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Abstract: Several generalisations of the Black–Scholes (BS) Model
have been made in the literature to overcome the well–known empirical
inadequacies of the BS–Model. In this work I perform an empirical
comparison of stochastic volatility models established by Duffie et al.
(2000) with jumps in the volatility and four deductive special cases.
In addition I include the model of Schoebel/Zhu (1999) with volatility
driven by an Ornstein–Uhlenbeck process instead of a Cox–Ingersoll–
Ross process. As Zhu (2000) suggested the model can be easily combined
with a jump component in the underlying. I examine the resulting model
empirically and stress its good properties. This comparison embeds
out–of–sample pricing performance as an important element in a model
performance study based on model risk. The main result in terms of
fit performance is that the most complex models are not always the
best ones. It is important to quantify model risk like e.g. Cont (2004)
and to examine the sensitivity of exotic options in terms of moneyness,
maturity and market condition. To achieve this comparison the model
risk measure of Cont (2004) is extended and applied to various exotic
options.
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1 Introduction

A central object of the capital market research is the development and empirical
check-up of derivatives pricing models. Black/Scholes (1973) and Merton (1985)
achieved ground breaking findings in the seventies of the twentieth century with
their celebrated option pricing model (below: (constant volatility) CV model). In
empirical examinations, however, it turned out that the ”stylised facts”a observed
at the market could not be represented well. In order to correspond better to
the market facts, the necessity originated to relax some of the very restrictive as-
sumptions of the CV model. On that occasion the starting point was to model a
not–constant volatility and jumps in the underlying instrument. Numerous new
models were created by the combination of both approaches.
The large number of alternative pricing models makes it difficult for option writers
and buyers to choose an adequate model. If an investor selects the ”wrong” model
he could sustain a loss that arises exclusively from his model choice. Since this
model risk can be found in each model, it should be conscious for the investor.

aamong other things: volatility smile, heavy tails
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The market determines the prices of standard options traded on a stock exchange.
So in this case the model risk is more or less irrelevant. However, it is especially
important for the pricing of ”over–the–counter” (below: OTC) exotic options since
these don’t have any market prices.
In order to examine the model risk in this paper, ten different option pricing mod-
els are calibrated at observed market prices by the minimisation of the quadratic
distance from market price to model price. The data record for the empirical study
contains market prices on the DAX, the German stock index, from the years 2002
to 2005.
After the calibration, exotic options are calculated using the optimal parameters.
The resultant prices are strongly different despite calibration. If the investor de-
cides in favour of one of these prices, he takes automatically model risk. Since it is
known that model risk exists, it is important to know which model has good qual-
ities in several dimensions like in–sample fitting and out–of–sample performance.
In order to minimise the model risk the investor should rely on the best model in
the mentioned categories. In this paper, a multidimensional comparison of option
pricing models is performed.
It is obvious that each exotic option has a different model risk and that model risk
could be larger in bullish or bearish markets. So one objective of this paper is to
study how sensitive a certain exotic option is to model risk.
The contributions of my paper to the current literature are: first, a very general
specification of stochastic volatility models. Second, I propose three new stochastic
volatility models using the OU–process that are very successful in the empirically
tests and have lower pricing errors than their competitors using CIR–processes.
Thirdly, comprehensive in– and out–of–sample performance tests are provided. Fi-
nally, the model risk, measured by a new model risk measure, of different exotic
options is studied.
The remainder of the paper is structured as follows. In Section 2 the option pricing
models used in this study are introduced and the new expansions of the models
are developed. Section 3 evaluates the in–sample and out–of–sample fits to the
market data, while Section 4 reports the pricing of the exotic options. In Section
5 the model risk is studied on the basis of a new model risk measure. Section 6
summarises and concludes.

2 Stochastic volatility models

2.1 General model specification

The option pricing models used in this paper belongs to an affine jump diffusion
family. The following stochastic differential equation (1) describes a very general
class of this family. All later relevant models are special cases of this stochastic
differential equation under the risk–neutral probability measure Q:

dSt = (r − λSµ̄)Stdt + V p
t StdW

(S)
t + JSStdN

(S)
t

dVt = κ(θ − Vt)dt + βV 1−p
t dW

(V )
t + JV dN

(V )
t(1)

dW (S)dW (V ) = ρdt.
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Let St denote the price process for the non–dividend paying underlying. Its in-
stantaneous volatility Vt is given by a mean–reverting process with κ as the rate of
mean reversion, θ as the long term mean and β as the volatility of the process.
Mean–reverting means that if the current level is above the long term mean θ, the
process will tent towards θ. On the other hand if the process is below the level θ,
the process will drift up to θ.
The two processes, W (S) and W (V ) are standard Brownian motions with correlation
coefficient ρ. In equation (1) the underlying price process is modelled as a diffusion

with an added Poisson jump component N
(S)
t with intensity λS and (1 + JS) ∼

log–normal(µS , δS).
Beside the jumps in the underlying also jumps in the volatility are taken into

account in (1). The process N
(V )
t is also a Poisson jump process with intensity

