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Abstract: 

We provide an analytic solution to the asset value credit risk model that allows for heteroge-

neous correlations, default probabilities, recovery rates and exposures given certain regularity 

conditions are fulfilled.  

Additionally, we extend the asset value model to include event risks such as country risk or 

dependencies between individual clients and derive analytic loss distributions and loss densi-

ties. 

All results can be implemented in spreadsheet calculators such as Microsoft Excel or Lotus 1-

2-3. 
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Introduction  
The need for analytic solutions to portfolio credit risk models that enable the risk manager to 

quickly assess the approximate risk of large portfolios has been felt since the beginning of 

modern portfolio risk management. Already in 1987 Oldrich Vasicek supplied an analytic 

solution to the classical asset value model for homogenous portfolios consisting of finitely 

many identical clients. In 1991 he extended the result to account for the asymptotic case of 

homogenous portfolios with infinitely many clients. 

In 1997 Credit Suisse First Boston with Credit Risk+ published a new approach to analytical 

risk calculation based on the compound Poisson model known from insurance mathematics. 

Here the credit portfolio is understood as being composed of heterogeneous groups of expo-

sures where, however, every group is homogenous in itself in the respect that it is assumed to 

contain a large number1 of identical exposures. 

More recently Schönbucher (2002) uses the mixing property of Archimedean copulas to ob-

tain analytic loss distributions for homogenous portfolios in a model where asset returns have 

a multivariate Archimedean distribution such as a Gumbel or a Clayton distribution.  

Wehrspohn (2003) derives analytic loss distributions for homogenous portfolios in a general-

ized version of the asset value model where the assumption of a normal distribution of asset 

returns is replaced by a general multivariate elliptic distribution. This is a direct extension of 

the classical asset value model in that for a given marginal distribution of asset returns the 

dependence structure of asset values is defined entirely by their linear correlation2. This gen-

eralization is not without consequence since it can be shown that there is no correlation model 

that finds less risk at high percentiles in a given portfolio than the classical asset value 

model3.  

In this article, we mainly stay within the classical asset value model and widen Vasiceks' 

original results in various respects. First, we allow for heterogeneous correlations, default 

probabilities, exposures, and losses given default between homogenous groups of clients. 

Second, we include country risk in the analysis of homogenous portfolios. Third, we allow for 

individual dependencies between clients in moderately heterogeneous portfolios where the 

                                                 
1  Note that it is paramount for the Credit Risk+ model that each exposure has a large number of identical twins in the 

portfolio so that asymptotic results such as the Poisson approximation of the binomial distribution can be applied. If 
exposures are unique in the portfolio as is frequently the case for the usually very few largest exposures, portfolio risk 
is overestimated by the model. This error occurs because each exposure can default an infinite number of times in 
Credit Risk+. For details refer to Wehrspohn (2002), pp. 144ff. 

2  We, therefore, also refer to the generalized asset value model as the generalized correlation model and to the classi-
cal asset value model as the normal correlation model. 

3  See Wehrspohn (2003), theorem 6. 
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default of one client may cause the financial distress of another client and show the cascading 

effect caused by event risks. In all cases, we derive loss distributions and loss densities4. The 

proofs are given in the appendix. 

 

1. Loss distributions of heterogeneous portfolios 

The asset value model goes back to an article of Robert Merton (1974) and was later extended 

by KMV Corporation and Bhatia et al. (1997) to a credit portfolio model. 

In Merton’s model, all corporate debt is assumed to consist of a single zero bond. Conse-

quently, it is assumed that the firm defaults if its asset value at the maturity of the zero bond is 

inferior to the face value of the bond. The asset value process is modeled as a geometric 

Brownian motion so that asset returns at maturity of the bond are normally distributed.  

If a firm’s default probability p is known, for instance by its rating, it can even be assumed 

without loss of generality that asset returns X are standard normally distributed, i.e. 

( )1;0~ NX . In this model, a firm defaults if asset returns are inferior or equal to a default 

threshold α , i.e. if α≤X . Since this event occurs with probability p, we have ( )p1−Φ=α  

where ( )⋅Φ−1  is the inverse cumulative standard normal distribution function.  

