymptotic property of

the binomial distribution but consider correlated default events in the form of the
5 See also Rösch (2005) for the impact of estimation error on regulatory capital.
6 See e.g. Casella and Berger (2002).
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one-factor model underlying the Basel IRB approach. They show that confidence

intervals in the correlated case are significantly wider. Pluto and Tasche (2005)

address the issue of PD estimation if there is no or few default events in the data

set. They suggest a most prudent estimation principle, which they interpret as

estimating PDs by upper confidence bounds. A more qualitative approach of how

to deal with low default portfolios is also discussed in BBA et al. (2004).

Focusing more on the issue of how to estimate PDs (or in general migration prob-

abilities), Lando and Skodeberg (2002) and Jafry and Schuermann (2004) compare

confidence intervals derived from the cohort against the duration method. While

the cohort method counts the number of migrations at the end of the observation

period (usually one year), the duration method uses continuously observed rating

actions and thus also takes into account if a firm that was initially in rating cate-

gory i was temporarily in category j before ending up in category k at the end of

the year. With the duration method, Lando and Skodeberg (2002) show that one

obtains non-zero migration probabilities for cases where actually no such migra-

tion has been observed in the data sample. This is reasonable, since only because

the default of a high-rated company has not been observed does not mean that

it has probability zero that this event can occur.7 More importantly, Lando and

Skodeberg (2002) and Jafry and Schuermann (2004) show that confidence intervals

for duration estimates are usually tighter than those for the cohort estimate, since

the former contain more information. However for the duration estimate, no ana-

lytical confidence intervals are known and can only be obtained via bootstrapping

methods. Hanson and Schuermann (2006) provide a systematic comparison of confi-

dence intervals across different estimation methods and interval. Interestingly, with

a rather large sample, they show that interval lengths can be substantial, making

it impossible to distinguish statistically between notch-level PDs in the investment

grade categories. Similar results were derived by Christensen et al. (2004) although

their focus is on addressing the issue of rating momentum, i.e. the observation that

a recently downgraded firm has a higher risk of being further downgraded than

firms being in the same rating category for a longer period of time.

Besides the financial application, the construction of appropriate confidence inter-

vals for a binomial proportion is the topic of recent research in statistical science.

Brown et al. (2001, 2002) or Agresti and Coull (1998) have shown that the standard

confidence interval based upon the asymptotic property of the binomial distribution

performs poor not only for small sample size.

The remainder of the article is organized as follows: Section 2 discusses the theoret-

ical foundations of confidence intervals. Section 3 applies four alternative intervals

to exemplary representative credit portfolios, and section 4 concludes.

7 Actually, this is easily seen by multiplying a one-year migration matrix with itself, giving the

two-year matrix. If the one-year matrix contains a zero PD for the highest grade, but a non-

zero probability of migrating into a lower category which itself has a positive PD, then the

two-year matrix will show up a non-zero PD for the highest grade also.
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2 Theoretical underpinnings of confidence intervals

The industry standard for the estimation of the PD is the cohort method. As men-

tioned in the previous section, the cohort method consists of counting the number

of firms that were in rating category i at the beginning of the year and ended up

in default (or any non-default category) at the end of the year relative to the total

number of firms initially in category i. Denoting in the following the PD of a firm

in rating category i by pi, and the default frequency calculated from a sample size

of n by f i
n,8 then according to the cohort method, we have

f i
n =

ni,def

ni

, (1)

where ni,def is the number of firms migrating from i to default, and ni is the total

number of firms initially in category i.

Usually, the default frequency f is taken to be the PD estimate, i.e.:

p̂i = f i.

This is also consistent with the requirements in BCBS (2004): “PD estimates must

be a long-run average of one-year default rates for borrowers in the grade [...]”.9 One

may come up with different methods to provide PD estimates such as the duration

method previously mentioned, but since our aim is to provide an assessment of the

PD estimate uncertainty in the context of standard methods used in practice and

for typical portfolio structure and size, we focus on the cohort method.

Once the PD estimate in terms of the default frequency is given, we can ask how

good this estimate is given the data underlying the estimation, i.e. we can ask for the

’likely range of errors’ for this estimate in terms of calculating a confidence interval.