λV . The size of the jumps is exponentially distributed with parameter µV : JV ∼
Exp(µV ). Despite jumps in volatility the mean–reverting quality remains valid: if
the process jumps away from the long term mean, the path will decline again to
the mean.
Jumps in volatility are a useful property since the volatility escalate after a down-
wards jump in the underlying. Without the possibility to jump the volatility path
lasts longer to reach the new level. Furthermore it is observed that without jumps
the variance parameter β takes unrealistically high values.
It is assumed that a complete probability space (Ω,F , P) with a filtration (F)0≤t≤∞

exits. Furthermore it is necessary to know that an equivalent risk–neutral measure
Q exits to the probability measure P. More technical details to the existence of
such a measure can be found in Hull (2000). To ensure that the equation (1) is
in fact under the risk–neutral measure for each model, the parameter µ̄ must be
chosen correctly. With p = 1

2 in equation (1) the framework of Duffie et al. (2000)
is chosen. With p = 1 the framework of Zhu (2000) is selected. The respective
properties of both frameworks are described in the following sections.

2.2 Framework of Duffie, Pan and Singleton (2000)

Duffie et al. (2000) introduced two affine ”double jump” models. Both models
have in common that the variance is modelled by a square–root diffusion process:

dVt = κ(θ − Vt)dt + β
√

VtdW
(V )
t + JV dN

(V )
t . (2)

The similar process without jumps

dVt = κ(θ − Vt)dt + β
√

VtdWt (3)

was proposed for stochastic interest rates by Cox et al. (1985) (below: CIR). Feller
(1951) showed that the variance Vt is always non–negative and if

2κθ > β2 (4)

the process can never reach zero. Equation (4) is used as a constraint in the follow-
ing study to get reasonable parameters especially for the discretisation schemesb.
The first affine double jump model has independent jumps (below: IJ) in the un-
derlying and in the volatility. In the following this model is called ”SVJ-IJ-CIR”.

bsee e.g. Lord et al. (2006)
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Table 1 Option pricing models with CIR volatility process: the number of the parame-
ters, the characteristics and the authors who published the model first

# parameters characteristics authors

SVJ-IJ-CIR 10 N (S) (λS) and N (V ) (λV ) independent Duffie et al. (2000)
µV , µS , δS , CIR (V0, κ, θ, β), ρ

SVJ-CJ-CIR 10 N (V ) = N (S), corr. jumps with ρV Duffie et al. (2000)
λV , µV , µS , δS , CIR, ρ

SVJ-CIR 8 N (V ) = 0, λV = 0 Bates (1996)
λS , µS , δS , CIR ρ

SV-CIR 5 N (V ) = N (S) = 0 Heston (1993)
CIR, ρ

CVJ 4 constant volatility Vt ≡ V Merton (1976)
λS , µS , δS

CV 1 constant volatility σ Black/Scholes (1973)

So there are two Poisson processes N
(S)
t and N

(V )
t with different intensities λS and

λV . Altogether the SV-IJ-CIR model has ten parameters: V0, κ, θ, β, ρ, λS , µS ,
δS , λV and µV .
The second model has correlated jumps (below: CJ): a jump in the volatility is
always followed by a jump in the underlying. The underlying’s jump size is corre-
lated to the jump size in the volatility with the correlation coefficient ρV that is
normally negative. In analogy this model is called ”SVJ-CJ-CIR” and has also ten
parameters: V0, κ, θ, β, ρ, λS , µS , δS , ρV and µV .
Four popular option pricing models can be deduced from Duffie et al’s framework.
Let λV = 0 then the variance process in equation (2) reduces to the CIR process
in (3). This model invented by Bates (1996) has still jumps in the underlying and
therefore eight parameters. In this paper the Bates’ model is labeled as ”SVJ-CIR”.
With λS = λV = 0 all jump components are deleted. The resultant model was in-
troduced by Heston (1993). It has five parameters (V0, κ, θ, β, ρ) and is called
”SV-CIR” model.
Merton (1976) introduced a option pricing model with constant volatility Vt ≡ σ
and jumps in the underlying. The so called ”CVJ” model has four parameters: λS ,
µS , δS , σ. The last model with only one parameter σ is the well–known Black–
Scholes model ”CV”. A summary of the six models can be found in Table 1.

