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Abstract

Market volatility reflects traders’ actions, while their actions de-
pend on perceptions of risk. Equilibrium volatility is the fixed point
of the mapping that takes perceived risk to actual risk. We solve

for equilibrium stochastic volatility in a dynamic setting where risk-

neutral traders operate under Value-at-Risk constraints. We derive a

closed form solution for the stochastic volatility function in the bench-

mark model with a single risky asset. Even though the underlying

fundamental risks remain constant, the resulting dynamics generate

stochastic volatility through traders’ reactions in equilibrium. Volatili-

ties, expected returns and Sharpe ratios are shown to be countercycli-

cal. If the purpose of financial regulation is to shield the financial
system from collapse, then basing regulation on individually optimal

risk management may not be enough.

∗We are grateful to Rui Albuquerque, Markus Brunnermeier, Hui Chen, Antonio Mele,
Anna Pavlova, Dimitri Vayanos, Ivo Welch, Wei Xiong and participants at the Adam

Smith asset pricing conference and MIT Sloan workshop for comments on an earlier draft.
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1 Introduction

Financial crises are often accompanied by large price changes, but large

price changes by themselves do not constitute a crisis. Public announce-

ments of important macroeconomic statistics, such as the U.S. employment

report, are sometimes marked by large, discrete price changes at the time

of announcement. However, such price changes are arguably the signs of

a smoothly functioning market that is able to incorporate new information

quickly. The market typically finds composure quite rapidly after such dis-

crete price changes.

In contrast, the distinguishing feature of crisis episodes is that they seem

to gather momentum from the endogenous responses of the market partici-

pants themselves. Rather like a tropical storm over a warm sea, they appear

to gather more energy as they develop. As financial conditions worsen, the

willingness of market participants to bear risk seemingly evaporates. They

curtail their exposures and generally attempt to take on a more prudent,

conservative stance. However, the shedding of exposures results in negative

spillovers on other market participants from the sale of assets or withdrawal

of credit. As prices fall or measured risks rise or previous correlations break

down (or some combination of the three), market participants respond by

further cutting exposures. The global financial crisis of 2007−8 has served
as a live laboratory for many such distress episodes.

The main theme of our paper is the endogeneity of risk. The risks

impacting financial markets are attributable (at least in part) to the actions

of market participants. In turn, market participants’ actions depend on

perceived risk. In equilibrium, risk should be understood as the fixed point

of the mapping that maps perceived risk to actual risk. In what follows, we

solve a dynamic asset pricing model where equilibrium risk is derived as such

a fixed point. Put differently, our task in this paper is to solve a stochastic

volatility model, where the stochastic volatility function is solved as a fixed

point of the mapping that takes conjectured volatility functions to realized

volatility functions. The equilibrium stochastic volatility is the “endogenous

risk” referred to in the title of this paper.

One purpose of developing a model of endogenous risk is so that we

can study the propagation of financial booms and distress, and to identify

and quantify the amplification channels through which such effects operate.

Among other things, we can make precise the notion that market participants

appear to become “more risk-averse” in response to deteriorating market out-
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comes. For economists, preferences and beliefs would normally be considered

as being independent of one another.

However, we can distinguish “risk appetite” which motivates traders’ ac-

tions, from “risk aversion”, which is a preference parameter hard-wired into

agents’ characteristics. A trader’s risk appetite may change even if his pref-

erences are unchanged. The reason is that risk taking may be curtailed by

the constraints that traders operate under, such as those based on Value-

at-Risk (VaR). In our dynamic asset pricing model, all active traders are

risk-neutral, but they operate under Value-at-Risk (VaR) constraints. The

Lagrange multiplier associated with the VaR constraint is the key quantity

in our model. It plays two important roles. First, it affects the portfolio

choice of the traders. Second, we show that the Lagrange multiplier is re-

lated to a generalized Sharpe ratio for the set of risky assets traded in the

market as a whole, and hence depends on the forecast probability density

over future outcomes. Through the Lagrange multiplier, beliefs and risk ap-

petite are thus linked. To an outside observer, it would appear that market

participants’ preferences change with minute-by-minute changes in market

outcomes. Crucially, shocks may be amplified through the feedback effects

that operate from volatile outcomes to reduced capacity to bear risk. In this

sense, the distinction between “risk appetite” and “risk aversion” is more

than a semantic quibble. This distinction helps us understand how booms

and crises play out in the financial system.

In the benchmark case where there is a single risky asset, we are able to

solve the equilibrium stochastic volatility function in closed form. We do

this by deriving an ordinary differential equation for the diffusion term for

the price of the risky asset that must be satisfied by all fixed points of the

equilibrium mapping that takes perceived risk to actual risk. Fortunately,

this ordinary differential equation can be solved in closed form, giving us a

closed form solution for endogneous risk.