In general, the construction of a confidence interval consists of finding lower and

upper bounds L and U , such that the probability that the interval (L,U) covers

the unknown true parameter, i.e. L < p < U , or p ∈ (L,U) equals some predefined

confidence level. Denoting the confidence level by α, we seek to determine U and

L, such that:

Prob{L < p < U} = 1 − α, (2)

where α is usually taken to be 5%. It is important to note that in this formulation

the random quantity is the interval and not the parameter.10 Obviously, L and U

will depend on the estimate p̂, the sample size n, the confidence level α and the

8 If reference to the rating category or sample size is not necessary, we simply drop the sub- and

superscripts.
9 BCBS (2004), sec. 447.

10 More formally, we can interpret the confidence interval as a set of parameter values for which

the hypothesis that it contains the true parameter cannot be rejected at a given confidence

level.
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distributional assumption about p.

In the present case, since default either occurs or does not occur, we know that p

must follow a binomial distribution. The first approach to come up with a confidence

interval, which is also the standard approach in most textbooks,11 is to make use

of the fact that the binomial distribution can be asymptotically approximated by

the normal distribution. The Central-Limit Theorem tells us, that as n → ∞:

fn − p
√

V ar(fn)
∼ N (0, 1). (3)

Therefore, as a corollary,12 we have:

Prob{−z <
fn − p

σ(fn)
< z} =

∫ z

−z

φ(s) dx (4)

= Φ(z) − Φ(−z), (5)

where φ(·) and Φ(·) denote the density function and distribution function of the

standard normal distribution respectively. Because of symmetry of the normal

distribution, we have Φ(z) − Φ(−z) = 2Φ(z) − 1.

If we want the left hand side of (4) to be equal to 1 − α as in (2), we find z to be

z = Φ−1(1 − α/2), i.e. the (1 − α/2)-quantile of the standard normal distribution.

Therefore, for the remainder we formally define: zα ≡ Φ−1(1 − α/2).

Plugging in zα in (4) and rearranging terms gives

Prob{fn − zασ(fn) < p < fn + zασ(fn)} = 1 − α.

The standard error (σ(·)) of the estimator fn, which is a binomial proportion, is

easily found to be
√

fn(1−fn)
n

, so that we end up with the following interval, for

which we can be sure to cover the true parameter with the confidence level 95%:

fn ± zα

√

fn(1 − fn)

n
, (6)

which is also called the Wald confidence interval. For further use, we abbreviate the

lower and upper bound of the Wald interval as LW and UW .

It is important to note, that the above reasoning guarantees that the Wald in-

terval covers the true parameter with probability 1 − α only asymptotically, i.e. if

n → ∞. The actual coverage probability, Cpr = Prob{p ∈ (LW , UW )}, may deviate

significantly from its nominal value if n is small. This is why most textbooks give

the recommendation to use the Wald interval only if n p is larger than 5, or similar

conditions. But in fact, Brown et al. (2001, 2002) show that coverage probability

of the standard Wald interval may not only be poor for small n, but are still sub-

stantial for large n and for p near 0 and 1.

Figure 1 plots the value of the actual coverage probability Cpr. In the left panel,

11 See e.g. Mood et al. (1974) or Davison (2003).
12 Known as the de Moivre-Laplace Theorem. See e.g. Capinski and Kopp (1999).
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Cpr is shown for increasing n and a fixed p = 0.005. The right panel holds fixed

a constant n = 100 and shows Cpr for p from 0 to 1. The dashed line indicates

the nominal confidence level. It is easily recognized, that the actual coverage prob-
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Figure 1: Coverage probability Cpr of the Wald interval.

ability can be quite significantly lower than its nominal value. In particular for

small n and p near 0, Cpr may be only around 75%. The behavior of the coverage

probability is quite erratic, and still for a sample as large as n = 1018, where the

above-mentioned rule of thumb is satisfied, we can calculate Cpr to be only 88.94%.

