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1. Introduction

How well does options pricing theory really work, and
how dependent is it on the notion of dynamic replication?
In this note we describe what many practitioners know
from long and practical experience: (i) dynamic
replication doesn’t work as well as students are taught
to believe; (ii) most derivatives traders rely on it as little
as possible; and (iii) there is a much simpler way to derive
many option pricing formulas: many of the results of
dynamic option replication can be obtained more
simply, by regarding (as many practitioners do) an
options valuation model as an interpolating formula for
a hybrid security that correctly matches the boundary
values of the ingredient securities that constitute the
hybrid.

2. Replication

The logic of replication is that a security whose payoff
can be replicated purely by the continuous trading of a
portfolio of underlying securities is redundant; its value
can be derived from the value of the underlying
replicating portfolio, requiring no utility function or
risk premium applied to expected values. The fair value
of the replicated security follows purely from riskless
arbitrage arguments.

The method of static replication for valuing securities
was well known, but prior to Black and Scholes (1973) the
possibility of dynamic replication was unexplored,
although there had been hints of the approach, as in
Arrow (1953). What distinguishes the Black–Scholes–
Merton model is the dynamic replication of the portfolio
and the economic consequences of this argument, rather
than, as is frequently asserted in the literature, the option
pricing equation per se.

We shall show that the Black–Scholes option pricing
formula could have been derived much earlier by requir-
ing that a portfolio consisting of a long position in a call
and a short position in a put, valued by the traditional
discounted expected value of their payoffs, must statically
replicate a forward contract.

3. Arguments for skepticism

There are a variety of empirical arguments that justify
some skepticism about the efficacy of dynamic hedging
as a framework for options valuation.

. Options are currently priced and traded on myriads
of instruments—live commodities, agricultural
products, perishable goods, and extremely illiquid
equity securities—where dynamic replication cannot
possibly be achieved. Yet these options are priced
with the same models and software packages as are
options on those rare securities where dynamic
replication is feasible.

. Even where dynamic replication is feasible, the
theory requires continuous trading, a constraint
that is unachievable in practice. The errors resulting
from discrete hedging, as well as the transaction
costs involved, are prohibitive, a point that has
been investigated extensively in the literature (see,
for example, Taleb (1997, 1998)).

. In addition, market-makers, who are in the business
of manufacturing long and short option positions for
their clients, do not hedge every option dynamically;
instead they hedge only their extremely small net
position. Thus, the effect of the difference between
dynamic and static hedging on their portfolio is
extremely small.

. Dynamic replication assumes continuous asset price
movements, but real asset prices can move discon-
tinuously, destroying the possibility of accurate
replication and providing a meaningful likelihood
of bankruptcy for any uncovered option seller who
does not have unlimited capital.*Corresponding author. Email: emanuel.derman@mac.com

Quantitative Finance
ISSN 1469–7688 print/ISSN 1469–7696 online # 2005 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/14697680500305105



. All manner of exotic and even hybrid multidimen-
sional derivative structures have proliferated in the
past decade, instruments of such complexity that
dynamic replication is clearly practically impossible.
Yet they are priced using extensions of standard
options models.

Hakansson’s so-called paradox (Hakansson 1979, Merton
1992) encapsulates the skepticism about dynamic replica-
tion: if options can only be priced because they can be
replicated, then, since they can be replicated, why are they
needed at all?

4. The logic of dynamic hedging

Let us review the assumptions about dynamic replication
that lead to the Black–Scholes equation for European
options on a single stock.

In the Black–Scholes picture a stock S is a primitive
security, primitive in the sense that its payoff cannot
be replicated by means of some other security. An option
C whose payoff depends through a specified payoff
function of S at some expiration time T is a derivative
security.

Assume that the underlying stock price S undergoes
geometric Brownian motion with expected return � and
return volatility �. A short position in the option C with
price C(S, t) at time t can be hedged by purchasing @C=@S
shares of stock against it.

The hedged portfolio P ¼ �Cþ @C=@S S consisting
of a short position in the option and a long position in D
shares of the underlying stock will have no instantaneous
linear exposure to the stock price S.

Note that the immediate effect of this hedge is to remove
all immediate dependence of the value of portfolio P on
the expected return � of the stock.