Although our intended contribution is primarily theoretical, our solution

also reveals several suggestive features that are consistent with empirical

properties of asset returns found in practice. For instance, even when the

stochastic shocks that hit the underlying fundamentals of the risky assets are

i.i.d., the resulting equilibrium dynamics exhibit time-varying and stochastic

volatility. Furthermore, option-implied volatilities, as well as volatilities of

volatilities, are shown to be countercyclical in our equilibrium solution, con-

sistent with the empirical evidence. Our model also generates countercyclical

and convex (forward looking, rational) risk premia and Sharpe ratios. In a
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more general version of our model with multiple risky assets, we show that

the increased risk aversion and higher volatilities coincides with increased

correlations in equilibrium, even though the underlying shocks are constant,

and independent across the risky assets.

By pointing to the endogenous nature of risk, we highlight the role played

by risk management rules used by active market participants which serve to

amplify aggregate fluctuations. Although it is a truism that ensuring the

soundness of each individual institution ensures the soundness of the financial

system, this proposition is vulnerable to the fallacy of composition. Actions

that an individual institution takes to enhance its soundness may undermine

the soundness of others. If the purpose of financial regulation is to shield the

financial system from collapse, it is not enough to base financial regulation

on the “best practice” of individually optimal risk management policies, as

is done under the current Basel II capital regulations.

While our model has suggestive features that are consistent with the

empirical evidence, we also recognize the limitations of our model in serving

as a framework that can be used directly for empirical work. The reason

is that our model has just one state variable (the total equity capital of

the active traders), and so cannot accommodate important features such as

history-dependence. For instance, we cannot accommodate the notion that a

long period of tranquil market conditions serve to accumulate vulnerabilities

in the financial system that are suddenly exposed when the financial cycle

turns (arguably, an important feature of the global financial crisis of 2007-

8). There is a rich seam of future research that awaits further work which

develops our model further in order to do justice to such empirical questions.

The outline of the paper is as follows. We begin with a review of the

related literature, and then move to the general statement of the problem.

We characterize the closed-form solution of our model for the single risky

asset case first. We derive an ordinary differential equation that character-

izes the market dynamics in this case, and examine the solution. We then

extend the analysis to the general multi-asset case where co-movements can

be explicitly studied. We begin with a (brief) literature review.

1.1 Related Literature

Crisis dynamics and liquidity issues were studied by Genotte and Leland

(1990), Genakoplos (1997) and Geanakoplos and Zame (2003) who provided

theoretical approaches based on competitive equilibrium analysis, and the
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informational role of prices in a rational expectations equilibrium. Shleifer

and Vishny’s (1997) observation that margin constraints limit the ability of

arbitrageurs to exploit price differences, as well as Holmstrom and Tirole’s

(1997) work on debt capacities brought ideas and tools from corporate finance

into the study of financial market fluctuations.

Building on these themes has been a spate of recent theoretical work.

Amplification through wealth effects was studied by Xiong (2001), Kyle and

Xiong (2001) who show that shocks to arbitrageur wealth can amplify volatil-

ity when the arbitrageurs react to price changes by rebalancing their port-

folios. Xiong (2001) is one of the few papers that examines the fixed point

of the equilibrium correspondence, and solves it numerically. He and Kr-

ishnamurthy (2007) have studied a dynamic asset pricing model with inter-

mediaries, where the intermediaries’ capital constraints enter into the asset

pricing problem as a determinant of portfolio capacity.

More closely related to our work are papers where endogenous balance

sheet constraints enter as an additional channel of contagion to the pure

wealth effect. Examples include Aiyagari and Gertler (1999), Basak and

Croitoru (2000), Gromb and Vayanos (2002), Brunnermeier (2008) and Brun-

nermeier and Pedersen (2007), Chabakauri (2008) and Rytchkov (2008). In

a multi-asset and multi-country centre-periphery extension, Pavlova et al

(2008) find that wealth effects across countries are strengthened further if the

center economy faces portfolio constraints, and the co-movement of equity

prices across countries increases in periods of binding portfolio constraints.

In these papers, margin constraints are time-varying and can serve to amplify

market fluctuations through reduced risk-bearing capacity, and therefore be-

have more like the risk-sensitive constraints we study below. Incorporating

balance sheet constraints on asset pricing problems have been examined by

Adrian, Etula and Shin (2009) for the foreign exchange market, Etula (2009)

for the commodities market and by Adrian, Moench and Shin (2009) for the

interaction between macro and balance sheet variables.

Our incremental contribution to the wealth effect literature is to incor-

porate risk-based constraints on active traders, and thereby endogenize risk

and risk appetite simultaneously. Relative to the other papers with time-

varying risk-bearing capacity, our incremental contribution is to solve for the

equilibrium stochastic volatility function as a fixed point of the mapping that

takes the conjectured stochastic volatility function to the realized stochastic

volatility function. Equilibrium stochastic volatility exhibit many features,

such as the countercyclical volatility as reflected in the “smirk” in option-
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implied volatility, as well as countercyclical correlation and Sharpe ratios.