To overcome the poor performance of the Wald interval, in particular for small

sample size, several alternative formulations for confidence intervals have been put

forward. A natural alternative is to avoid using the asymptotic property and con-

struct a confidence interval from the finite sample binomial distribution. The idea

is to find the endpoints of the interval by the following reasoning. The upper limit

U is the highest value of p0 such that the probability of observing not more than

ndef defaults is just α/2, i.e. it is the solution in p0 of the following equation:
ndef
∑

x=0

(

n

x

)

px
0 (1 − p0)

n−x = α/2. (7)

Correspondingly, the lower endpoint of the interval L is found as the smallest solu-

tion in p0, such that the probability of observing more than ndef is α/2:
n

∑

x=ndef

(

n

x

)

px
0 (1 − p0)

n−x = α/2. (8)

The interval obtained in this way is known as the Clopper-Pearson ’exact’ confidence

interval, and we will denote its endpoints by LCP and UCP .

Although the Clopper-Pearson interval is called ’exact’, its coverage probability is

known to be too conservative. The construction of the interval guarantees that the

coverage probability is at least the nominal value. However, for small n and p near

0 and 1 the actual Cpr is substantially higher, approaching nearly 100%.13

13 Brown et al. (2001) therefore call the Clopper-Peason interval “wastefully conservative” (p. 113).

However, it may serve as an alternative (conservative) benchmark. See e.g. Christensen et al.

(2004) and Hanson and Schuermann (2006). See also Agresti and Coull (1998) or Davison

(2003), p. 346.
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Therefore, Agresti and Coull (1998) argue that “approximate is better than ’exact” ’,

and propose a confidence interval that relies on the same form as the standard Wald

interval, i.e. based upon approximation, but uses a different mid point of the interval.

Recall, that the default frequency is p̂ = fn =
ndef

n
. Now, define

ñdef = ndef +
z2
α

2
, ñ = n + z2

α, f̃n =
ñdef

ñ
.

For the case that α = 0.05, zα = 1.96 which is approximately 2. This means, that

we add 4 observations to our sample, out of which 2 are defaults. Agresti and Coull

(1998) summarize their suggestion in the succinct statement: “Add two successes

and two failures and then use the Wald formula.”14

The Agresti-Coull interval is therefore found by

f̃n ± zα

√

f̃n(1 − f̃n)

ñ
, (9)

and we abbreviate the lower and upper endpoints by LAC and UAC .

Note, that the midpoint of this interval is a weighted average of fn and 1/2, as can

be seen by simple transformations

f̃n =
ndef + z2

α/2

n + zα

=
ndef

n + zα

+
z2
α/2

n + zα

=
ndef

n

n

n + zα

+
z2
α/2

n + zα

= fn

( n

n + zα

)

+
1

2

( z2
α

n + zα

)

.

This formulation can be justified by using standard errors of the null hypothesis

value instead of its maximum likelihood estimator.15

While the Agresti-Coull interval significantly improves the performance of either

the Wald and the Clopper-Pearson interval, it has still deficiencies when n is small.

Brown et al. (2001) therefore propose to use Agresti-Coull only for n > 40, while

they recommend the so called (equal-tailed) Jeffreys interval for small n < 40.

Unlike the Wald and Agresti-Coull interal which use maximum likelihood princi-

ples, the Jeffreys interval is obtained by applying inference based on Bayes’ theorem.

Bayesian inference requires to specify some prior density for the random variable. In

the case of a binomial proportion, the standard (conjugate) prior16 is the Beta dis-

tribution. For a binomial random variable Y that has a prior beta distribution with

parameter a and b, Beta(a, b), the posterior distribution is Beta(Y + a, n−Y + b).

In the present context, the (non-informative) prior distribution is Beta(1/2, 1/2).

The posterior distribution is accordingly Beta(ndef + 1/2, n − ndef + 1/2).

Thus, the endpoints of the (equal-tailed) Jeffreys interval are defined as

LJ = B(α/2; ndef + 1/2, n − ndef + 1/2) (10)

UJ = B(1 − α/2; ndef + 1/2, n − ndef + 1/2), (11)

14 Agresti and Coull (1998), p. 122.
15 For more on this, see Agresti and Coull (1998), p. 120.
16 See Davison (2003) for the notion of ’conjugate priors’.
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where B(q; a, b) denotes the q-quantile of the Beta distribution with parameter a

and b.