To integrate dependencies between firms’ default behavior into the model, a firm’s asset 

value distribution is thought to be composed of two independent sources, a systematic factor5 

Y and an individual, idiosyncratic factor iZ , where the factors are standard normally distrib-

uted and independent. Idiosyncratic factors of different firms i and j are equally stochastically 

independent. For firm i the asset returns can now be written as 

iii ZaYaX
i

⋅−+⋅= 21  

with weights 11 ≤≤− ia . Note that the interpretation of the iX ’s as asset returns is merely 

intuitive. It is irrelevant to know firms’ true asset returns to solve the model. For this reason, 

we will rather refer to iX  as firm i’s risk index. 

The covariance of the risk indices of two clients i and j is  

( ) jiji aaXX ⋅=,Cov . 

                                                 
4  Various software tools that illustrate the results are available at www.wehrspohn.de and www.risk-and-evaluation.com. 
5  Note that the systematic factor Y again can be modeled as being the convex combination of several systematic risk 

factors. 
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We assume in the following that all covariances are positive6 and that 0≥ia  for all i. 

With 2: ii a=ρ  we can rewrite risk indices more intuitively as 

iiii ZYX ⋅−+⋅= ρρ 1  

because now iρ  is the risk index correlation (or asset return correlation) of two identical 

firms. 

As the frame for the derivation of loss distributions we define a moderately heterogeneous 

portfolio. 

Definition: 

A moderately heterogeneous portfolio H is the union of homogenous sub-portfolios jH , 

hj ,...,1= , 

t
h

j
jHH

1=

=  

i.e. of sub-portfolios jH  that contain only identical clients with exposures je , risk index cor-

relations jρ , probabilities of default jp , expected loss given default rates7 jλ , and where all 

clients in the entire portfolio depend on the same unique systematic risk factor Y. 

In other words, we define a moderately heterogeneous portfolio as the union of certain types 

of clients that commonly share the same systematic risk factor. Each type of client is repre-

sented by a homogenous sub-portfolio jH  containing jn  clients for hj ,...,1= . 

Thus, in a moderately heterogeneous portfolio each firm’s risk index iX  is given as 

ijji ZYX ⋅−+⋅= ρρ 1  

for a j and for Ni ,...,1=  if ∑
=

=
h

j
jnN

1
:  is the number of clients in portfolio H. 

                                                 
6  We need that risk indices iX are monotonously increasing (or decreasing) in the systematic factor Y for all 

Ni ,...,1= . Equivalent results obtain if 0≤ja  for hj ,...,1= . 
7  Note that we do not assume loss given default rates as being fixed. They may be random with the same mean (not 

necessarily the same distribution) being independent from all other random variables in the model such as systematic 
and idiosyncratic risk factors. 
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For ease of exposition, we assume in the following that nn j =  for hj ,...,1= , and that jE  is 

the aggregated exposure in sub-portfolio j so that each firm in sub-portfolio j has exposure 

nEe jj /= . 

We can now state the first result. 

Theorem 1: 

In a moderately heterogeneous portfolio with risk index correlations 10 <≤ jρ  for hj ,...,1= ,  

the α-percentile of the asymptotic portfolio loss distribution is given as  

( ) ( )( )

( )

( ) ( )
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with mean 

∑
=

⋅⋅=
h

j
jjj pE

1
λµ  

and median 

( )
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Thus, in moderately heterogeneous portfolios the α-percentile of the loss distribution of the 

entire portfolio is just the sum of the α-percentiles of the loss distributions of the sub-

portfolios. This also means that the portfolio value at risk, which is a percentile of the portfo-

lio loss distribution for a specific value of α, can be calculated separately for all sub-portfolios 

and then be aggregated over the sub-portfolios by simple addition. 

Moreover, the calculation of the percentile function only requires the solving of the normal 

cumulative distribution function, a feature that is provided by virtually all spreadsheet 

calculators such as Lotus 1-2-3 and Microsoft Excel. 

Due to both of these properties, the component distributions 
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( ) ( ) ( )














−

−Φ⋅−Φ
Φ⋅⋅=

−−
−

j

jj
jjj

p
EL

ρ
αρ

λα
1

111
1  

of the portfolio loss distribution in theorem 1 can particularly be used to calculate single ex-

posures’ (approximate) contributions to portfolio risk without having to perform a full-fleged 

portfolio analysis. The results can be employed, for instance, for risk limitation of exposures 

of single addresses or of certain portfolio segments. 

To derive the loss density in moderately heterogeneous portfolios let 

{ } ( ) ( )xLEEppxLxH hhhh ==≤ λλρρ ,...,,,...,,,...,,,...,;:inLoss 1111P  

be the cumulative distribution function (cdf) of the portfolio loss distribution. 