2.3 Framework of Schoebel and Zhu (1999)

Schoebel/Zhu (1999) model stochastic volatility as an Ornstein–Uhlenbeck pro-
cess (Ornstein/Uhlenbeck (1930)) (below: OU)

dVt = κ(θ − Vt)dt + βdW
(V )
t . (5)

Since p = 1 in equation (1) the volatility instead of the variance is modelled by
equation (5). To describe the stochastic volatility using an OU process occurs less
frequently in the literature than using a CIR process. This has a main reason: The
OU process may become negative. On the first sight that is a problem, in particular
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for interest rates. As Vasicek (1977) proposed an interest rates model with an OU
process, the negative values were the big drawback. But in order to model volatility
it is important to see volatility as an additional parameter with its own co–domain.
To interpret volatility as standard deviation is only correct in the Black–Scholes’
world. Anyway the variance as squared volatility is positive in any case.
The advantages of the OU process are clearly obvious. First of all the associated
variance process is a mean–reverting process, tooc. For the CIR process the volatil-
ity process is given by

dVt = −γVtdt + βdWt. (6)

Applying the Itô formula to equation (6) yields the familiar variance y(t) = V 2
t

with γ = κh

2 , β = βh

2 , θh = β2

κh

and

dy(t) = κh(θh − y(t))dt + βh

√

y(t)dWt. (7)

Equation (6) is an OU process with θ = 0. So it is not a mean–reverting process.
Secondly, under the risk–neutral measure the OU process is normal distributed and
explicit solvable. Finally, with regard to discretise and simulate the process it has
an exact time–discrete scheme. All these points are not the case for the CIR pro-
cess.
In order to use these good properties the model of Schoebel and Zhu is added to
the comparison. Specified as ”SV-OU” with the five parameters V0, κ, θ, β and ρ
it is a direct competitor to the SV-CIR model.
In addition to the original SV-OU model I have combined the OU volatility with
jumps in the underlying process explicitly. Schoebel/Zhu (1999) mentioned the
model already in this paper as a part of a modular system. However, an explicit
examination and empirical study of the model were still missing. The model is called
”SVJ-OU” and has eight parameter: the five volatility parameters mentioned above
and the three jump–parameters λS , µS and δS . Consequently it competes with the
SVJ-CIR model.
A complex model with more parameters seems preferable, because it should de-
scribe the market better. But in general complex models are more sophisticated
to implement and more difficult to estimate. For these reasons it could be an ad-
vantage to use a model with few parameters and good performance. A method to
reduce one parameter in the SV-OU models offers equation (7), because the param-
eters are over–determined. The long term mean θ could be set to zero in the SV-OU
model, but in the SV-CIR it remains non–zero. Taking advantage of this relation I
have specified a full mean–reverting model, ”SV4” with only four parameters (V0,
κ, β, ρ) left.
Finally I have combined this approach with jumps in the underlying. This ends up
in a new jump–diffusion model ”SVJ7” with seven parameters: V0, κ, β, ρ, λS , µS

and δS .
All four models are summarised in Table 2. Altogether I have come up with four
models that were never or only rarely examined in the literature so far. In the next
section I provide such a comparison.

csee Schoebel/Zhu (1999)
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Table 2 Option pricing models with OU volatility process: the number of the parame-
ters, the characteristics and the authors who published the model first

# parameters characteristics authors

SV-OU 5 OU (V0, κ, θ, β), ρ Schoebel/Zhu (1999)
SVJ-OU 8 SV-OU with jumps in the underlying Zhu (2000) (modular)

λS , µS , δS , OU, ρ
SV4 4 SV-OU with θ = 0

OUres (V0, κ, β), ρ

SVJ7 7 SV4 with jumps in the underlying
λS , µS , δS , OUres, ρ

3 In–sample and out–of–sample performance

3.1 Pricing and calibration

The purpose of this section is to give a composition of the in–sample and out–of–
sample performance of option pricing models described in Section 2. In this study
the calibration method to obtain the model parameters is to imply the parameter
from observed option prices. Option prices are suitable estimators for the models,
because option prices reflect the beliefs in future trends.
On each trading day the model is recalibrated using the cross–sectional option price
data. A daily recalibration is consistent with parameter estimation in practice. So
the parameters are non–constant over time and time series for any parameter are
the result. Calibration means in detail to solve the following minimisation problem

Θ∗ = arg min
Θ

k
∑

j=1

s(k)
∑

i=1

(

V market(Kj , Ti(k)) − V model(Kj , Ti(k))
)2

. (8)

The model depends on the set of parameters Θ = (p1, p2, . . . , pn) that were intro-
duced in section 2. The observed market price of plain vanilla options is given by
V market and the corresponding model price is written by V model. In order to find
an optimal Θ each trading day all observed option prices with k strike levels Kj

and s(k) maturity times Ti(k) are used that day.
In equation (8) the objective function is to minimise the sum of squared errors. It
should be noticed that different objective functions result in a dissimilar parameter
Θ and in different in–sample fit performanced. I have chosen the above function
(8) because this one is widely spread in the literature.
The optimisation problem (8) is hard to solve, because the objective function is
non-linear and there are many local minima that should not be chosen. To over-
come these problems I have done a global simulated annealing minimisatione first
followed by a local quasi Newton methodf. Several tests with different starting
values maintain the results in this section. A showcase how the calibration works
is given in Figure 1.

