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risk and portfolio manage-
ment, we must represent the 

distribution of the risk factors that affect the market. The most 
flexible approach is in terms of scenarios and their probabilities, 
which includes historical scenarios, pure Monte Carlo and impor-
tance sampling (see Glasserman, 2004).

Here, we present a simple method to generate scenarios from 
elliptical distributions with given sample means and covariances. 
This is very important in applications such as mean-variance 
portfolio optimisation, which are heavily affected by incorrect 
representations of the first two moments.

The same problem has been tackled by, among others, Wed-
derburn (1975), Cheng (1985), Li (1992) and Alexander, Leder-
mann & Ledermann (2008). However, these approaches require 
handling matrices or loops of the same size as the number of sce-
narios. This quickly becomes intractable for large Monte Carlo 
simulations. Instead, our method is a multivariate generalisation 
of the intuitive shift/rescaling that appears in, for example, Boyle, 
Broadie & Glasserman (1995). This method amounts to solving a 
matrix Riccati equation independent of the number of scenarios.

Methodology

Consider a multivariate normal distribution:

X ~ N m,S( ) (1)

where m is an arbitrary expected value and S is an arbitrary cov-
ariance matrix. Consider the representation of this distribution in 
terms of the probability-scenario pairs (p

j
, x

j
), j = 1, ... , J. Our 

aim is to ensure that:

m̂ x m, Ŝ x S (2)

where:

m̂ x p jx j
j 1

J

, Ŝ x p j
j 1

J

x jx j m̂ xm̂ x (3)

denote the sample mean and sample covariance of (p
j
, x

j
). To do 

so, one can either constrain the probabilities p
j
, or the scenarios 

x
j
. The former approach, pursued in, for example, Avellaneda 

(1999), D’Amico, Fusai & Tagliani (2003), Glasserman & Yu 
(2005) and Meucci (2008), is very flexible, but for large-dimen-
sional markets it becomes computationally challenging. Here, we 
choose the second route, which relies on the affine equivariance 
of the elliptical distributions.

First, we produce an auxiliary set of scenarios:

%p j ,%y j( ), j = 1,...,
J

2
(4)

from the distribution N(0, S). Then we complement these sce-
narios with their opposite:

%p j ,%y j

%p j / 2,%y j if j J / 2

%p
j J

2

/ 2, %y
j J

2

if j J / 2
(5)

These antithetic variables still represent the distribution N(0, S),
but they are more efficient (see Boyle, Broadie & Glasserman, 
1995) and they satisfy the zero-mean condition m^

y~
0.

Next, we apply a linear transformation to the scenarios y~
j
,

which again preserves normality:

y j B%y j , j 1,..., J (6)

For any choice of the invertible matrix B, the sample mean is 
null: m^

y
  0. To determine B, we impose that the sample covari-

ance S
^

y
 matches the desired covariance S. Using the affine equiv-

ariance of the sample covariance (see, for example, Meucci, 2005), 
we obtain a matrix Riccati equation:

S BŜ%yB, B B (7)

To solve this equation we follow Petkov, Christov & Konstanti-
nov (1991). First, we define the Hamiltonian matrix:

H
0 Ŝ%y
S 0

(8)
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Applications

To illustrate the ubiquitous nature of normal simulations, here we 
apply our methodology to calculate the value-at-risk and its decom-
position in a book of I plain vanilla call options (see also Meucci, 
2008). We denote current time as T. We notice the price P

T+
 of a 

call option at the investment horizon can be written in the format:

PT P XT ,y ,XT , ;IT (12)

where (X
T,y

, X
T,

) are risk factors and I
T
 represents currently available 

information. Indeed, consider the Black-Scholes pricing formula:

CBS y, ,K , t y d1 Ke rt d2 (13)

where  is the cumulative distribution function of the standard 
normal distribution and:

d1
ln K / y t r 2 / 2

2t
(14)

d2
ln K / y t r 2 / 2

2t
(15)

Then:

PT CBS yT e
XT , y ,h yT e

XT , y , T e
XT , ,K ,T ;K ,T ,r (16)

In this expression y
T
 is the current value and X

T,y
 ln(y

T+
/y

T
) is 

the log-change of the underlying; 
T
 is the current value and X

T,

 ln(
T+

/
T
) is the log-change in (T )-expiry, at-the-money 

implied volatility; and h is a skew/smile map:

h y, ;K ,T
ln y / K

T

ln y / K

T

2

(17)

for coefficients  and , which depend on the underlying and are fit-
ted empirically, as in Malz (1997). Clearly, (16) is in the format (12).