This leads to 

Theorem 2: 

In a moderately heterogeneous portfolio with risk index correlations 10 << jρ  for hj ,...,1= ,  

the density of the asymptotic portfolio loss distribution is given as  
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Since we have only stated the inverse cdf of the portfolio loss distribution in theorem 1 it is 

worth noting that the loss density can be calculated as 

( ) ( )( ) ( )( )
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for ( )α1−= Lx . 
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Figure 1: Portfolio loss distribution and portfolio loss density8 

Figure 1 shows a typical loss distribution and loss density of a moderately heterogeneous 

portfolio. Note that the distribution is not necessarily unimodal. This feature is revealed if 

correlations are high. 
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Figure 2: Multimodality of the loss distribution at high correlations9 

Since firms within each group are almost perfectly correlated, the loss distribution is starting 

to be deformed into a step-function that only counts the defaults of entire groups weighted 

with their respective exposure. In turn the loss density degenerates. While still being continu-
                                                 

8  The portfolio underlying the exhibit consisted of ten sub-portfolio with the following characteristics 
Group I II III IV V VI VII VIII IX X
Default Probability 0,01% 0,05% 0,1% 0,2% 0,4% 0,7% 1,2% 2,0% 3,0% 7,0%
Exposure 1 2 3 4 5 6 7 6 5 4
Loss Given Default 50% 55% 60% 65% 70% 75% 80% 85% 90% 100%
Correlation 20% 18% 16% 14% 12% 10% 8% 6% 4% 2%  

9  The portfolio is the same as in footnote 8 with all correlations being set to 99.9%. 
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ous, it develops peaks at the left-edges of each step. In the limit for 1→jρ , these peaks turn 

into point masses.  

 

2. Loss distributions integrating country risk 

A risk factor that is rarely considered in credit portfolio analysis is country risk10. For in-

stance, creditors who are resident abroad can only serve their debts if international money 

transfers are not interrupted for reasons such as political or economic crises or the local cen-

tral bank’s lack of foreign currencies. The probability of the disruption of a country’s interna-

tional money transfers is typically measured by the countries rating as it is supplied by inter-

national rating agencies. 

In portfolio analysis, country risk is usually thought to only influence the default probability 

of the clients who reside in a certain country. Consequently, it is tried to capture this effect by 

downgrading clients with a high individual creditworthiness to the rating of their home coun-

try. 

However, this methodology neglects that country risk also establishes a dependence structure 

in a portfolio. If money transfers from a certain country are interrupted, this crisis does not 

only affect one client who resides there, but all creditors from that country simultaneously. As 

we will see below, this event risk effect is not appropriately modeled by a mere increase of 

individual default probabilities. 

We incorporate country risk into the asset value model in the following way: 

First, we assume that all ratings and default probabilities reflect the individual creditworthi-

ness of each client unaffected of the rating of their country of origin. Second, we suppose that 

clients who are resident in a certain foreign country default either for reasons unrelated to the 

functioning of international money transfers or they all default simultaneously if their country 

defaults, independent of their individual situation. 

To derive analytic loss distributions, consider a homogenous portfolio of clients with individ-

ual default probabilities p, risk index correlations ρ , loss given default rates λ , and a total 

portfolio exposure E.  Assume that a fraction ]1,0[∈s  of the clients reside in one foreign 

country with default probability cp .  

                                                 
10  Exceptions are Credit Portfolio View (see Wilson (1997a,b)) and the Credit Risk Evaluation model (see Wehrspohn 

(2002)). 
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Theorem 3: 

In the asset value model including country risk, for risk index correlations 10 ≤< ρ  the loss 

distribution (cdf) of a homogenous portfolio is given by 

{ } ( )

( ) ( )( ) ( ) ( )
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Figure 3: Country risk effect11 

                                                 
11  The portfolio underlying the figure has the characteristics %,100%,20%,5.0 === λρp  %1and%,10 == cps . 
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Figure 3 illustrates the effect of the inclusion of country risk into portfolio risk calculations. 

At low percentiles, the consideration of country risk does not make a great difference. Shortly 

before a confidence level of cp−1 , however, portfolio losses sharply rise to take account of 

the consequences of the default of the foreign country. For higher percentiles, the discrepancy 

between the loss distribution that correctly includes and the loss distribution that ignores 

country risk slowly vanishes again. 

Note that the conventional method to integrate country risk in portfolio risk analysis slightly 

overestimates the country risk effect at low, but considerably underestimates it at high confi-

dence levels. This is owing to the fact that the conventional method understates the foreign 

clients’ overall default probability and, more importantly, does not capture the remarkable 

shift in the dependence structure within the portfolio caused by country risk.  