Note, that the Bayesian approach underlying the Jeffreys interval provides a slightly

different interpretation about the confidence interval. While we took care to talk

about the interval that covers the true unknown parameter with some probability

in the previous three cases, we can say that p lies inside the interval with some

probability in the (Bayesian) case of the Jeffreys interval. This is because p is not

a parameter but a random variable.17

Other intervals are available, but we will confine ourselves to the four above-

mentioned alternatives: (i) The standard Wald interval, which is known to have

a low coverage probability, (ii) the ’exact’ Clopper-Pearson interval, which is too

conservative, (iii) the Agresti-Coull interval which is recommended unless n < 40

and (iv) the Jeffreys interval, which provides adequate results also for smaller n.

Figure 2 shows the four intervals at work.
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Figure 2: Comparison of the four confidence intervals.

(Solid line: Wald interval; Dashed line: Jeffreys interval; Dot-dashed line:

Clopper-Pearson interval; Dotted line: Agresti-Coull interval.)

The left panel shows the upper bounds for increasing sample size n for an es-

timate of p̂ = 0.001, i.e. 0,1% or 10 basispoints (bp) indicated as the horizontal

dashed line at the bottom. The solid line nearest to the estimate is the upper limit

of the Wald interval (UW ), then the dashed line is the Jeffreys interval (UJ ), the

dash-dotted line corresponds to the upper endpoint of the Clopper-Pearson interval

(UCP ), and finally the dotted line is the Agresti-Coull upper limit (UAC). While

the lower limits for the Clopper-Pearson and the Jeffreys up to the sample size of

300 are defined to be 0, the lower endpoints of the Wald and Agresti-Coull interval

are negative. Obviously, the PD cannot be negative, and the calculated negative

values are a consequence of the normal approximation to the binomial proportion,

which is especially inadequate in this case. Note, that the Clopper-Pearson and

the Agresti-Coull interval are farthest from the estimate, which is consistent with

17 For more details, see Casella and Berger (2002), p. 435,f.
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(in bp) n LW UW LJ UJ LCP UCP LAC UAC

p̂ = 10 100 0∗ 71.9 0 273 0 362 0∗ 465

(0.001%) 300 0∗ 45.7 0 107 0 122 0∗ 169

p̂ = 500 100 72.8 927 193 1061 164 1128 177 1155

(0.05%) 300 253 746 295 790 282 811 297 816

Table 1: Upper and lower endpoints of the confidence intervals.

the fact that their coverage probability tend to be significantly higher than their

nominal value.

The right panel shows the confidence intervals for an estimate of p̂ = 0.05, i.e. 5%.

In this case, we see both, the upper and lower limits. Interestingly, the upper

endpoint of the Wald interval is nearest to the estimate, while the lower endpoint

is farthest. The Clopper-Pearson interval, due to the discreteness of the binomial

distribution displays ’jumps’.

For both values of the estimate, however, the interval length can be substantial

and differences between the intervals matter especially for small estimates. Table 1

reports numerical values for p̂ = 10 bp and p̂ = 500 bp for a sample size of n = 100

and n = 300.

3 Confidence intervals for different portfolios

The main focus of this article is to provide an assessment of the PD estimation

uncertainty encountered in typical credit portfolios of different size and structure.

Therefore, we will apply the results of the previous section to three different port-

folios with three different sample sizes, corresponding to a small, medium and large

portfolio.

For the first portfolio, we use the data reported in Hanson and Schuermann (2006)

on the rating history of Standard & Poor’s for U.S. obligers. Their sample consists

of 50.611 firm-years of data, mainly from large corporation and extends over the

period 1982 to 2002.

The second portfolio relies on data taken from the Austrian Central Bank (Öster-

reichische Nationalbank, OeNB).18 Although it is only a data example for the vali-

dation of rating systems, we will label it the OeNB portfolio.

The last portfolio pretends to represent a credit portfolio consisting of small and

medium-sized enterprises (SME). The corresponding data is taken from Schwaiger

(2002), who constructed a rating system of 12 classes based on 11,610 Austrian

firms with a yearly turnover between e 1 and 50 Million.19

The three portfolios vary in the number of rating classes (7 for S&P, 10 for OeNB

18 OeNB (2004).
19 For more information on the SME portfolio, see Schwaiger (2002).
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and 12 for SME) as well as in the distribution of obligers across rating categories.