[Figure 1 here]

dsee e.g. Detlefsen/Haerdle (2006)
esee e.g. Cerny (1985)
fsee e.g. Broyden (1969)
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Beside an accurate optimisation algorithm a fast method to calculate the risk–
neutral price Vt for a European plain vanilla call with terminal payoff VT = max (ST − K, 0)
as

Vt = EQ
(

e−r(T−t)VT

)

(9)

is needed. To evaluate the expectation in equation (9) Carr/Madan (1998) used
the characteristic function

φT (u) = EQ
(

ei·u·log ST

)

. (10)

and Fast Fourier Transformation. So closed form solutions for option prices are
obtained via Fourier inversion. In this paper the characteristic functions are known
in closed form for each relevant model.

3.2 Data description

The German Stock Index ”DAX30” is chosen as underlying in my empirical
work. The DAX30 is composed of thirty most important blue chips in Germany.
To consider index options has three main advantages. First, an index acts better
as an indicator for the economy than an individual stock option does. Secondly,
index options are traded liquidly in large numbers. Finally, DAX30 index options
are European–style contracts and don’t pay any dividends.
The dataset contains daily closing prices of the DAX30 and the put and call closing
prices of the corresponding plain vanilla options traded on the EUREX from Jan-
uary 2002 to September 2005g. Altogether the data period covers 956 trading days.
Due to the put–call parity only the call prices are used to calibrate the models.
Pricing errors based on the put prices are similar in their explanatory power and
so skipped in this paper.
From the original dataset some options with infrequently trades and liquidity–
related bias are excluded. These are options with a price below one Euro or with
less than ten or more than 510 trading days to maturity. The moneyness m of
an option is here defined as m = K/S0 with current underlying S0 and strike K.
Options to deep in–the–money with moneyness m < 0.75 or to deep out–of–money
with m > 1.35 are erased as well. Finally, only options are selected that remain
within the arbitrage bounds and fulfil the put–call–parity

V Put
t = V Call

t + K exp(−r(T − t)) − St. (11)

After the screening the dataset contains 158,755 options with a mean of 166 prices
per trading day.
As a proxy for the risk free interest rate the six–month EURIBOR is selected. The
time series for the DAX30 and the EURIBOR are plotted in Figure 2.

[Figure 2 here]

gData origin: Karlsruher Kapitalmarktdatenbank, University of Karlsruhe, Germany
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Table 3 The mean value of β in different trend periods

overall period bearish market bullish market trendless
Trading days 1 to 956 100 to 200 300 to 400 600 to 700

SV-CIR 0.47 0.72 0.58 0.43
SVJ-CIR 0.35 0.65 0.44 0.29

SVJ-IJ-CIR 0.31 0.61 0.37 0.26
SVJ-CJ-CIR 0.32 0.58 0.36 0.26

3.3 Estimated parameters

As described in Section 3.1 the model parameters for each model are estimated
using equation (8). The ten models have altogether 63 different parameters. So
the calibration yields to 63 time series. It is impossible and not needed anyway to
show each time series in this paper. However, some special parameters and facts
are reported in the following.
In each model the correlation ρ of the underlying and the volatility is always neg-
ative. This is consistent with the results in the literature. A down movement in
the underlying goes along with an up movement in the volatility and the other way
round.
Eraker et al. (2003) argued that the estimated volatility β of the volatility is too
high to be in the line with time series estimates of the volatility. But with the
addition of jumps in the volatility β can be reduced to a matching level. In Ta-
ble 3 the mean values of the parameter β in different models and market periods
is presented. The β in the SV-CIR model is actually the highest value. Adding
jumps reduces β by a third in the SVJ-IJ-CIR and SVJ-CJ-CIR model. Thus my
findings are in line with Eraker’s results. But the same effect can be generated by
adding jumps only to the underlying and not to the volatility process. The β in
the SVJ-CIR model is also reduced by 25 percent while it has two parameters less
than SVJ-IJ-CIR and SVJ-CJ-CIR.
Comparing parameters it is noticeable that the spot volatility V0 stays nearly in-
variant under the different stochastic volatility models. Figure 3 shows the time
series of V0.

