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Abstract

Quantitative risk management relies on a constellation of tools that are used
to analyze portfolio risk. We develop the standard toolkit, which includes betas,
risk budgets and correlations, in a general, coherent, mnemonic framework centered
around marginal risk contributions. We apply these tools to generate side-by-side
analyses of volatility and expected shortfall, which is a measure of average portfolio
excess of value-at-risk. We focus on two examples whose importance is highlighted
by the current economic crisis. By examining downside protection provided by an
out-of-the-money put option we show that the diversification benefit of the option
is greater for a risk measure that is more highly concentrated in the tail of the
distribution. By comparing two-asset portfolios that are distinguished only by the
likelihood of coincident extreme events, we show that expected shortfall measures
market contagion in a way that volatility cannot.
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1 Introduction

At the heart of risk management is a constellation of tools that are used to analyze
the risk profile of a portfolio. These tools can uncover unintended bets on common risk
factors such as size or growth, illuminate the impact of exposure on emerging sectors such
as renewable energy,1 and reveal subtle opportunities for diversification. The standard
toolkit includes marginal contribution to risk, beta, risk budgets and correlation, and it
is generally used by financial practitioners to analyze volatility.

It is well documented in the academic literature that the identical tools can be applied
to analyze a wide range of risk measures.2 However, in the years of relative calm prior
to the current credit crisis, financial practitioners had little motivation to overcome the
many impediments to a more general analysis of risk. That has changed. The crisis has
indelibly underscored the fact that extreme events are endemic to financial markets, and
it has led to substantial interest in measuring and analyzing extreme risk.

The most direct measure of extreme risk is expected shortfall (ES),3 which is the
average loss beyond a threshold that distinguishes an everyday loss from an extreme
loss. This threshold is known as value-at-risk (VaR), and it is specified by a quantile, or
confidence level. For example, at the 99% confidence level, one-day value-at-risk provides
an upper bound for portfolio loss 99 days out of 100. Note however, that 99% one-day
value-at-risk is a best-case scenario on the worst day in 100, and it provides no indication
of what to expect in times of severe distress. By contrast, the 99% one-day shortfall is an
average, or expected value, for the worst day out of 100, and is thereby a natural guide
to allocation of capital reserves.

When estimated from a distribution that reflects salient characteristics of empirical
data—including a realistic proportion of extreme events, and the asymmetry between
gains and losses observed in markets—shortfall provides information that complements
volatility, which is a measure of average return dispersion.4 Shortfall, like volatility, ex-
hibits technical properties that facilitate analysis with the standard toolkit, and enable
it to play a central role in the investment process. Shortfall is sub-additive, so that it
encourages diversification, and convex; see Bertsimas et al. (2004), so that it supports
tractable optimization routines.

In this article, we review the standard toolkit in the context of general risk measures.
As illustrated in Figure 1, the most basic element is marginal contribution to risk: the
other tools in the collection can be expressed in terms of marginal contributions. Sub-
sequently, we provide examples of parallel analyses of volatility and expected shortfall.
These examples highlight the properties of the two risk measures, and provide investment

1See Chia et al. (2009) for more about green investment risk.
2The risk measures must be scale-invariant, sub-additive, and convex; see Rockafellar et al. (2006),

Rockafellar et al. (2007) and references therein. We explore the economic meaning of these requirements
below.

3Under broad assumptions, expected tail loss and conditional value-at-risk are synonymous with ex-
pected shortfall.

4Some models of extreme risk make the assumption that portfolio returns follow a normal or con-
ditionally normal distribution, a t-distribution with a given number of degrees of freedom, and other
distributions in the location-scale family. Under this type of modeling assumption, extreme risk measures
are scalar multiples of volatility and provide scant additional insight.
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MCR

βi =
MCRi/Risk

RCi =
xi MCRi

ρi = 
MCRi/Riski

Figure 1: Relationship of the marginal contribution to risk (MCR) to the familiar con-
cepts of beta, correlation, and risk contribution (RC); here risk may refer to volatility or
expected shortfall.

insights that cannot be obtained through the lens of a single risk measure.