(See Table 2 and Figure 5 in the Appendix.)

We will consider the three portfolios in three different sizes. The small portfolio

is assumed to consist of n = 3000 firm-years of data, while the medium and the

large portfolio contain n = 10000 and n = 25000 firm years respectively. If we

presume that we have 3 years of rating history, this corresponds roughly to 1000,

3300, 8300 obligers in the corresponding portfolios. By varying the portfolio size,

we hold fixed the PDs in each rating category, as well as the distribution of obligers

across categories, to reflect the different structure of the portfolios.

We apply the four confidence intervals introduced in the previous section to the

resulting 9 cases. Figure 3 reports the results. Note, that for the best category in

each portfolio there were no defaults and thus the cohort estimate is 0, and we don’t

calculate a confidence interval in this case.20 Note, that the vertical axes in figure

3 are in log-scale. For each rating category,21 the four different confidence intervals

are plotted, where the left solid bar is the Wald interval, the left dashed bar is the

Jeffreys interval, the right solid bar is the Clopper-Pearson interval, and the right

dashed bar is the Agresti-Coull interval.

The first observation from figure 3 is that the length of the confidence interval

for ’real-world’ credit portfolios can be substantial. For example, considering the

Jeffreys interval, the length for the A rating in the small, medium and large S & P

portfolio is 44.5 bp, 20.4 bp and 12.2 bp respectively. This might sound innocent,

but recall that the PD estimate for A is itself 6.2 bp, so if we express the interval

length in terms of the PD estimate, we obtain 717%, 329% and 196%.

The same is true for class 5 of the OeNB portfolio, where the Jeffreys interval has a

length of 235.1 bp, 125.9 bp and 79.2 bp respectively, which is significantly higher

in absolute terms, but translates in smaller relative length figures in terms of the

PD estimate, which is 122.6 bp, of 191%, 102% and 64% respectively.

Comparing the four different confidence intervals with respect to their lengths, we

observe significant differences especially in the good rating categories. In the ex-

treme case of the small S & P portfolio, the interval length for the AA category is

13.04 bp for the Wald interval, while it is 109.78 bp for the Agresti-Coull interval,

which is more than eight times as large. Even for the large S & P portfolio the

Agresti-Coull interval is still three times larger (5.49 bp versus 15.44 bp) than the

Wald interval for category AA.

The second pattern we observe is that the upper limit of the Wald interval UW is

always lower than the upper limits of the other intervals, while the lower limit of

the Wald interval LW is usually the lowest one. This is most obviously observed in

the small S & P and OeNB portfolios. This refers to the fact, that length alone is

20 For reasons of comparability, we do not report confidence intervals, although it would be

possible to calculate interval estimates, as Pluto and Tasche (2005) have shown.
21 For the S&P portfolio, 2 corresponds to AA, 3 corresponds to A, ... and 7 corresponds to CCC.
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not the only criteria to evaluate the performance of a confidence interval. The poor

coverage probability of the Wald interval mentioned above is also partly due to the

fact that it is ’downward’ biased. As we will argue in the next section, this bias has

especially adverse implications in terms of capital requirements.

The final remarkable observation we can draw from figure 3 refers to the possibil-

ity of distinguishing between different rating categories. Consider the small S &

P portfolio in the upper left panel. The PD estimate for category BBB is 35.7

bp. Except for the Wald interval, all upper limits of the confidence intervals for

category A and AA are higher than this estimate. This means, the BBB category

is not statistically significantly different from the A and AA category in the small

portfolio case. For the medium and large portfolio, the BBB estimate no longer lies

within the interval of the A category, but we still can’t differentiate significantly the

AA category from the A category. This is in line with the results of Hanson and

Schuermann (2006) who also find that notch-level rating categories are statistically

indistinguishable in the investment grade ratings.22 The same observation is found

in the OeNB and SME portfolio, where in the small OeNB portfolio, we cannot

distinguish category 4 from categories 2,3 and 5, since the estimate lies within their

confidence intervals. For the small SME portfolio f.ex. categories 9 through 12 are

indistinguishable from each other.