Consider a portfolio represented by the vector w, whose generic 
ith entry is the number of contracts in the respective call. The  
profit and loss then reads:

Hw wi Pi XT ,y
i ,XT ,

i ;IT pi ,T
i 1

I

(18)

where p
i,T

 denotes the currently traded price of the ith call. In order 
to calculate the VAR, we need the distribution of the profit and loss 
(18). To obtain the latter, we need the joint distribution of all the 
sources of risk (X(i)

T,y
, X(i)

T,
) in the portfolio. We realise that the 

sources of risk are approximately invariants – their joint distribu-
tion is independent and identical across time, and thus it does not 
depend on the specific time. We model this joint distribution with 
a multivariate normal copula with non-parametric marginals:

Xy
1

X 1

M

Xy
I

X I

d

F̂
Xy

1

1 Z1
1

F̂
X 1

1 Z2
1

M

F̂
Xy

I

1 Z1
I

F̂
X I

1 Z2
I

(19)

In this expression:

Z ~ N 0,Ĉ( ) (20)

Next we perform its Schur decomposition:

H UTU (9)

where UU I and T is upper triangular with the eigenvalues of 
H on the diagonal sorted in such a way that the first N have nega-
tive real part and the remaining N have positive real part; the 
terms in this decomposition are similar in nature to principal 
components and are calculated by standard software packages 
(see, for example, Anderson et al, 1999). Then the solution of the 
Riccati equation (7) reads:

B U LLUUL
1 (10)

where U
UL

 is the upper left N × N block of U and U
LL

 is the lower 
left N × N block of U.

With the solution (10) we can perform the affine transforma-
tion (6) and finally generate the desired scenarios:

x j m y j , j 1,..., J (11)

which satisfy (2), see figure 1, where, as in Meucci (2005), we repre-
sent the first two moments of a distribution in terms of an ellipsoid.

Note that the steps (4)–(11) only require a few fractions of a 
second to run even for large problems. Refer to www.symmys.com 

 Teaching  MATLAB for a fully functional implementation.
The present methodology is based on affine transformations as 

well as on the affine equivariance of the sample mean and covari-
ance. Therefore, it extends straightforwardly to general elliptical 
distributions, such as the t.

meucci.indd   90 1/7/09   11:35:16



risk.net 91

Alexander C, D Ledermann and 

W Ledermann, 2008

ROM simulation: a new approach to 
simulation using random orthogonal 
matrices
Working paper

Anderson E, Z Bai, C Bischof, 

S Blackford, J Demmel, J Dongarra, 

J Du Croz, A Greenbaum, 

S Hammarling, A McKenney and 

D Sorensen, 1999

LAPACK user’s guide
SIAM, third edition

Avellaneda M, 1999

Minimum-entropy calibration of asset-
pricing models
International Journal of Theoretical and

Applied Finance 1, pages 447–472

Boyle P, M Broadie and 

P Glasserman, 1995

Recent advances in simulation for 
security pricing
Proceedings of the 1995Winter

Simulation Conference, pages 212–219

Cheng R, 1985

Generation of multivariate normal 
samples with given sample mean and 
covariance matrix
Journal of Statistical Computation and

Simulation 21, pages 39–49

D’Amico M, G Fusai and A Tagliani, 2003

Valuation of exotic options using moments
Operational Research 2, pages 157–186

Epperlein E and A Smillie, 2006

Cracking VAR with kernels
Risk August, pages 70–74

Glasserman P, 2004

Monte Carlo methods in financial 
engineering
Springer

Glasserman P and B Yu, 2005

Large sample properties of weighted 
Monte Carlo estimators
Operations Research 53, pages 298–312

Gourieroux C, J-P Laurent and 

O Scaillet, 2000

Sensitivity analysis of values at risk
Journal of Empirical Finance 7, pages

225–245

Hallerbach W, 2003

Decomposing portfolio value-at-risk: a 
general analysis
Journal of Risk 5, pages 1–18