2 Marginal Contribution to Risk

Some basic questions that an investor might ask are:

(i) How will a given trade impact my portfolio risk?

(ii) What set of trades will most efficiently reduce my overall risk?

(iii) How should funds be allocated to asset classes, sectors or managers?

For trades that involve a sufficiently small turnover, an approximate answer to these
questions is given by the marginal contribution to risk (MCR):

MCRµ(P,Ai) :=
∂µ(P )

∂xi
. (1)

In Formula (1), P denotes portfolio return, µ(P ) denotes portfolio risk, and xi is the
weight of portfolio component Ai. We can think of the component Ai as an asset, a
sector, a linear factor, or an element of any linear decomposition of P . The marginal
contribution indicates how much the portfolio risk will change upon buying or selling a
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small amount of a given asset. Because MCR is a (mathematical) derivative, it points in
the direction of interest but is valid only for small changes in portfolio weights.

Marginal contribution to risk can be used to estimate implied expected return to port-
folio components via a concept known as reverse optimization (see e.g. Sharpe (2001)).
Consider a portfolio that is optimal in the sense that the ratio of return to risk is max-
imized. (Risk may refer to volatility, shortfall, or another measure.) Then the expected
rate of return of a component Ai is proportional to its MCR.5 Comparing the implied
expected returns from reverse optimization with a manager’s views may reveal unintended
bets.

For a convex risk measure such as volatility or shortfall, selling a component of a
portfolio decreases its MCR, and buying a component increases its MCR.6 In terms of
reverse optimization, if the expected rate of return implied by the current holdings is
incompatible with a manager’s views, selling a component reflects a move towards a more
bearish view of the component, whereas buying a component reflects a move towards a
more bullish view.

Beta

A rescaling of marginal contribution to risk leads to the concept of beta. We define the
beta of a portfolio component Ai as the MCR divided by the total portfolio risk:

βµ(P,Ai) :=
1

µ(P )

∂µ(P )

∂xi
. (2)

It is a straightforward exercise in algebra to convert Formula (2) to the standard formula
for beta, which is expressed in terms of covariances and variances, in case the risk measure
µ is volatility. A comparison between Formula (2) for beta and Formula (1) for MCR shows
that the beta can be interpreted as the percent change in risk upon buying or selling a
small amount of component Ai.

Beta is also the natural measure of risk in the capital asset pricing model (CAPM).
Conventionally, the CAPM is defined in terms of volatility, but it can also be defined
in terms of shortfall (see e.g. Bertsimas et al. (2004)). Both the volatility and shortfall
CAPMs make the assumption that the market portfolio is optimal with respect to volatil-
ity or shortfall. The CAPM is a model of the expected excess rate of return of assets, and
can be viewed as a special case of reverse optimization for the market portfolio.

Risk Contribution and Risk Budget

Most standard risk measures µ including volatility, value-at-risk, and expected shortfall
are scale invariant,7 so that the risk of a portfolio with n components can be decomposed

5To illustrate the basis for reverse optimization, take a hypothetical two-component portfolio and
suppose the expected return of component 1 is greater than the expected return of component 2. If
MCR1 < MCR2, it would be possible to buy component 1 and sell component 2, increasing the overall
rate of return and reducing risk. But this would violate the assumption that the portfolio is optimal.

6Technically, selling a component does not increase its MCR and vice versa.
7A function f is scale invariant, or positively homogeneous of degree one, if f(λx1, λx2, . . . , λxn) =

λf(x1, x2, . . . , xn) for any positive λ.
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using the Euler formula:

µ(P ) =
n∑
i=1

xi
∂µ(P )

∂xi

=
n∑
i=1

xiMCRµ(P,Ai).