More directly, this paper builds on our earlier work on Lagrange multi-

plier associated with Value-at-risk constraints (Danielsson, Shin and Zigrand

(2004), Danielsson and Zigrand (2008)). In this earlier work, we dealt with

backward-looking learning rather than solving for equilibrium in a rational

expectations model. Brunnermeier and Pedersen (2007) and Oehmke (2008)

have also emphasized the role of fluctuating Lagrange multipliers associated

with balance sheet constraints in determining risk-bearing capacity. There

is a small but growing empirical literature on risk appetite. Surveys can

be found in Deutsche Bundesbank (2005) and in BIS (2005, p. 108). See

also Coudert et al. (2008) who argue that risk tolerance indices (such as

the Global Risk Aversion Index (GRAI), the synthetic indicator LCVI con-

structed by J.P. Morgan, PCA etc) tend to predict stock market crises. Gai

and Vause (2005) provide an empirical method that can help distinguish risk

appetite from the related notions of risk aversion and the risk premium.

Risk amplification through Value-at-Risk constraints pose questions on

the limits of a regulatory system that relies solely on the “best practice” of

individually prudent risk management rules. The current Basel II capital

requirements rests on such a philosophy, but our paper is one in a long series

of recent papers mentioned above that shows the externalities that exist

between financial institutitons, and which point to the importance of taking

a system-wide perspective when considering rules for financial regulations

(see Danielsson et al. (2001), Morris and Shin (2008) and Brunnermeier et

al. (2009)).

Our wish-list of stylized facts of aggregate market fluctuations (such as

countercyclical volatility, risk premia and Sharpe ratios) has been established

for stocks, as summarized for instance in Campbell (2003). For instance,

Black (1976) and Schwert (1989) observed that wealth variability falls as

wealth rises, and Fama and French (1988) and Poterba and Summers (1988)

showed that expected returns fall as wealth rises. While intuitive, it is not

obvious that volatility and risk-premia move together. For instance, Abel

(1988) shows in a general equilibrium model that volatility and risk-premia

vary together only if the coefficient of relative risk aversion is less than one.

Black (1990) provides a setup with one risky security in which only a rela-

tive risk aversion parameter larger than one can lead both to countercyclical

volatility and risk premia, and at the same time lead to a solution of the eq-

uity premium puzzle and the consumption smoothing puzzle (via coefficients

of relative risk aversion of the felicity function and of the value function
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that differ). There is a large literature attempting to match better some

of these stylized facts using consumption-based models extended in various

directions, see for instance the habit formation models by Campbell and

Cochrane (1999) and by Chan and Kogan (2002), the behavioural model of

Barberis, Huang and Santos (2001) and the limited stock market participa-

tion model of Basak and Cuoco (1998). By contrast, our approach is based

less on the consumption side of passive consumers (“Main Street”) than on

the actions of risk controlled financial institutions (“Wall Street”).

2 The Model

Let time be indexed by  ∈ [0∞). There are   0 non-dividend paying

risky securities as well as a risk-free security. We will focus later on the case

where  = 1, but we state the problem for the general  risky asset case.

The price of the th risky asset at date  is denoted  
 . We will look for an

equilibrium in which the price processes for the risky assets follow:

 


 


= +  ;  = 1      (1)

where  is an  × 1 vector of independent Brownian motions, and where
the scalar  and the 1× vector  are as yet undetermined coefficients that
will be solved in equilibrium. The risk-free security has price  at date ,
which is given exogenously by 0 = 1 and  = , where  is constant.
Our model has two types of traders - the active traders (the financial

institutions, or “FIs”) and passive traders. The passive traders play the

role of supplying exogenous downward-sloping demand curves for the risky

assets, which form the backdrop for the activities of the active traders. As

mentioned above, this modeling strategy has been successfully adopted in the

recent literature, and we will also pursue the strategy here. In solving for

our equilibrium price dynamics, our focus is on the active traders. The price

dynamics in equilibrium will be solved as a rational expectations equilibrium

with respect to the active taders’ beliefs. We first state the portfolio choice

problem of the active traders.

2.1 Portfolio Choice Problem of Active Trader

The active traders (the FIs) are assumed to be short-horizon traders who

maximize the instantaneous expected returns on their portfolio. But each
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trader is subject to a risk constraint where his capital  is sufficiently large to
cover his Value-at-Risk (VaR). We use “capital” and “equity” interchange-

ably in what follows.

It is beyond the scope of our paper to provide microfoundations for the

VaR rule1, but it would not be an exaggeration to say that capital budget-

ing practices based on measured risks (such as VaR) have become pervasive

among institutions at the heart of the global financial system. Such prac-

tices have also been encouraged by the regulators, through the Basel II bank

capital rules. The short-horizon feature of our model is admittedly stark,

but can be seen as reflecting the same types of frictions that give rise to the

use of constaints such as VaR, and other commonly observed institutional

features among banks and other large financial institutions.

Let  be the number of units of the th risky securities held at date ,
and denote the dollar amount invested in risky security  by


 := 


 (2)

The budget constraint of the trader is

 =  −  ·  (3)

where  is the trader’s capital. The “self-financingness” condition governs
the evolution of capital in the usual way.