E ½�P � ¼ �@C=@SE ½�S � �
1

2
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�

� @C=@t�tþ @C=@SE ½�S�:

Wey can see how the first and last terms cancel each
other, eliminating E ½�S � from the expectation of the
variations in the hedged portfolio.

The portfolio of option and stock has not yet becomes
a riskless instrument whose return is determined. We need
another element, the stream of subsequent dynamic
hedges.

With continuous rehedging, the instantaneous profit on
the portfolio per unit time is given by
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assuming for simplicity that the riskless interest rate
is zero.

If the future return volatility � of the stock is known,
this profit is deterministic and riskless. If there is to be no
arbitrage on any riskless position, then the instantaneous
profit must be zero, leading to the canonical
Black–Scholes equation
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which can be solved for boundary conditions correspond-
ing to a simple European call to yield the Black–Scholes
formula.

Note that the Nobel committee upon granting the Bank
of Sweden Prize in honour of Alfred Nobel, provided the
following citation: ‘Black, Merton and Scholes made a
vital contribution by showing that it is in fact not neces-
sary to use any risk premium when valuing an option.
This does not mean that the risk premium disappears;
instead it is already included in the stock price.’z It is
for having removed the effect of � on the value of the
option, and not for rendering the option a deterministic and
riskless security, that their work is cited.

The effect of the subsequent stream of secondary
dynamic hedges is to render the option riskless, not, as
it is often assumed, to remove the risk of the exposure to
the underlying security. The more we hedge, the more the
option becomes (under the Black–Scholes assumptions)
a deterministic payoff—but, again, under a set of very
precise and idealized assumptions, as we will see next.

5. Dynamic hedging and its discontents

The Black–Scholes–Merton formalism relies upon the
following central assumptions:

(1) constant (and known) �;
(2) constant and known carry rates;
(3) no transaction costs;
(4) frictionless (and continuous) markets.

Actual markets violate all of these assumptions.

. Most strikingly, the implied volatility smile is
incompatible with the Black–Scholes–Merton
model, which leads to a flat implied volatility
surface. Since the option price is incompatible
with the Black–Scholes formula, the correct
hedge ratio is unknown.

. One cannot hedge continuously. Discrete
hedging causes the portfolio P to become risky
before the next rebalancing. One can think of
this as a sampling error of order 1=ð

p
2N Þ in the

stock’s volatility, where N is the number of
rebalancings. Hedge 50 times on a three-
month option rather than continuously, and
the standard deviation of the error in the repli-
cated option price is about 10%, a significant
mismatch.

yWe are taking the equality in expectation because we are operating in discrete time not at the limit of �t going to 0.
zSee www.Nobel.se
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. In addition to the impossibility of continuous
hedging, transaction costs at each discrete
rehedging impose a cost that make an options
position worth less than the Black–Scholes value.

. Future carry rates are neither constant nor known.

. Furthermore, future volatility is neither constant
nor known.

. More radically, asset price distributions have
fat tails and are inadequately described by the geo-
metric Brownian motion assumed by Markowitz’s
mean-variance theory, the Capital Asset Pricing
Model and options theory itself.

Furthermore, practitioners know from bitter experience
that dynamic replication is a much more fragile procedure
than static replication: a trading desk must deal with
transactions costs, liquidity constraints, the need for
choosing price evolution models and the uncertainties
that ensue, the confounding effect of discontinuous
asset price moves, and, last but by no means least,
the necessity for position and risk management software.

6. Options valuation by expectations and

static replication

Practitioners in derivatives markets tend to regard
options models as interpolating formulas for hybrid
securities. A convertible bond, for example, is part
stock, part bond: it becomes indistinguishable from the
underlying stock when the stock price is sufficiently high,
and equivalent to a corporate bond when the stock price
is sufficiently low. A convertible bond valuation model
provides a formula for smoothly interpolating between
these two extremes. In order to provide the correct limits
at the extremes, the model must be calibrated by static
replication. A convertible model that doesn’t replicate a
simple corporate bond at asymptotically low stock prices
is fatally suspect.

One can view the Black–Scholes formula in a similar
light. Assume that a stock S that pays no dividends
has future returns that are lognormal with volatility �.
A plausible and time-honoured actuarial way to estimate
the value at time t of a European call C with strike K
expiring at time T is to calculate its expected discounted
value, which is given by

CðS, tÞ ¼ e�rðT�tÞðE ½S� K �þÞ

¼ e�rðT�tÞ S e�ðT�tÞNðd1Þ � KNðd2Þ
n o

, ð2Þ

where r is the appropriate but unknown discount rate,
still unspecified and � is the unknown expected growth
rate for the stock.