This leads to the concepts of a risk contribution:

RCµ(P,Ai) = xiMCRµ(P,Ai) (3)

and a risk budget:

RBµ(P,Ai) =
xiMCRµ(P,Ai)

µ(P )
. (4)

In an optimized portfolio, MCRµ(P,Ai) is proportional to expected excess return of com-
ponent i, and the risk budget RBi is the percentage of dollar-expected excess return due
to portfolio component i.

Correlation

The risk contribution in Formula (3) can be further decomposed in an economically mean-
ingful way by factoring the marginal contribution:

RCµ(P,Ai) = xiµ(Ai)
MCRµ(P,Ai)

µ(Ai)

= xiµ(Ai)ρ
µ(P,Ai). (5)

This is the X-Sigma-Rho decomposition described in Menchero and Poduri (2008), who
show that if the risk measure µ is volatility, then the quotient

ρµ(P,Ai) =
MCRµ(P,Ai)

µ(Ai)

is the linear correlation between the portfolio P and the the component Ai. In case µ is
expected shortfall, the correlation measures the likelihood of coincident extreme losses.
We illustrate this in Section 3.2.

When the risk measure µ is convex and sub-additive, risk-implied correlation shares
useful properties with linear correlation, including scale independence, an upper bound of
1, and a lower bound (that need not be -1!). These properties are discussed in the context
of shortfall in the Appendix.

3 Examples

We illustrate the concepts developed above for volatility (σ), which is a measure of average
loss, and shortfall (ES), which is a measure of extreme loss. We use a flexible semi-
parametric model of extreme risk (Goldberg et al. (2008), Barbieri et al. (2008)), where
differences between shortfall and volatility can lead to new insights into the structure of
extreme risk.
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3.1 Downside Protection

Simple out-of-the-money put options are commonly used to insure a portfolio against large
losses. These come at the price of the option premium, which is usually not recouped.
Volatility paints an incomplete picture of the risk of this type of instrument, due to
the asymmetry in potential payoffs. Most of the time the payoff is small and negative,
but on rare occasions it is large and positive. Volatility cannot distinguish between the
seller of an out-of-the-money put and the buyer, although their respective outlook and
risk tolerance differ greatly. The selling of this type of instrument has been colorfully
described as “picking up pennies in front of steamrollers;” presumably the buyers are
driving the steamrollers!

We examine a portfolio consisting of an exchange traded fund on a broad equity
market index, and an out-of-the-money put option on the fund. For a given allocation
between the fund and the option, the risk characteristics can look dramatically different
through the lens of volatility compared to shortfall.

3.1.1 Methodology

Consider a portfolio consisting of an exchange traded fund (ETF) on the MSCI US Broad
Market Index and an out-of-the-money put option on the index. Since a larger loss from the
index generates greater option profits, the diversification benefit of holding put options
increases as the risk measure becomes more concentrated in the tail of the portfolio
distribution. For expected shortfall, this means that diversification benefit of the put
increases with confidence level.

We use 30 years of historical daily returns to the MSCI US to simulate price changes
of the index and option. We first normalize these returns by the historical volatility, and
then multiply by the current volatility; this procedure gives a consistent view of market
history over the course of both calm and turbulent markets. To compute the price change
of the option we use the terms and conditions of the put contract,8 the rescaled empirical
index returns, and the Black-Scholes-Merton price of the option. From this large set of
possible price changes, we compute the portfolio risk. This model of risk does not rely on
any distributional assumptions, and is flexible enough to exactly capture the nonlinearity
of the option.

3.1.2 A Fully-Hedged Portfolio

In a fully-hedged portfolio, the number of ETF shares equals the number of option con-
tracts, resulting in portfolio weights of 99.35% for the ETF and 0.65% for the option. The
total portfolio forecast one-day volatility is 3.24%, the 95% expected shortfall is 6.79%,
and the 99% expected shortfall is 9.53%. The magnitude of the risk forecasts reflects the
turbulent market conditions on the analysis date, 23 October 2008.