 =  ·  
 + 

=
£
 +>

 ( − )
¤
+>

  (4)

where > denotes the transpose of , and where  is the  × diffusion

matrix, row  of which is . In (4), we have abused notation slightly by

writing  = (     ) in order to reduce notational clutter. The context

should make it clear where  is the scalar or the vector.
From (4), the expected capital gain is

[] = [ +>
 ( − )] (5)

and the variance of the trader’s equity is

Var() = >
 

>
  (6)

1See Adrian and Shin (2008) for one possible microfoundation in a contacting model

with moral hazard.
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We assume (and later verify in equilibrium) that the variance-covariance

matrix of instantaneous returns is of full rank and denote it by

Σ := 
>
 (7)

The trader is risk-neutral, and maximizes the capital gain (5) subject

to his VaR constraint, where VaR is  times the forward-looking standard
deviation of returns on equity. The number  is just a normalizing constant,
and does not enter materially into the analysis. The equity  is the state
variable for the trader. Assuming that the trader is solvent (i.e.   0),

the maximization problem can be written as:

max


 +>
 ( − ) subject to 

q
>

 
>
  ≤  (8)

Once the dollar values {
}=1 of the risky assets are determined, the trader’s

residual bond holding is determined by the balance sheet identity:

 =  −
X




 (9)

The first-order condition for the optimal  is

 −  = (>
 Σ)

−12Σ (10)

where  is the Lagrange multiplier associated with the VaR constraint.

Hence,

 =
1

(>
 Σ)−12

Σ−1 ( − ) (11)

When  6= , the objective function is monotonic in  by risk-neutrality,

and the constraint must bind. Hence,

 = 
q
>

 Σ (12)

and therefore

 =

2

Σ−1 ( − ) (13)

Notice that the optimal portfolio is similar to the mean-variance optimal

portfolio allocation, where the Lagrange multiplier  appears in the denom-
inator, just like a risk-aversion coefficient. We thus have a foretaste of the
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main theme of the paper - namely, that the traders in our model are risk-

neutral, but they will behave like risk averse traders whose risk aversion

appears to shift in line with the Lagrange multiplier . Substituting into

(12) and rearranging we have

 =

p



(14)

where

 := ( − )>Σ−1 ( − ) ≥ 0 (15)

The Lagrange multiplier  for the VaR constraint is thus proportional
to the generalized Sharpe ratio

√
 for the risky assets in the economy. Al-

though traders are risk-neutral, the VaR constraint makes them act as if they

were risk-averse with a coefficient of relative risk-aversion of 2 = 
p
.

As  becomes small, the VaR constraint binds less and traders’ risk appetite
increases.

Notice that the Lagrange multiplier  does not depend directly on equity
. Intuitively, an additional unit of capital relaxes the VaR constraint by

a multiple  of standard deviation, leading to an increase in the expected
return equal to a multiple  of the generalized Sharpe ratio, i.e. the risk-
premium on the portfolio per unit of standard deviation. This should not

depend on  directly, and indeed we can verify this fact from (15).

Finally, we can solve for the risky asset holdings as

 =



p

Σ−1 ( − ) (16)

The optimal holding of risky assets is homogeneous of degree one in equity .
This simplifies our analysis greatly, and allows us to solve for a closed form

solution for the equilibrium. Also, the fact that the Lagrange multiplier

depends only on market-wide features and not on individual capital levels

simplifies our task of aggregation across traders and allows us to view demand

(16) without loss of generality as the aggregate demand by the FI sector with

aggregate capital of .

2.2 Closing the Model with Passive Traders

We close the model by introducing passive traders who supply exogenous,

downward-sloping demand curves for the risky asskets. The slope of the
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passive traders’ demand curves will determine the size of the price feedback

effect sketched above, and will be a parameter in our analysis. We will

assume that the passive traders in aggregate have the following vector-valued

exogenous demand schedule for the risky assets,  = (
1
      


 ) where

 = Σ−1

⎡⎢⎣ 1 (+ 1 − ln 1
 )

...


¡
+  − ln



¢
⎤⎥⎦ (17)

where  
 is the market price for risky security  and where  is a positive

demand shock to the demand of asset  (or a negative supply shock to security
) to be specified further. Each demand curve can simply be viewed as a

downward sloping demand hit by demand shocks, with  a scaling parameter
that determines the slope of the demand curve. The particular form adopted

for these exogenous demands is to aid tractability of the equilibrium pricing

function, as we will see shortly. The market-clearing condition  +  = 0
can be written as




p

( − ) +

⎡⎢⎣ 1 (+ 1 − ln 1 )
...


¡
+  − ln



¢
⎤⎥⎦ = 0 (18)

Equilibrium prices are therefore

 
 = exp

Ã



p

( − ) + + 

!
;  = 1      (19)

2.3 Solution Strategy

We proceed to solve for the rational expectations equilibrium (REE) of our

model. Our strategy in solving for an equilibrium is to begin with some

exogenous stochastic process that drives the passive traders’ demands for

the risky assets (the “seeds” of the model, so to speak), and then solve for

the endogenously generated stochastic process that governs the prices of the

risky assets.