Li K, 1992

Generation of random matrices with 
orthonormal columns and multivariate 
normal variates with given sample 
mean and covariance
Journal of Statistical Computation and

Simulation 43, pages 11–18

Malz A, 1997

Option-implied probability distributions 
and currency excess returns
Federal Reserve Bank of New York

– Staff Reports

Mausser H, 2003

Calculating quantile-based risk 
analytics with L-estimators
Journal of Risk Finance 4(3), pages

61–74

Meucci A, 2005

Risk and asset allocation
Springer

Meucci A, 2006

Beyond Black-Litterman in practice: a 
five-step recipe to input views on non-
normal markets
Risk September, pages 114–119

Meucci A, 2008

Fully flexible views: theory and practice
Risk October, pages 97–102, available
at symmys.com > Research > Working 
Papers

Meucci A, Y Gan, A Lazanas and 

B Phelps, 2007

A portfolio mangers guide to Lehman 
Brothers tail risk model
Lehman Brothers Publications

Petkov P, N Christov and 

M Konstantinov, 1991

Computational methods for linear 
control systems
Prentice Hall

Wedderburn R, 1975

Random rotations and multivariate 
normal simulation
Unpublished working paper

References

for a suitably estimated correlation matrix C
^
, and F

^

X
 denotes a 

suitable estimate of the marginal distribution of X. In particular, 
we estimate these marginals by a non-parametric kernel smooth-
ing of the historical data. Then we use the cumulative density 
functions F

^

X
 to invert (19) for each entry in our joint time series of 

log price changes X
t,y

 and the log volatility changes X
t,

:

Zt
i 1 F̂

X i Xt
i , t 1,...,T (21)

where this simplified notation applies to both y and . Next, we 
fit the correlation (20) to the time series (21).

Now we can simulate the profit and loss distribution (18). First, 
we use our recipe to draw Monte Carlo scenarios from (20) in such 
a way that the sample mean is zero and the sample covariance 
exactly matches the estimated correlation matrix C

^
. More precisely, 

we generate a J  2I panel Y of J normal simulations with sample 
mean a 2I vector of zeros and sample covariance the 2I  2I identity 
matrix, and map it into a J  2I panel Z distributed as (20) using 
the Cholesky decomposition of C

^
. Then we map those simulations 

into factor realisations using (19). Since the expression of the inverse 
cumulative density function is not available analytically, we per-
form a linear interpolation of the cumulative density function, as in 
Meucci (2006). Next, those simulations are fed into the pricing 
functions that appear in (18), thereby generating a J I panel H of 
joint profit and loss scenarios for the I options at the investment 
horizon. The portfolio profit and loss (18) is then represented by the 
simulations vector Hw Hw. In figure 2, we report this distribu-
tion in an example of a portfolio long-short 20 options.

To calculate the VAR and its contributions from the different 
securities in the portfolio, first we express the former in terms of 
the latter:

VAR wi

VAR

wii 1

I

(22)

where the partial derivatives that appear in (22) can be expressed 
conveniently as in Hallerbach (2003) and Gourieroux, Laurent & 
Scaillet (2000):

VAR

w
p E P Hw VAR (23)

where p denote the current prices, which are known, and P the 
horizon prices, which are a random vector, as they appear in (18).

Then the expectations in (23) are approximated numerically as 
in Mausser (2003) (see also Epperlein & Smillie, 2006, and 
Meucci et al, 2007):

VAR

w
k %H (24)

In this expression, H
~
 is a J I panel whose generic ith column is 

the ith column of the options profit and loss panel H, sorted as 
the order statistics of the J-dimensional vector of the portfolio 
losses Hw, and k is a Gaussian smoothing kernel that peaks 
around the rescaled confidence level cJ. Finally, (22) yields the 
contributions from each option as well as the total VAR. The total 
VAR number then follows from (22).

In figure 3, we report the total VAR in our example of a portfo-
lio long-short 20 options, as well as its decomposition in terms of 
the contributions from each call.

Risk managers can now proceed to stress test the correlation C
^

using the Cholesky decomposition of the new stress-test matrix and 
the J  2I panel Y of uncorrelated standard normal simulations in 
the above process. Then they can analyse the impact of the stress 
test on a risk report such as figure 3, confident that the stress-test 
assumptions will be faithfully reflected in the simulations. 
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