The first column in Table 1 displays the portfolio weights, which are used to compute
portfolio volatility and expected shortfall at all confidence levels. The next column reports

8The option contract details used in the examples below are as follows: The strike price is $50, the
volatility is 50%, and the option expires in 20 days. For simplicity and without loss of generality, we
ignore the risk-free rate and dividend yield of the ETF.
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Table 1: Decomposition of volatility, 95% expected shortfall, and 99% expected shortfall
of option and index

Asset X σ ρσ RCσ ES95 ρES95 RCES95 ES99 ρES99 RCES99

Index 0.9935 3.74 0.99 3.68 8.29 1 8.24 12.78 1 12.7
Put 0.0065 101.57 -0.66 -0.44 87.06 -2.55 -1.45 100.4 -4.84 -3.17

Total 1 3.24 6.79 9.53

the stand-alone volatilities of the index and the option. The stand-alone volatility of
the index is 3.74%, while the option is much more volatile. The linear correlation of .99
between the ETF and the portfolio reflects the 99.35% weight of the index in the portfolio.
The contribution of the index to portfolio volatility is the product 0.9935 · 3.74% · 0.99 =
3.68%, as reported in the column labelled RCσ. The diversifying effect of the put option
on volatility results in a negative contribution of -0.44%. The sum of the contributions of
the index (3.68%) and the option (-0.44%) is the total portfolio volatility of 3.24%.

A parallel analysis shows that the contribution of the put option to 95% shortfall
is the product of the exposure of 0.65%, the stand-alone 95% expected shortfall of the
option of 87.06%, and the shortfall correlation of -2.55 of option losses and portfolio losses.
This results in a contribution of -1.45%. The sum of the shortfall contributions of the
index and the option gives the portfolio 95% expected shortfall of 6.79%. The shortfall
correlation between option loss and portfolio loss at 99% is approximately double the
shortfall correlation at 95%, which indicates that the option more effectively reduces the
risk of losses that are more severe. This indicates that the diversification benefits are
greater as the risk measure becomes more concentrated in the tail of the portfolio loss
distribution.

The value of -2.55 for the shortfall correlation is noteworthy since it is not a possible
value for linear correlation, which is bounded below by -1. Shortfall correlation can be less
than -1 due to the combination of the asymmetry of the risk measure with the asymmetry
of the portfolio and option loss distributions. This can be seen in an explicit expression
for shortfall correlation between the option O and the portfolio P :

ρESα(P,O) =
E[−O | − P > VaRα(P )]− E[−O]

E[−O | −O > VaRα(O)]− E[−O]
. (6)

The financial meaning of this expression is that the shortfall correlation is the ratio of
two terms: 1) the expected option loss on days when the portfolio suffers large losses,
and 2) the expected option loss on days when the option suffers large losses (i.e., the
expected shortfall of the option).9 The centered loss distribution of the option is shown in
Figure 2 on days when the portfolio value-at-risk is exceeded. (We subtract the expected
mean loss of 21.73%.) The 95% value-at-risk is 76.39%, while the 95% expected shortfall
(which is the denominator of Formula (6)) is 87.06%. The numerator is the average loss
of the option over scenarios for which portfolio loss exceeds 95% portfolio value-at-risk.

9Formula (6) is discussed in greater detail in the Appendix.
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Figure 2: Option return on days when the option 95% VaR is exceeded (blue), and on
days when portfolio 95% VaR is exceeded (green; the largest five gains (1000%, 1300%,
1800%, 2900%, and 6200%) are excluded for clarity).

A histogram of option losses for these scenarios is shown in Figure 2. Since the weight
of the option is sufficiently small, index losses and portfolio losses are contemporaneous.
The mean loss over these scenarios is -221.90% (a gain of 221.90%). The 95% shortfall
correlation is -221.90/87.06 = -2.55.