In particular, we will look for an equilibrium in which the price processes

for the risky assets follow the processes:

 


 


= +  ;  = 1      (20)
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where  is an  × 1 vector of independent Brownian motions, and where
the scalar  and 1 ×  vector  are as yet undetermined coefficients that
will be solved in equilibrium. The “seeds” of uncertainty in the equilibrium

model are given by the demand shocks of the passive traders:

 =  (21)

where  is a 1× vector that governs which Brownian shocks will get im-

pounded into the demand shocks and therefore govern the correlation struc-

ture of the demand shocks. We assume that the stacked  × matrix  is
of full rank.

Our focus is on the way that the (endogenous) diffusion terms {} de-
pends on the (exogenous) shock terms {}, and how the exogenous noise
terms may be amplified in equilibrium via the risk constraints of the active

traders. Indeed, we will see that the relationship between the two sets of

diffusions generate a rich set of empirical predictions.

We will examine the general problem with risky assets in a later section,

but we first look at the case of a single risky asset. In this case, we can obtain

a closed form solution.

3 Equilibrium with Single Risky Asset

Consider the case with a single risky asset. We will look for an equilibrium

where the price of the risky asset follows the process:





= +  (22)

where  and  are, as yet, undetermined coefficients to be solved in equi-
librium, and  is a standard scalar Brownian motion. The “seeds” of

uncertainty in the model are given by the exogenous demand shocks to the

passive trader’s demands:

 =  (23)

where   0 is a known constant. For the single risky asset case, note that

 =
( − )2

2
(24)
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Substituting into (19), and confining our attention to regions where the

Sharpe ratio
−


is strictly positive, we can write the price of the risky

asset as

 = exp

µ
+  +




¶
(25)

From (22) we have, by hypothesis,

 ln =

µ
 −

1

2
2

¶
+  (26)

Meanwhile, taking the log of (25) and applying Itô’s Lemma gives

 ln = 

µ
+  +




¶
= +  +

1


()

= +  +
1


( +  + ) (27)

Now use Itô’s Lemma on ():

 =



 +

1

2

2

()2
()

2

=

(




∙
 +

( − )



¸
+
1

2

2

()2

µ



¶2)
+







 (28)

where (28) follows from

 = [ +( − )]+

=

∙
 +

( − )



¸
+



 (29)

and the fact that  =



due to the binding VaR constraint. Notice that

()
2 =

¡



¢2
. We thus obtain diffusion equations for  and for  itself.

Substituting back into (27) and regrouping all  terms into a new drift
term:

 ln = (drift term) +

∙
 +

1



µ



+ 







¶¸
 (30)
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We can solve for the equilibrium diffusion  by comparing coefficients
between (30) and (26). We have an equation for the equilibrium diffusion

given by:

() =  +
1



µ



+ 







¶
(31)

which can be written as the ordinary differential equation:

 2





= 2( − )−  (32)

It can be verified by differentiation that the generic solution to this ODE is

given by

() =
1



−2



"
− 2

Z ∞

−2


−




#
(33)

where  is an arbitrary constant of integration. We thus obtain a closed

form solution to the rational expectations equilibrium for the single risky

asset case.

Note the multiplicity of equilibria. There is one distinct rational expec-

tations equilibrium for each choice of . This is so even though the structure
of the REE is similar across the choice of the scaling factor . We return to
discuss the role of  later in our paper.
The equilibrium drift  (the expected instantaneous return on the risky

asset) can be solved analogously, and is given by

 =  +


2

½
2 −  + ( − )

∙
22 +

2


− 2
¸¾

(34)

We can see that  depends on the diffusion , so that when the expression
in the square brackets is positive,  is increasing in . Thus, even though
traders are risk-neutral, they are prevented by their VaR constraint from

fully exploiting all positive expected return opportunities. The larger is ,
the tighter is the risk constraint, and hence the higher is the expected return

. Note that the expression in the square brackets is positive when  is
small, which is consistent with the VaR constraint binding more tightly. The

information contained in the equilibrium drift  and its relationship with
the diffusion  can be summarized better in the expression for the Sharpe
ratio, which is:
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 − 


=

1

2

½
2 −  + ( − )

∙
22 +

2


− 2
¸¾

(35)

The countercyclical shape of the Sharpe Ratio follows directly from the shape

followed by the diffusion coefficient .

3.1 Properties of Equilibrium

We illustrate the properties of our model graphically. Figure 1 plots the

equilibrium diffusion  and the drift  as a function of the state variable .
The parameters chosen for this plot were  = 001,  = 1,  = 3,  = 02,
 = 1 and  = 10.

[Figures 1, 2 and 3 here]

Note that  is non-monotonic, with a peak when  is low.
2 We can un-

derstand this pattern in terms of the amplifying demand response discussed

earlier. In figure 3, we plot the portfolio of the trader as a function of ,
and note that as  increases, the trader takes an increasingly large position
in the risky security. When the holding of the bond  turns negative, the

interpretation is that the trader is leveraged, and is financing his long posi-

tion in the risky security with debt. Then, as discussed above, the demand

response of the trader to price changes amplifies initial price shocks. When

there is a positive shock to the price, equity increases at a faster rate than to-

tal assets, so that leverage falls, and the VaR constraint becomes slack. The

trader than loads up on the long position. In other words, a positive shock

to price leads to greater purchases of the security, putting further upward

pressure on the price.