We formulate the loss density that includes country risk as 

Theorem 4: 

In the asset value model including country risk, for risk index correlations 10 << ρ  the loss 

density of a homogenous portfolio is given by 

( )

( ) ( ) ( )( )
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The theorem can be proved by derivation of the loss distribution. 
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Figure 4: Country risk effect on portfolio loss densities12 

Figure 4 gives an example of the country risk effect on portfolio loss densities. It can be 

clearly seen that the loss distribution is bimodal even in case of homogenous portfolios with a 

second mode at portfolio losses slightly higher than the share of foreign exposure in the port-

folio. 

 

3. Loss distributions integrating individual dependencies between cli-
ents 

One of the most prominent reasons of default of small an medium sized companies through-

out the world is the financial distress of a major business partner. This is another risk factor 

that is usually neglected in credit portfolio analysis. 

We include this new dependence structure into the asset value model by assuming that each 

client who is individually related to another client defaults with a certain ‘contamination 

probability’ if the client he is dependent on has defaulted (unless he already has defaulted for 

other reasons before). I.e., we suppose that the default of his very important business partner 

draws him into a crisis that leads to a bad end with a certain probability. However, it is also 

possible that he recovers and does not default himself. 

In order to be able to derive analytic loss distributions, we again suppose a moderately het-

erogeneous portfolio where within a fraction [ ]1,0∈ν  of all clients each is related to exactly 

one other client and that there is no client upon whom two or more others depend. The con-

                                                 
12  The underlying portfolio has the characteristics %,100%,5%,5.0 === λρp  %20and%,10 == cps . 
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tamination probability π  that a client is drawn into insolvency if his partner defaults is as-

sumed to be the same for the entire portfolio. 

In this situation portfolio risk develops in cascades. In the starting round, clients default spon-

taneously, depending only on the systematic risk factor Y. In the next round, additional clients 

who survived the starting round default in reaction to the collapse of their trade partners. In 

the second round, the victims of the victims are added to the loss score and so on. This effect 

is summed up in  

Theorem 5: 
In the asset value model including individual dependencies, for risk index correlations  

10 <≤ jρ  for hj ,...,1= , the α-percentile of the asymptotic portfolio loss distribution of a 

moderately heterogeneous portfolio after n rounds of successive defaults is given by 
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Figure 5: Cascading effect of microeconomic dependencies13 

Figure 5 illustrates theorem 5 for various contamination probabilities. Note that even for 

%100=π  the portfolio loss distribution converges to a non-degenerate limit distribution for 

∞→n . However, the cascading effect of individual dependencies is considerable already for 

low values of π  and n indicating that risk managers should well be aware of this type of port-

folio dependence. 

We now derive the portfolio loss density 

Theorem 6: 
In the asset value model including individual dependencies, for risk index correlations 

10 << jρ  for hj ,...,1= , the density of the asymptotic portfolio loss distribution of a moder-

ately heterogeneous portfolio after n rounds of successive defaults is given by 
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13  With 1=h  and 1=ν  clients are assumed to have a default probability of 0.5%, a loss given default rate of 100%, 
and risk index correlations of 20%. 
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The theorem can be proved along the same lines as theorem 2. 
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Figure 6: Cascading portfolio loss densities resulting from microeconomic risk14  

Figure 6 shows portfolio loss densities for various numbers of feedbacks. As is to be ex-

pected, loss densities move to the right and become more and more flat with increasing value 

of n.  

Conclusion 

Extending a classical result by Vasicek, we have derived analytical loss distributions and loss 

densities for moderately heterogeneous portfolios that allow for heterogeneous correlations, 

default probabilities, loss given default rates, and exposures. 

Moreover, we have generalized the asset value credit risk model to include country risk and 

microeconomic dependencies between clients, respectively, two structural properties that oc-

cur frequently in credit portfolios, but are rarely taken account of in credit portfolio risk mod-

eling. Again we have derived analytical loss distributions and loss densities under specific 

regularity conditions. 

All formulae can be used by risk managers to approximately assess the risk of large portfolios 

without the need of time-consuming complex computer simulations. 