[Figure 3 here]

Alexander/Nogueira (2005) have explained this feature for ”scale–invariant” volatil-
ity models. It can be shown that all stochastic volatility models in this paper are
scale–invariant. The invariant spot volatility offers a possibility to reduce the es-
timating effort: after estimating the spot volatility in a scale–invariant model, for
example in SV-CIR the parameter V SV-CIR

0 is applied as a constant in a different
scale–invariant model, for example in SV4. The number of parameters is reduced by
one, for example a new model SV3 is created. The performance of SV3 is discussed
at the end of the next section.
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Table 4 Mean values of the in–sample pricing errors of the overall period

# parameters RMSE APE[%] AAE ARPE[%]

CV 1 27.2 6.4 21.8 33.4
CVJ 4 14.3 3.5 11.6 12.4

SV-CIR 5 5.0 1.1 3.9 7.3
SVJ-CIR 8 3.6 0.8 2.8 5.7

SVJ-CJ-CIR 10 3.4 0.8 2.7 4.5
SVJ-IJ-CIR 10 3.5 0.8 2.6 5.1

SV-OU 5 3.9 0.9 3.0 4.6
SVJ-OU 8 3.2 0.7 2.5 4.9

SV4 4 4.4 1.0 3.4 5.1
SVJ7 7 3.5 0.8 2.7 5.5

3.4 In–sample performance

The objective in the remainder of this section is to analyse the in– and out–of–
sample pricing errors that are calculated after each daily calibration: ”Root Mean
Square Error” (RMSE), ”Average Absolute Error” (AAE), ”Average Percentage
Error” (APE) and ”Average Relative Percentage Error” (ARPE) with

RMSE =

√

√

√

√

∑

options

(market price − model price)
2

number of options
,

AAE =
∑

options

|market price − modelprice|

number of options
,

APE =
1

average price
AAE,

ARPE =
1

number of options

∑

options

|market price − model price|

market price
.(12)

The time series of the pricing error RMSE is given in Figure 4.

[Figure 4 here]

The plot contains the RMSE of the ten relevant option pricing models, but on the
first sight there are only three different lines to see. The top line belongs to the
CV model, the Black–Scholes benchmark. Under the CV model the pricing error
line produced by the CVJ jump–diffusion model is located. The RMSE of CVJ is
very close to the RMSE of CV in high volatile periodsh of the data sample. In less
volatile phases the CVJ’s pricing errors are close to the stochastic volatility models
that present themselves as one line in Figure 4.
The mean values of the pricing errors are listed in Table 4. Summing up the
CV model has always the worst in–sample pricing performance. The pure jump–
diffusion CVJ model fails especially in high volatile periods of the market. Models
that include stochastic volatility match always the market prices very well. So the

hIn comparison to Figure 2 the high volatile period is around trading day 100 to 300.
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Table 5 Performance of SV3

Trading days 1 to 100

RMSE ARPE[%]
CV 27.8 20.4

SV4 4.5 3.72

SV3 V SV3
0 = V SV-CIR

0 4.7 3.73

SV3 V SV3
0 = σCV 6.3 5.1

level of their pricing errors is independent of the market development. Stochastic
volatility is able to generate down movements as well as up movements in the
underlying. Thus this component is essential in a reliable option pricing model.
Adding jumps in the underlying reduces in the OU– and in the CIR–models the
pricing errors. Within the CIR–models SVJ-IJ-CIR and SVJ-CJ-CIR that model
also jumps in volatility have the lowest pricing errors. That is what I expected,
because SVJ-IJ-CIR and SVJ-CJ-CIR have the largest number of parameters to fit
the market. But the improvement of RMSE is less than six percent. In comparison
with the additional costs of two new parameter the improvement is not convincing.
In spite of the ARPE of SVJ-IJ-CIR that is more than 21 percent lower than the
ARPE of SVJ-CIR.
Looking at the pricing errors of the four OU–models the six CIR–models pale in
comparison. SV-OU is the direct competitor to SV-CIR, but the RMSE of SV-OU
is around 20 percent less than the RMSE of SV-CIR. The RMSE of SVJ-OU is also
around ten percent lower than the RMSE of SVJ-CIR. The SVJ-OU model has the
lowest errors in any event except for ARPE and has so the best overall in–sample
performance. I conclude that the models using an OU–process to model volatility
need less parameters to reach a certain fitting–level. The combination of jumps in
the underlying and OU volatility is recommended, because it has a good trade–off
of number of parameters and performance.
In Section 3.3 the SV3 model was introduced. The performance of this model over
a sample period of the first 100 trading days is listed in Table 5. Replacing the
parameter V0 in SV4 with V SV-CIR

0 of SV-CIR leads to nearly the same pricing
error. The RMSE of SV3 is only around three percent worse than the RMSE of
SV4. A real advantage in terms of computing time and complexity is to replace the
parameter V0 with the easy to determine parameter σCV of the CV model. The
RMSE of this version of the SV3 model is also shown in Table 5. In comparison
with the performance of the original CV model it seems that the SV3 model can
handle the parameter σ much better.