What figure 1 reveals is that such a feedback effect is strongest for an

intermediate value of . This is so, since there are two countervailing

effects. If  is very small - close to zero, say - then there is very little
impact of the active trader’s purchase decision on the price of the security.

Therefore, both  and  are small. At the opposite extreme, if  is very
large, then the trader begins to act more and more like an unconstrained

trader. Since the trader is risk-neutral, the expected drift  is pushed down
to zero, and the volatility  declines.

2Also see Mele (2007) for a discussion of the stylized facts, and for a model generating

countercyclical statistics in a more standard framework.
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However, at an intermediate level of , the feedback effect is maximized,
where a positive price shock leads to greater purchases, which raises prices

further, which leads to greater purchases, and so on. This feedback effect

increases the equilibrium volatility . Due to the risk constraint, the risk-
neutral traders behave “as if” they were risk averse, and the equilibrium drift

 reflects this feature of the model. The expected return  rises with .
Indeed, as we have commented already, the Lagrange multiplier associated

with the risk constraint is the Sharpe ratio in this simple one asset context.

The Lagrangian is plotted in Figure 2. We see that the Sharpe ratio is also

single-peaked, rising and falling in roughly the same pattern with  and .

3.2 Interpretating Equilibrium Volatility

We can offer the following intuition for the exact form taken by our ordinary

differential equation (32), and for the multiplicity of the equilibrium. For

the purpose of illustration, let us set the parameters so that  =  = 1.

Then, the equilibrium price satisfies

ln = +  + ̃

where we denote by ̃ the active trader’s conjecture about price volatility.
From Itô’s Lemma,

 =  + ̃ × (diffusion of )| {z }
vol due to FI’s wealth-VaR effect

+ × (diffusion of ̃)| {z }
vol due to changing beliefs

=  + 

∙
̃ + 

̃



¸
At equilibrium,  = ̃, which gives us the key ordinary differential equation
(32).

Note the way that the active trader’s equity  affects the solution. When
 = 0, provided that the conjectured ̃ is well-defined, at an equilibrium we
have  = , the fundamental volatility. In this sense, the excess volatility
above the fundamental volatility, given by  −  is the endogenous risk
generated by the presence of active traders. It is the additional volatility

that is generated due to the presence of traders who react to outcomes, and

who in turn affect those outcomes themselves.

To see this, begin at the point where  = 0 and raise  to a small positive
number   0 under the assumption that the active traders conjecture that
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increased  leads to an increase in conjectured volatility ̃. Then, we must
have an increase in actual . Under the conjectured increase in ̃, we have

() =  + positive term

 (0)

In other words, if the traders held the belief that  increases initially with
 , then such beliefs would be confirmed in equilibrium.
The multiplicity of equilibrium associated with the arbitrary constant of

integration  can be understood in this context. The constant  is a measure
of the conjectured sensitivity between the state variable  and the diffusion
. If the active traders conjecture that  is large (so that the feedback
effects are assumed to be large), then they will act in such a way as to bring

about the large feedback effects. The fact that the equilibrium condition

results in a first-order ordinary differential equation means that there is some

indeterminacy in tying down exactly how strong the feedback effects are from

purely the consistency requirement that equilibrium reasoning imposes.

To summarize, the price-taking FIs’ market actions are expected, and at

equilibrium confirmed, to influence the evolution of the price process them-

selves. While the intrinsic uncertainty (here the residual demand valuation

shocks) is the only randomness in the economy, it gets multiplied many fold

by the presence of active traders, especially if they are undercapitalized.

This we refer to as the phenomenon of endogenous risk (Danielsson and Shin

(2003)). Risk is endogenous since FIs are not subjected to any fundamen-

tal preference or endowment shocks, and yet they add risk in a systematic,

substantial, self-fulfilling and auto-exciting way.

The mechanism driving our one-factor model with a single state variable

 is the channel of endogenous risk appetite. In downturns, the VaR con-
straints bind harder, inducing feedbacks as asset sales beget asset sales, delev-

ering begets delevering, and forcing the FIs to act in ever more risk-averse

ways. Our model has the feature that once a crisis hits and risk-aversion

and all the other factors peak, it will take time for risk-aversion to come

down. This is borne out in the data as well (see Coudert et al (2008)). This

is because the effect of risk-aversion on markets does not vanish after the

uncertainty is resolved and the extent of the crisis becomes acknowledged.

Our model predicts (consistent with the evidence) that risk aversion comes

down over time as the financial cycle improves and the capital basis of FIs

replenishes to more normal levels. There may then in fact obtain a long
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period of “moderation” with low volatility and high risk-appetite, such as

the one that preceded the current crisis. During periods of moderation the

economy is perceived to be far away from any serious pain points, as reflected

in low Lagrange multipliers on risk constraints. The capital write-downs in

2007 and 2008 caused bank equity to shrink considerably, ending the “great

moderation” and allowing the endogenous risk mechanism detailed above to

hit the FI sector with full force.