3.1.3 Doomsday Portfolios

When the number of option contracts exceeds the number of ETF shares held in the
portfolio, the hedge ratio exceeds 1, and the returns to the portfolio performs well when
the index experiences extreme losses. As the weight of the option increases, the portfolio
tends to become more of a gamble on a market crash.

Figure 3 shows the contribution of the option and the ETF to 99% expected shortfall
of the portfolio as a function of option weight. With no option present, the shortfall
contribution of the ETF is the total portfolio shortfall. When the weight of the option
in the portfolio is sufficiently small, an index loss results in a portfolio loss and vice
versa. Consequently, the option makes a negative contribution to portfolio shortfall. The
contribution of the option to shortfall is minimal when the option weight is around 2%. At
6% option weight, the shortfall correlation between the option and the portfolio is zero.

Figure 4 shows the contribution of the option and ETF to portfolio volatility as a func-
tion of option weight. The plots for volatility and 99% expected shortfall are qualitatively
similar, but the former is much less dramatic than the latter. The option contribution to
volatility is minimal at an option weight of approximately 2%, and the option is linearly
uncorrelated with the portfolio at a weight of approximately 3.5%.
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Figure 3: Contribution to 99% shortfall from index and option at varying option weights;
the total weight is constrained to sum to 1, and shortfall and contributions are expressed
in percentage points; the fully-hedged option weight is indicated with a vertical dashed
line.

Figure 4: Contribution to volatility from index and option at varying option weights; the
total weight is constrained to sum to 1, and shortfall and contributions are expressed in
percentage points; the fully-hedged option weight is indicated with a vertical dashed line.
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Table 2: Portfolio risk as measured by volatility, 95% shortfall, and 99% shortfall
Volatility 95% Shortfall 99% Shortfall

N 0.71 1.46 1.89
T 0.71 1.59 2.27

Table 3: Decomposition of volatility, 95% expected shortfall, and 99% expected shortfall
of two independent normally distributed assets

Asset X σ ρσ RCσ ES95 ρES95 RCES95 ES99 ρES99 RCES99

A 0.5 1 0.71 0.35 2.06 0.71 0.73 2.67 0.71 0.94
B 0.5 1 0.71 0.35 2.06 0.71 0.73 2.67 0.71 0.94

Total 1 0.71 1.46 1.89

3.2 Coincident Extreme Losses

A more subtle example of an investment not fully described by volatility is a portfolio
containing two assets that are linearly uncorrelated but nevertheless tend to experience
coincident large losses. The impact of coincident extreme losses can be exposed by X-
Sigma-Rho attribution of shortfall.

We construct a pair of equally weighted, two-asset portfolios that differ only in the
dependence of the assets. Each of the two (statistically identical) assets follows a standard
normal distribution, and the dependence structures of the portfolios are given by:

N. A normal copula

T. A t-copula with 2 degrees of freedom

To compute the risk of these portfolios we take 106 random draws from the two bivariate
distributions. Table 2 reports volatility, 95% shortfall and 99% shortfall for the two port-
folios; at sufficiently large quantiles, the probability of coincident extreme losses to the
assets is greater in Portfolio T than in Portfolio N. Tables 3 and 4 report X-Sigma-Rho de-
compositions of the three risk measures. Because the two assets are statistically identical
and are equally weighted, the risk contributions are identical within each portfolio.

Figure 5 shows the shortfall of portfolios N and T at varying confidence levels. The
difference in shortfall for portfolios N and T increases with confidence level, reflecting the
greater likelihood of simultaneous large losses at higher quantiles.