3.5 Minimised probabilities for negative values in the OU volatility

In Section 2.3 I have rebutted that the OU volatility is discarded due to negative
values in the volatility. Although it is very useful to know how many times a
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Table 6 Mean values of RMSE and the corresponding probability of the trading days
100 to 200

RMSE Probability [%]

SV-OU 4.87 18
SV-OU, g = 103 5.70 12
SV-OU, g = 104 7.35 3
SV-OU, f = 5 7.94 1

SV-CIR 5.72 0

SVJ-OU 4.14 13
SVJ-OU, g = 103 4.63 6
SVJ-OU, g = 104 5.79 2
SVJ-OU, f = 5 6.31 1

SVJ-CIR 5.25 0

negative value occurs. The probability of a negative value is given byi

P (Vt < 0) = φ

(

−
E[Vt]

√

Var[Vt]

)

, (13)

where expectation and variance are written by

E[Vt] = e−κtV0 + (1 − e−κt)θ, Var[Vt] =
β2

2κ

(

1 − e−2κt
)

. (14)

In order to favour combinations of parameters that have a small probability to
become negative over uncontrolled combinations I have joined the objective function
of the minimisation problem (8) with a penalty function. Two new constrained
objective functions are

G(X) = F (X) + g · P (Vt < 0|X),

G(X) = F (X) + f · F (X) · P (Vt < 0|X),(15)

with parameter vector X, unconstrained objective function F and weighting factors
g and f . The weighting factors control how much the penalty function dominates
over the original calibration problem. The Figure 5 shows that the probability of
negative values goes down close to zero.

[Figure 5 here]

But constraints in a minimisation problem always increase the objective function
value. So the pricing errors arise using the objective function (15). Comparing the
RMSE in Table 6 it is possible to decrease the probability and achieve lower pricing
errors than the reference model SV-CIR simultaneously. Summing up the applica-
tion of constrained objective functions (15) offers a tool to control the probability
for negative values if the user is unfamiliar with negative values in volatility.

isee e.g. Schoebel/Zhu (1999)
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Table 7 Mean values of the out–of–sample pricing errors of the overall period

# parameters RMSEOOS AAEOOS ARPEOOS[%]

CV 1 28.61 22.65 34.62
CVJ 4 17.27 13.80 13.16

SV-CIR 5 10.79 9.24 9.97
SVJ-CIR 8 10.27 8.81 8.90

SVJ-IJ-CIR 10 10.23 8.79 8.41
SVJ-CJ-CIR 10 10.21 8.78 8.38

SV-OU 5 10.40 8.89 7.64
SVJ-OU 8 10.20 8.79 8.32

SV3, V SV3
0 = σCV 3 14.75 12.14 10.75
SV4 4 10.54 8.97 7.80
SVJ7 7 10.22 8.79 8.32

3.6 Out–of–sample performance

In Section 3.4 it was shown that the in–sample pricing errors of daily calibra-
tion decrease if the number of parameters are increased. But one may raise the
question whether the added parameters explain more about the market structure
or whether they only describe the daily noise. An out–of–sample cross–sectional
study can answer this question because in out–of–sample pricing overfitting has a
bad influence on the performance of a model.
The out–of–sample study is implemented as follows: the estimated parameters of
yesterday, day t− 1, are used to price options, that have an observable counterpart
in the market, today on day t, Pricing errors like in equation (12) are computed for
the difference between the model price and the market price. This is done for each
trading day for each model.
The mean values of the pricing errors are reported in Table 7. Comparing the errors
it seems that there exists for each error measure a lower bound the models converge
to. The range between the lowest and the highest error is much smaller than the
range of the in–sample errors.
The out–of–sample RMSE of SVJ-IJ-CIR and SVJ-CJ-CIR is less than one percent
minor than the RMSE of SVJ-CIR. This indicates overfitting in SVJ-IJ-CIR and
SVJ-CJ-CIR.