While the single-factor version of our model performs well along some

dimensions, there is no doubt that the world is more complex and has many

factors. For instance, in our single factor model, we cannot accommodate

history dependence on . The outcome depends on the current value of 
only, and not on the path it took to reach the current level.

Allowing history dependence would enrich the dynamics considerably.

History dependence may amplify the feedback effects considerably. Although

such factors would not be needed to get sizable effects, there are certainly

numerous other stylized facts that would need further factors to be explained

satisfactorily. For instance the idea that the longer the period of high risk

appetite, the larger the vulnerabilities that build up, and therefore the larger

the resulting instabilities, would need a multi factor representation.

3.3 Volatility of Volatility

Major recent interest has been raised both in academia and by practitioners

for the study of the volatility of volatility. There seems to be a consensus

forming that the volatility of volatility (vol of vol) is itself random, rather

than stable or mean-reverting over time, as well as being countercyclical (e.g.

Pan (2002), Jones (2003), Corsi et al (2005)). In this simple one-factor model,

vol of vol is generated by the dynamics of the capital process, which in turn

depends on . So changing levels of volatility of the risky asset imply a high
vol of vol of the risky asset.

Formally, vol of vol is the absolute value of the diffusion coefficient  in
 =  +  . It satisfies, by Itô’s Lemma, the following equation.

 =






=

1



£
2( − )− 

¤
(36)

Figure 4 plots both  and  . As we can see, our model generates

a relationship that bears some resemblance to a countercyclical vol of vol.

Whenever vol is increasing (either as equity is very small and growing, or
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very large and falling) vol becomes more volatile (the variance of vol goes

up) and does so faster than vol itself. As equity further converges to that

level at which vol is maximal, the variance of vol decreases again, indicating

that the rate of change in vol diminishes as the maximal level of vol is getting

closer.

This seems to be borne out in the data. Jones (2003) estimates a constant-

elasticity of variance (CEV) generalization of the variance process in Heston

(1993) and finds that on average vol of vol is higher when the level of vol is

higher. This holds in our model for all levels of capital except those levels in a

neighourhood of the maximal vol level. Because Jones imposes an exogenous

monotonic relationship between vol and vol of vol of the CEV type, the

local non-monotonicity around the critical equity level that we find cannot

be captured.

Similarly, when vol of vol is viewed as a function of capital (rather than as

a function of vol as in Jones), vol of vol seems to predict market downturns

two years hence.3 As capital levels are reduced, volatility increases but vol

of vol increases and picks up the majority of its increment earlier than the

spike in volatility itself (see Figure 4). By the time capital is further reduced

to a level at which volatility is maximal (and is therefore not changing for

small changes of equity), vol of vol needs to go to zero. This is because by

Itô’s Lemma the vol of the vol is proportional to the slope of the vol curve,

which is zero at the maximum.

This logic also implies that a one-factor model cannot generate vol of

vol that is much higher than vol itself during a crisis, although it can gen-

erate a vol of vol that is a multiple of the vol during periods of sufficient

capitalization.

3.4 Derivatives Pricing Implications

It is well known that the Black-Scholes-Merton (Black and Scholes (1973),

Merton (1973)) implied volatilities exhibit a negative skew in moneyness
that is fading with longer time to maturity (see for instance Ait-Sahalia and

Lo (1998) for a formal econometric analysis). The usual intuition for the

relative over-pricing of out-of-the-money (OTM) puts compared to OTM

calls within the Black-Scholes-Merton model relies on the fact that OTM

puts offer valuable protection against downside “pain points,” and that such

3Mele (2008), personal communication.
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a downside either is expected to occur more frequently than similar upside

movements or at least occurs in more volatile environments than would a

similar upside movement.

In our framework the REE volatility function || largely depends neg-
atively on trading capital  (except for very small values of ). Capital
being random, volatility is stochastic. Since the value of the underlying risky

asset — being the only one it can be viewed as the overall market index —

depends positively on bank capital over a large range of capital levels, but

its volatility depends mostly negatively on bank capital, one can expect that

the option generated implied volatility skew appears in equilibrium.

If one focuses on the at-the-money (ATM, moneyness of one) across var-

ious capital levels, one sees that the ATM implied vols (which would in this

model be equivalent to the VIX) are counter-cyclical as well (again excluding

FI capitals close to the zero-capital boundary). A healthier economy with

higher capital levels has a lower VIX, and worsening economic circumstances

lead to a higher VIX. This is a well-established empirical fact, so much so

that the VIX is also referred to as the “investor fear gauge.”

Plot 6 gives the usual IV surface in (maturity) space. We see the
skew for each maturity, as well as a flattening over longer maturities. The

flattening is due to the fact that over a longer horizon bank equity will more

likely than not have drifted upwards and further out of the danger zone.