The difference in shortfall for the two portfolios can be entirely explained by shortfall-
implied correlation, which is reported in Tables 3 and 4 as part of the X-Sigma-Rho
decomposition. For example, the 99% shortfall implied correlation between either asset
and portfolio T is 0.85, which exceeds the correlation of 0.71 between the asset and
Portfolio N. Figure 5 compares shortfall implied correlation between either asset and
Portfolios N and T as a function of confidence level.
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Table 4: Decomposition of volatility, 95% expected shortfall, and 99% expected shortfall
of two uncorrelated, normally distributed assets that exhibit extreme dependence

Asset X σ ρσ RCσ ES95 ρES95 RCES95 ES99 ρES99 RCES99

A 0.5 1 0.71 0.35 2.06 0.77 0.80 2.67 0.85 1.13
B 0.5 1 0.71 2.06 0.77 2.67 0.85 0.35 0.80 1.13

Total 1 0.71 1.59 2.27

Figure 5: Shortfall and shortfall-implied correlation at varying confidence levels for port-
folios N and T (normal and t-copula); portfolio N has uncorrelated extreme losses, while
T exhibits correlated extreme losses.
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4 Conclusion

The global market downturn that began in 2007 highlights the importance of taking a
broad view of financial risk. In this article, we demonstrate that many of the standard
tools used to measure and decompose volatility can be used to analyze measures of ex-
treme risk, such as expected shortfall. Side-by-side analyses of volatility and shortfall lead
to an understanding of portfolio risk that cannot be obtained through the lens of a single
risk measure. For example, by decomposing volatility and expected shortfall of a portfolio
consisting of an ETF and an out-of-the-money put, we illustrate the fact that the diversi-
fication benefit of downside protection tends to be greater for a risk measure that is more
highly concentrated in the tail of a portfolio. This observation may lead an investor to
reconsider the value of downside protection.

Volatility, expected shortfall, and many other risk measures imply correlations be-
tween a portfolio and any of its components. In general, risk-implied correlations differ
from linear correlation. By examining a pair of two-asset portfolios that differ only in the
likelihood that both assets suffer extreme simultaneous losses, we illustrate the fact that
shortfall is sensitive to contagion risk in a way that volatility is not.

A Properties of Shortfall Correlation

We define the expected shortfall at confidence level α of portfolio P to be

ESα(P ) = E[−P | − P > VaRα(P )]− E[−P ]

where P denotes the portfolio return, and VaRα is the value-at-risk at confidence level α,
defined to be

VaRα(P ) = −(F−1(1− α)− E[P ])

where F−1(1−α) is the 1−α percentile of the cumulative return distribution. Note that
using this definition value-at-risk is typically a positive number; expected shortfall on the
other hand is always positive.

We assume that the portfolio P can be expressed as a linear combination of compo-
nents, which may be assets, sectors, or factors:

P =
n∑
i=0

xiAi. (7)

where xi denotes exposures or weights and Ai denote asset, sectors, or factors. Note that
if the Ai represent linear equity factors, Formula (7) does not hold if the portfolio contains
nonlinear instruments.

Shortfall Correlation Formula. The shortfall correlation at confidence level α between
a portfolio P and a linear component Ai is given by

ρESα(P,Ai) =
E[−Ai | − P > VaRα(P )]− E[−Ai]
E[−Ai | − Ai > VaRα(Ai)]− E[−Ai]

.
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Proof. Substituting for P using Formula (7), applying the definition of shortfall, and
exploiting the linearity of conditional expectation,

∂ESα(P )

∂xi
=
∂ESα (−

∑n
i=1 xiAi)

∂xi

=
∂ (
∑n

i=1 xi (E[−Ai | − P > VaRα(P )]− E[−Ai]))
∂xi

= E[−Ai | − P > VaRα(P )]− E[−Ai].

where we have used the fact that the partial derivative with respect to the VaRis zero
(see Bertsimas et al. (2004)). Substituting for ∂ESα(P )/∂xi and applying the definition
of expected shortfall to ESα(Ai),

ρESα(P,Ai) =
1

ESα(Ai)

∂ESα[P ]

∂xi

=
E[−Ai | − P > VaRα(P )]− E[−Ai]
E[−Ai | − Ai > VaRα(Ai)]− E[−Ai]

.