To provide an economic assessment of the uncertainty of the PD estimation,

we now demonstrate how the above derived confidence intervals translate into risk-

weights according to the Basel II IRB approach. This means, we take the PD

value at the upper and lower limits of the various confidence intervals and calculate

the corresponding risk-weight by applying the IRB risk-weight function as it is

defined in BCBS (2004). In this way, we obtain a quasi confidence interval for the

capital requirement the bank must hold. I.e. an interval that covers the true (but

unknown) capital requirement with 95% probability. As before, we apply this to

nine representative portfolios. Figure 4 reports the results.

All nine panels show the deviation of the risk-weight at the upper and lower limit

from the risk-weight of the point estimate, i.e. the ordinate shows the differences

RW (U.)−RW ( ˆPD) and RW (L.)−RW ( ˆPD), where RW (·) denotes the IRB risk-

weight function.23 For better comparison, all nine panels show deviations in the

same range of −70 to +80 risk-weight (percentage) points.

The first observation, we can draw from figure 4 refers to the absolute magnitude

of the risk-weight confidence interval. Consider again, the single A rating category

of the S & P portfolio. Note, that this category has the highest percentage share of

all obligers. The point estimate is 6.2 bp, which translates into a IRB risk-weight

22 Hanson and Schuermann (2006) consider an even greater data sample, and conclude that “rat-

ings are indistinguishable even with 22 years of data.” p.16.
23 Note, that in the case of the SME portfolio we use the SME adjustment of the IRB function

by assuming S = 30, representing an average SME firm.
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Figure 3: Confidence intervals for PD estimates.

(Vertical axis: PD values, log-scale; Horizontal axis: Rating categories.

For each rating category, four confidence intervals are drawn: Wald (left solid), Jeffreys

(left dashed), Clopper-Pearson (right solid) and Agresti-Coull interval (right dashed).)
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of 22.35%. The deviations in the small portfolio are substantial. The risk-weights

calculated at the upper limit of the Clopper-Pearson and Agresti-Coull intervals

are the highest, being 79.2 and 78.6 respectively, which is a deviation of +56.8

and +56.2. Thus, for an exposure of 1,000,000 of an A obligor, the risk-weighted

asset at the upper limit of the confidence interval is roughly 790,000 instead of

223,500, which translates into a capital requirement of 63,200 instead of 17,880.

This is roughly 3.5 times more! Risk-weights at the upper limit of the Jeffreys and

Wald interval are lower, having a deviation of +66.2 and +47.5, giving a capital

requirement which is 295% and 212% higher than that at the point estimate. For

the negative deviations, there is a floor at -8, since BCBS (2004) requires that for

corporate exposures, risk-weights can not be lower than 14.4, corresponding to a

minimum PD of 3 bp. The impact of the floor is also responsible that there is no

negative deviation for category AA, since the estimated PD of 1.49 bp is already

below this minimum. The estimation error thus only works in one direction and the

risk-weight confidence interval appears highly asymmetric for the high investment

grades. The asymmetry is reversed for the lowest category, CCC. For this rating

class, we only observe negative deviations. This seems puzzling, especially if we go

back to figure 3 where we do have a symmetric confidence interval. The explanation

is given in terms of the shape (and a curiosity) of the IRB risk-weight function. In

general, the IRB risk-weight function is concave, thus deforming a symmetric PD

interval to an asymmetric risk-weight interval where we have larger negative than

positive deviations. The curiosity is, that the IRB function starts to decline for

very high PD values,24 giving lower risk-weights at both the lower and upper limit

of the confidence interval.

The second striking observation from figure 4 is the large difference between the four

intervals for many cases. Consider category AA in the medium S & P portfolio,

where we have 1429 observations. The positive deviation with the Wald interval is

+16.2, while the deviation according to the Agresti-Coull interval is +49.2 which is

three times larger. The Jeffreys and Clopper-Pearson upper limits lie in between,

being 251% and 221% larger.

The Wald interval not only displays the lowest positive risk-weight deviations but

also the highest negative deviations, as can be most apparently seen in the small

OeNB portfolio for rating categories 5 and 6. As mentioned previously, the Wald

interval is generally downward biased, in the sense that the lower endpoint is lower

than those of the other intervals. This feature is further aggravated through the

concavity of the risk-weight function. Therefore, using the standard Wald interval

in this context seems especially inappropriate.