4 Exotic options and OTC pricing

The objective of this section is to compute prices for several exotic options. The
parameters that are used for pricing are obtained by the calibration described in
Section 3. The exotic options are Asian options, Forward Start options, Lookback
and Barrier options. These options are all path–dependent. The call payoff of each
type of exotic option and some characteristics are summarised in this sectionj.
All types of Asian options have in common that their payoff contains a mean of the

jsee e.g. Glasserman (2003)
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prices of the underlying. For example with

ST =
1

N

N
∑

i=1

S(ti) (16)

where 0 = t0 < t1 < t2 < · · · < tN = T , the payoff of a ”fixed” and a ”floating”
Asian call are given by

Cfix
T = max

{

ST − K, 0
}

,

Cfloat
T = max

{

ST − ST , 0
}

.(17)

The strike of a Forward Start option is fixed in t0 as a percentage of the underlying
S1 in t1 > t0. The option premium has to be paid in t0 when the true value of the
strike is still unknown. The maturity is t2 > t1.
Lookback options have ”fixed” or ”floating” strikes like Asian options, but instead
of the mean the maximum Smax or the minimum Smin of the underlying asset price
during the duration is considered:

Cfix
T = max {Smax − K, 0} ,

Cfloat
T = max {ST − Smin, 0} .(18)

In Figure 6 a fixed Lookback call option with moneyness K/S0 = 0.9 and with
maturity T = 0.5 is priced by different option pricing models, for examplek.

[Figure 6 here]

The payoff of a Barrier option is the same as the payoff of a plain vanilla option
if a prespecified event occurs. If this event does not occur the value of the Barrier
option is zero. A ”down–and–out” (below: DOB) call is worthless if the underlying
drops below a certain barrier during duration. A ”up–and–in” call is worthless
before the underlying cross the barrier. In the same way ”down–and–in” and ”up–
and–out” (below: UOB) calls are defined. With barrier B, maturity T and strike
K the payoff of an ”up–and–out” call is given by

CUOB
T = ~1

{

τUp
B > T

}

max {ST − K, 0} , (19)

where
τUp
B = inf{ti : Sti

< B},

0 = t0 < t1 < · · · < tn = T , i = 0, . . . , n and ~1{.} as the indicator function.
The pricing of European plain vanilla options can be done in a fast and proper way
described in Section 3.1. However the pricing of path–dependent options is still a
challenging problem. A universal but slow method is Monte Carlo simulation. A
lot of facts about Monte Carlo methods in financial engineering are summarised by
Glasserman (2003). In order to generate sample path for the Monte Carlo simula-
tion time–discretisations of the underlying models are required. Lord et al. (2006)
classified biased simulation schemes for stochastic volatility models. In the follow-
ing study I have used the ”IJK” scheme that was also proposed by Kahl/Jaeckel
(2005).

kVarious option prices for Asian, Forward Start and Barrier options with different moneyness
levels and maturities are shown in Ender (2008).
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5 Model risk of OTC options

Among other payoff constructions the exotic options of Section 4 are OTC
contracts. For OTC options market prices are not available, because each price
is unique. Each investor has to decide which model and which price for the exotic
option he wants to use and so underwrites model risk.
To deal with derivatives involves a certain number of different risk types. A leading
risk is the market risk that includes the interest rate risk and the volatility risk.
These risk types have directly influence on option prices. Although credit risk
of listed derivatives is nearly eliminated because of securities, OTC options can
contain credit risk. Additional risk types are operational risk and liquidity risk.
All kinds of bugs and failures in the IT system are subsumed under operational
risk. Liquidity risk appears if a trader can not buy his optimal hedging portfolio
because of market frictions.
In addition to these risk types there is always model risk, if a financial model is
used because of simplified assumptions of the reality. In this study model risk is the
risk component that still remains in the model even if every part of option pricing
is done with preciseness as programming, hedging and valuation.
To manage a risk in addition to a qualitative description it is necessary to measure
the risk quantitatively. Cont (2004) derived a coherent risk measure for model risk.
He proposed to subtract the absolute lowest price π(X) for the exotic option X
from the absolute highest price π(X) in a set of option pricing models Q to get a
monetary quantity of model risk:

µQ(X) := π − π. (20)

However, the problem with the measure µQ(X) is that the absolute prices, especially
π and π, contain the fitting errors discussed in Section 3.4. To take the bias out
of the exotic option prices it is important to normalise the absolute prices. The
normalisation of the exotic option uses a price of an appropriate plain–vanilla option
with the same strike priced in each model. So the fluctuations because of the fitting
errors can be compensated and eliminated. An example of the difference between
the monetary price (see Figure 6) and the normalised price of a Lookback option
is given in Figure 7.