Correlation Scaling Property. The shortfall correlation between a portfolio and one
of its components is scale independent.

Proof. The scenarios −P > VaRα(P ) are unchanged on multiplying P by p > 0. Using
the shortfall correlation formula,

ρESα(pP,Ai) =
E[−Ai | − pP > VaRα(pP )]− E[−Ai]
E[−Ai | − Ai > VaRα(Ai)]− E[−Ai]

=
E[−Ai | − P > VaRα(P )]− E[−Ai]
E[−Ai | − Ai > VaRα(Ai)]− E[−Ai]

= ρESα(P,Ai).

Similarly, the scenarios −Ai > VaRα(Ai) are unchanged on multiplying Ai by a > 0.
Exploiting this fact and the linearity of conditional expectation,

ρESα(P, aAi) =
E[−aAi | − P > VaRα(P )]− E[−aAi]

E[−aAi | − aAi > VaRα(aAi)]− E[−aAi]

=
E[−Ai | − P > VaRα(P )]− E[−Ai]
E[−Ai | − Ai > VaRα(Ai)]− E[−Ai]

= ρESα(P,Ai).

Correlation Bounds. Shortfall correlation is bounded above and below as follows:

−ES(−Ai)
ES(Ai)

≤ ρES(P,Ai) ≤ 1.
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Expected shortfall is a convex risk measure which means that the marginal contribu-
tion of the expected shortfall of a portfolio ESα(P ) with respect to every asset weight is
monotonic. In other words, if the marginal contribution is evaluated at two points xi = a
and xi = c, the value of the gradient at an intermediate point xi = b is bounded:

∂ESα(P )

∂xi

∣∣∣∣
xi=a

≤ ∂ESα(P )

∂xi

∣∣∣∣
xi=b

≤ ∂ESα(P )

∂xi

∣∣∣∣
xi=c

(8)

Formula (8) tells us, that to bound the gradient, we need to consider the largest
and smallest possible values of asset weight xi, which are: a = −∞ and c = +∞. From
Formula (8), for any asset weight xi = b, we have the bounds:

∂ESα(P )

∂xi

∣∣∣∣
xi=−∞

≤ ∂ESα(P )

∂xi

∣∣∣∣
xi=b

≤ ∂ESα(P )

∂xi

∣∣∣∣
xi=+∞

(9)

As xi → +∞, the portfolio Pxi=+∞ tends to a portfolio composed solely of asset Ai. The
expected shortfall of this portfolio is:

lim
xi→+∞

ESα(P ) = xiESα(Ai) (10)

where we have used the fact that expected shortfall is positively linear homogeneous in
assets weights. Therefore:

∂ESα(P )

∂xi

∣∣∣∣
xi=+∞

= ESα(Ai) (11)

Similarly, the same gradient evaluated at xi → −∞ is:

∂ESα(P )

∂xi

∣∣∣∣
xi=−∞

= −ESα(−Ai) (12)

where ESα(−Ai) is the expected shortfall of a short position in asset Ai. Using Formula
(11) and Formula (12) in Formula (9) results in the bounds:

−ESα(−Ai) ≤
∂ESα(P )

∂xi

∣∣∣∣
xi=b

≤ ESα(Ai) (13)

Dividing throughout by ESα(Ai) and using the shortfall correlation formula results in the
bounds for shortfall correlation:

−ESα(−Ai)
ESα(Ai)

≤ ρESα(P,Ai) ≤ 1 (14)

If the return distribution of asset Ai is symmetrical the bounds in Formula (14) simplify
to:

−1 ≤ ρESα(P,Ai) ≤ 1 (15)

Note that for Formula (15) we do not require that the symmetric distribution be normally
distributed.
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