The analogous actuarial formula for a put P is given by

PðS, tÞ ¼ e�rðT�tÞðE ½K� S �þÞ

¼ e�rðT�tÞ KNð�d2Þ � Se�ðT�tÞNð�d1Þ
n o

, ð3Þ

where

d1, 2 ¼
ln½S e�ðT�tÞ=K � � ½�2ðT� tÞ=2�

�
ffiffiffiffiffiffiffiffiffiffiffi
T� t
p : ð4Þ

A dealer or market-maker in options, however, has addi-
tional consistency constraints. As a manufacturer rather
than a consumer of options, the market-maker must stay
consistent with the value of his raw supplies. He must
notice that a portfolio F ¼ C� P consisting of a long
position in a call and a short position in a put with the
same strike K has exactly the same payoff as a forward
contract with expiration time T and delivery price K
whose fair current value is

F ¼ S� K e�RðT�tÞ, ð5Þ

where R is the zero-coupon riskless discount rate for the
time to expiration.

The individual formulas of equations (2) and (3) must
be calibrated to be consistent with equation (5). If they
are not, the market-maker will be valuing his options,
stock and forward contracts inconsistently, despite their
underlying similarity. What conditions are necessary to
satisfy this?

Combining equations (2) and (3) we obtain

F ¼ C� P ¼ e�rðT�tÞ S e�ðT�tÞ � K
n o

: ð6Þ

The requirement that equations (5) and (6) be consistent
dictates that both the appropriate discount rate r and
the expected growth rate � for the stock in the
options formula be the zero-coupon discount rate R.
These choices make equation (2) equivalent to the
Black–Scholes formula.

A similar consistency argument can be used to
derive the values of more complex derivatives, dependent
on a larger number of underlyers, by requiring
consistency with the values of all tradable forwards
contracts on those underlyers. For an application
of this method to valuing quanto options, see
Derman et al. (1998).

7. From Bachelier to Keynes

Let us zoom back into the past. Assume that in 1973,
there were puts and calls trading in the market-place.
The simple put–call parity argument would have
revealed that these can be combined to create a forward
contract.

John Maynard Keynes was the first to show that
the forward need not be priced by the expected return
on the stock, the equivalent of the � we discussed earlier,
but by the arbitrage differential, namely, the equivalent of
r� d. This follows the exposition of the formula that was
familiar to every institutional foreign exchange trader.

If by lending dollars in New York for one month the
lender could earn interest at the rate of 5 1

2% per
annum, whereas by lending sterling in London for
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one month he could only earn interest at the rate of
4%, then the preference observed above for holding
funds in New York rather than in London is wholly
explained. That is to say, forward quotations for the
purchase of the currency of the dearer money
market tend to be cheaper than spot quotations
by a percentage per month equal to the excess
of the interest which can be earned in a month in
the dearer market over what can be earned in the
cheaper. Keynes (1923, 2000)

Between Bachelier and Black–Scholes, there were several
researchers who produced formulas similar to that of
Black–Scholes, differing from it only by their use of a
discount rate that was not riskless. While Bachelier had
the Black–Scholes equation with no drift and under an
arithmetic Brownian motion, others added the drift,
albeit a nonarbitrage derived one, in addition to the
geometric motion for the dynamics. Of these equations
we can cite Sprenkle (1961), Boness (1964), Samuelson
(1965), and Samuelson and Merton (1969). All of their
resultant pricing equations involved unknown risk
premiums that would have been determined to be zero
had they used the put–call replication argument
we illustrated above. Furthermore, the put–call parity
constraint was already present in the literature (see
Stoll, 1969).

8. Conclusion

Dynamic hedging is neither strictly required nor strictly
necessary for plausibly valuing options; it is less relied
upon in practice than is commonly believed. Much of
financial valuation does not require such complexity of
exposition, elegant though it may bey. The formulas
it leads to can often be obtained much more simply and
intuitively by constrained interpolation. Finally, the
pricing of contingent claims by interpolation and static
replication opens the door to valuing options on assets
without necessarily demanding that such assets have
finite square variation, and thus sets the grounds for

the use of a richer class of distributions with finite first
moment.
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