24 By analyzing the risk-weight function as it is defined in BCBS (2004), we find a maximum for

PD = 0.2962.
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4 Conclusion

When using estimated probabilities of default for any risk management purposes

and especially for the assessment of capital requirements, it is important to have

some measure of the reliability of this estimate. In terms of BCBS (2004), a bank

needs to evaluate the ’likely range of errors’ involved in the estimation. This can

be done by calculating confidence intervals for the point estimate. A commonly

used interval is the standard Wald interval. However, as we have shown in the first

section of this article, there is an active theoretical debate in the statistics literature

of how to appropriately construct a confidence interval for a binomial proportion.

Thereby, there seems to be agreement that the Wald interval performs quite poorly,

not only for small sample size. Alternative intervals have been put forward, out of

which we have discussed, the ’exact’ Clopper-Pearson, the Agresti-Coull and the

Jeffreys interval. Depending on the sample size, the upper and lower endpoints of

the interval can be significantly different between these intervals.

To assess the economic significance of the estimation error, we have applied the four

intervals to nine exemplary credit portfolios which differ in their structure and size.

Although we cannot claim that these are ’real-world’ portfolios, we consider them

as being representative and able to reproduce ’real-world’ conditions. The impact

of the estimation error is shown as the confidence interval for the PD estimate on

the one hand, and in order to give a better economic intuition in terms of a quasi

confidence interval for the risk-weights according to the Basel II IRB approach on

the other hand.

Two main conclusion emerge from the analysis: (i) The absolute magnitude of the

estimation error in terms of the length of the confidence interval can be large. (ii)

Which interval is used matters and can make a significant difference.

The first point is mainly driven by the number of observation available for the

portfolio, but due to the distribution of obligers across rating categories it is still

relevant for high rating classes for rather large portfolios. This is reflected in the

result, that to some extent one cannot statistically distinguish investment grade

rating classes. The amount of estimation uncertainty we found in our analysis adds

to the impression that the Basel II IRB approach insinuates an accuracy that is not

justified, and adds to the finding of Bank and Lawrenz (2003), who have argued

that there is model-inherent uncertainty in the IRB approach, which makes results

doubtful. It has to be stressed at this point, that our results may even be regarded

as a lower bound on the uncertainty, in that they rely on the independence as-

sumption of obligers. For correlated default behavior, confidence intervals are even

larger.25

While the first point seems to have found repercussion in the literature and in prac-

tice, the second point is rarely addressed. As our results demonstrate, the widely

used standard Wald interval is the worst choice especially for small portfolios and

25 See Höse and Huschens (2003) on this.
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for good rating classes. The Clopper-Pearson interval, which is presented as exact

alternative, has also drawbacks. Based on our analysis, we would recommend to

use the Jeffreys interval.

To conclude, our results demonstrate that the estimation uncertainty is of a signif-

icant magnitude and should be addressed more carefully.
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Appendix: Characteristics of the rating systems

S & P portfolio

i AAA (1) AA (2) A (3) BBB (4) BB (5) B (6) CCC (7)

ni 2417 6690 12907 9794 6681 7533 792

ni,def 0 1 8 35 94 491 226

fi
n 0 1.5 6.2 35.7 141 652 2854

OeNB portfolio

i 1 2 3 4 5 6 7 8 9 10

ni 50 1788 1876 3345 1223 856 342 214 265 257

ni,def 0 3 6 15 15 17 12 9 22 33

fi
n 0 17 32 45 123 199 351 421 830 1284

SME portfolio

i 1 2 3 4 5 6 7 8 9 10 11 12

ni 5 1181 2745 2755 1681 1130 563 623 290 100 161 376

ni,def 0 1 8 12 20 22 20 23 27 10 18 53

fi
n 0 5 30 44 121 198 362 376 947 1020 1132 1409

Table 2: Portfolio characteristics. (f in bp)
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Figure 5: Portfolio structure.

Solid black bars represent the S & P portfolio. Open bars in the left panel represent the

OeNB portfolio. Open bars in the right panel represent the SME portfolio.

The abscissa is in log-scale and represents PD values, the ordinate represents the

percentage share of all obligers in the different rating categories.
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