                                                 
14  With 1=h  and 1=ν , clients are assumed to have a default probability of 0.5%, a loss given default rate of 100%, 

and risk index correlations of 5%. 
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Appendix: 

Proof of theorem 1: 

By construction of the asset value model, client i in sub-portfolio jH  defaults if  

( )
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jijji
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ρ

ρ

ρρ
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⋅−Φ
≤⇔

Φ≤⋅−+⋅=
−

−

1

1
1

1

 

for ni ,...,1=  and hj ,...,1= . 

Hence, client i’s probability of default conditional to Y is given as 

{ } ( )






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





−

⋅−Φ
Φ=

−

j

jj Yp
Yi

ρ

ρ

1
|defaultsclient

1

P  

because iZ  is standard normally distributed for ni ,...,1= . 

Moreover, since the idiosyncratic components iZ  of clients’ risk indices are stochastically 

independent, it follows from the law of large numbers that the percentage of clients defaulting 

in each sub-portfolio given Y is almost surely equal to their conditional probability of default 

if ∞→n . 

Asymptotically the number of defaulting clients in each sub-portfolio goes to infinity as well, 

if the conditional default probability is positive. Thus, again by the law of large numbers, the 

loss conditional to Y in sub-portfolio jH  is equal to  

( )

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1
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since the individual loss given default rates in jH  are stochastically independent and limited 

with the same mean jλ  for hj ,...,1= .  

The loss in the entire portfolio H conditional to Y is then given as 

( ) ( )
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1 1
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ρ
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because all clients in H depend exclusively on the same systematic risk factor Y. 
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The inverse cumulative loss distribution function can immediately be derived from this ex-

pression for portfolio losses because the systematic risk factor Y is the only remaining random 

component in portfolio losses and the conditional portfolio loss given Y is monotonously de-

creasing in Y. The α-percentile of the portfolio loss distribution, therefore, maps one-to-one to 

the (1–α)-percentile of the distribution of Y. The (1–α)-percentile of Y is given by ( )α−Φ− 11  

because Y is standard normally distributed.  

The formula for the mean results because firms in sub-portfolio j have default probability jp . 

The median is obtained for 2/1=α . 

□ 

Proof of theorem 2: 

The derivative of the inverse cdf with respect to α  is 
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The theorem is then implied by  

( ) ( )( )xLL
xL

d
d 1

1
−= . 

□ 

Proof of theorem 3: 
We go through the components of the loss distribution separately. 

First of all, the maximum possible loss of the portfolio is E⋅λ  by construction of the model 

implying that { } 1Loss =≤ xP  if Ex ⋅≥ λ . 

Let Ex ⋅< λ . By definition of the conditional probability, it is  

{ } ( ) { } { }defaultcountry |Lossdefaultcountry  no|Loss1Loss xpxpx cc ≤⋅+≤⋅−=≤ PPP  

Setting 1=h  in theorem 1 and solving of the inverse cdf for x, it can be shown that 

{ } ( )( ) ( )












 Φ−⋅Φ⋅−
Φ=≤

−−

ρ
λρ pEx

x
11 /1

defaultcountry  no|LossP  

In case of default of the country, all foreign clients simultaneously cannot meet their due 

payments, thus 
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{ } 0defaultcountry |Loss =⋅⋅< Es λP . 

Losses Esx ⋅⋅> λ  can here only result from the insolvency of some of the domestic clients 

who are unaffected by the foreign country’s default. Taking loss given default rates and port-

folio exposure into consideration, exactly the fraction ( )
s

sEx
−

−⋅
1

/ λ  of domestic clients has to 

default to ensure excess losses to equal Esx ⋅⋅− λ , thus 

{ }
( ) ( )

















 Φ−








−
−⋅Φ⋅−

Φ=⋅⋅>≤

−−

ρ

λρ
λ

p
s

sEx

Esxx
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□ 

Proof of theorem 5: 

( )α0a  results immediately from theorem 1. 

For 1=ν , due to the infinite number of clients in the asymptotic portfolio it follows from the 

law of large numbers that the additional fraction of clients who default in round i is equal to 

its expected value, i.e. ( )απ 1−⋅ ia . However, with probability 1 the fraction ( )∑
−

=

1

1

i

k
ka α  of these 

has already defaulted before for other reasons. Thus, we have  
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

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−
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1

0
1 1:

i

k
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almost surely. ( )α1−
nL  then is just the sum of all losses in rounds 1 to n: 

( ) ( ) ( )∑
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− +=
n

i
in aaL

1
0

1 ααα  

For 1<ν  additional losses resulting from individual dependencies only stem from the respec-

tive fraction of all clients, thus, we have 
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□ 
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