[Figure 7 here]

In order to use a model risk measure for a set of models a normalisation of the risk
measure in equation (20) should be done by the mean of the normalised prices of
all models. Subtracting now the lowest from the highest price results no longer in
a monetary quantity but in a percental ratio in terms of the average normalised
price. The model risk measure µQ I propose is an extension of the Cont (2004)
measure in equation (20) and is defined in equation (21):

µQ(X) :=
µQ(X)

1
m

∑m

k=1 Cnorm
k (X)

. (21)

The question to answer first is which exotic options is more vulnerable to model risk
than other exotic options. Due to normalisation this is possible with the model risk
measure (21). In Figure 8, 9 and in Figure 10 the model risk of Forward Start, fixed
Asian and fixed Lookback call options on each trading day from 2002 to September



Model Risk in Option Pricing 15

Table 8 The effect of an increasing maturity on the model risk depending on exotic
option types

Model risk effects Options
increasing maturity in–the–money at–the–money out–of–the–money

Forward Start ր ց ց

fixed Strike Asian ր ր ց
floating Strike Asian −→

fixed Strike Lookback ր ր ց

floating Strike Lookback −→

2005 are plotted. Two different maturity structures and three different moneyness
levels ki = Ki/S0 are shown.

[Figure 8 here]

[Figure 9 here]

[Figure 10 here]

Model risk of these option types, Forward Start, fixed Asian and fixed Lookback
options, increases if moneyness is risen. Model risk of long term options that are
out–of–the–money is less than the model risk of short term options. On the other
hand in each case model risk of long term options that are in–the–money is higher
than the model risk of short term options. For options at–the–money the results are
different what is reported in Table 8. Forward Start, Asian and Lookback options
have a rising major model risk when the market is nearly trendless during the days
around 700 to 850 at the end of 2004 and the beginning of 2005.
Among moneyness and maturity model risk of Barrier options is also determined
by the level of the barrier. The farther the barrier is away from the spot, the less
is the model risk and the other way round. These effects and additional market
effects of DOB and UOB are shown in Figure 11.

[Figure 11 here]

6 Conclusion

The main findings of this paper are summarised in this section. The benchmark
CV model of Black and Scholes performs poorly in– and out–of–sample. However
alternative models including stochastic volatility perform much better.
To model volatility using an OU–process has advantages over the more in common
CIR–process. Negative values in volatility are manageable and they are not hin-
dering.
Adding jumps to the volatility process is in theory a very good tool to explain mar-
ket behaviour. But only little improvements to the in–sample fitting and hardly any
improvements to the out–of–sample performance are not convincing empirically.
Asian options have a lower model risk than Forward Start, Lookback and Barrier
options.
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Model risk measured by an new extension of the model risk measure of Cont (2004)
increases with the moneyness. The maturity effects depend on whether the option
is in–, at– or out–of–the–money. Model risk could become a very important risk
factor for out–of–the–money options in a trendless, slightly bullish market. In this
case a very precisely pricing is needed to avoid model risk. The examples of OTC
options show how important it is to know how sensitive a certain exotic option is
to model risk.
Summing up there are urgent needs of quantitative models for option pricing and
hedging strategies. The development of more precisely risk measures for model risk
is a required issue of further research.
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Figure 1 Calibration example for showcase trading day: ”o” market prices, ”+”
corresponding model prices determined by calibration
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Figure 2 DAX30 and EURIBOR interest rates, 01. January 2002 to 30. September
2005
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Figure 4 RMSE time series of the ten option pricing models, 01. January 2002 to 30.
September 2005
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Figure 6 Absolute prices of a fixed Lookback call option with k = 0.9 with maturity
T = 0.5, 01. January 2002 to 30. September 2005
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Figure 7 Normalised prices of a fixed Lookback call option with k = 0.9 with maturity
T = 0.5, 01. January 2002 to 30. September 2005
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Figure 8 Model risk in a percental ratio in terms of the average normalised price of
Forward Start call options with k = 0.9, k = 1, k = 1.1 with maturity T1 = 0.5, T2 = 1
and T1 = 0.75, T2 = 1.5, 01. January 2002 to 30. September 2005
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Figure 9 Model risk in a percental ratio in terms of the average normalised price of
fixed Strike Asian call options with k = 0.9, k = 1, k = 1.1 with maturity T = 0.5 and
T = 1, 01. January 2002 to 30. September 2005
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Figure 10 Model risk in a percental ratio in terms of the average normalised price of
fixed Strike Lookback call options with k = 0.9, k = 1, k = 1.1 with maturity T = 0.5
and T = 1, 01. January 2002 to 30. September 2005
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Figure 11 Model risk in a percental ratio in terms of the average normalised price
(a) DOB call options with barriers b = 0.8, b = 0.9, b = 0.95 and (b) UOB call options
with barriers b = 1.05, b = 1.1, b = 1.2 with maturity T = 0.5, 01. January 2002 to 30.
September 2005