4 Equilibrium in the General Case

We now turn to the case with  risky assets and look for an equilibrium in

which the prices of risky assets follow:

 


 


= +  (37)

where  is an  × 1 vector of independent Brownian motions, and where
 and  are terms to be solved in equilibrium. The demand shocks of the
passive traders are given by

 =  (38)

where  is a 1 ×  vector that governs which Brownian shocks affect the

passive traders’ demands.
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4.1 Solution for Case with  Risky Assets

We denote conjectured quantities with a tilde. For instance, conjectured drift

and diffusion terms are ̃ ̃ respectively and the actual drift and diffusions
are  and  respectively. For notational convenience, we define the scaled
reward-to-risk factor

 :=
1p

Σ−1 ( − ) (39)

Also, we use the following shorthand.

 :=
1p

( − ) (40)

 :=
1

2
 +



2



(41)

and where



=
2

2



+


2
2
 2



Under some conditions to be verified, we can compute the actual drift and

diffusion terms of  
 


 as a function of the conjectured drift and diffusion

terms. By Itô’s Lemma applied to (19) we have:

 = ̃̃
>
 ̃ +  (42)

We denote the ×1 vector of ones by 1 , and the operator that replaces
the main diagonal of the identity matrix by the vector  by Diag(). Also,
for simplicity we write  for 1 . Then we can stack the drifts into the vector
, the diffusion coefficients into a matrix , etc.
We can solve the fixed point problem by specifying a beliefs updating

process (̃ ̃) that when entered into the right hand side of the equation,
generates the true return dynamics. In other words, we solve the fixed point

problem by solving for self-fulfilling beliefs (̃ ̃) in the equation:∙
̃
̃

¸
=

∙
(̃ ̃)
(̃ ̃)

¸
 (43)

By stacking into a diffusion matrix, at a REE the diffusion matrix satisfies

 = 
>
  +  (44)
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Using the fact that > 
>
 = > ,  satisfies the following matrix quadratic

equation 
>
 = 

>
 + 

>
 so that

( − )
>
 = 

>
 (45)

The return diffusion in equilibrium is equal to the fundamental diffusion

 — the one occurring with no active FIs in the market — perturbed by an
additional low-rank term that incorporates the rational equilibrium effects of

the FIs on prices. Therefore, we have a decomposition of the diffusion matrix

into that part which is due to the fundamentals of the economy, and the part

which is due to the endogenous amplification that results from the actions of

the active traders. The decomposition stems from relation (42) (keeping in

mind that 

 equals the diffusion term of equity)

 =

µ
1




¶
| {z }

feedback effect on vol

from VaR

(vol of capital) +

µ






¶
| {z }

feedback effect on vol

from changing expectations

(vol of capital) + 

We now solve for a representation of . Solutions to quadratic matrix
equations can rarely be guaranteed to exist, much less being guaranteed to

be computable in closed form. We provide a representation of the solution,

should a solution exist. This solution diffusion matrix can be shown to be

nonsingular, guaranteeing endogenously complete markets by the second fun-

damental theorem of asset pricing.

Denote the scalar

 := 1− 
>
 

It follows from the Sherman-Morrison theorem (Sherman and Morrison (1949))

that  = Det
£
 − 

>


¤
and that if (and only if)  6= 0 (to be verified in

equilibrium) we can represent the diffusion matrix:

 = 

∙


1− 
>
 


>
 + 

¸
 (46)

We then have the following result.

Proposition 1 The REE diffusion matrix  and the variance-covariance
matrix Σ are non-singular, and

−1 =
1


−1

£
 − 

>


¤
(47)
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Proof. By the maintained assumption that  is invertible, the lemma

follows directly if we were able to show that
h




>
 + 

i
is invertible. From

the Sherman-Morrison theorem, this is true if 1+ 

>  6= 0, which simplifies

to 1 6= 0. The expression for the inverse is the Sherman-Morrison formula.

4.2 The Symmetric   1 Case

We examine a special case that allows us to solve for the equilibrium in closed

form. The benefit of this is that we are able to reduce the dimensionality of

the problem back to one and utilize the ODE solution from the single risky

asset case. Our focus here is on the correlation structure of the endogenous

returns on the risky assets.

Assumption (Symmetry, S) The diffusion matrix for  is ̃ where

̃  0 is a scalar and where  is the  × identity matrix. Also,  = 
for all .
The symmetry assumption enables us to solve the model in closed form

and examine the changes in correlation.

Together with the i.i.d. feature of the demand shocks we conjecture a

REE where  = 1 , 

 = 1 , 


 = 1 , 


 = 1 , 


 = 11 and  = 12 ,

 6= . First, notice that 
>
 = 1

1
11

>, and that >  = 1
1
 , where 1 is

a  × 1 vector of ones (so that 11> is the  × matrix with the number 1

everywhere).

From (46) we see that the diffusion matrix is given by



µ


1
 
1


1−
1
 
1


11> + 

¶
(48)

From here the benefit of symmetry becomes clear. At an REE we only

need to solve for one diffusion variable,  = 11 , since for  6=  the cross
effects  = 12 = 11 − ̃ are then determined as well. Recall that 




is the measure of the effect of a change in the demand shock of the th
security on the price of the th security, and not the covariance. In other

words, it governs the comovements between securities that would otherwise

be independent. Define by  ≡ () the solution to the ODE (32) with 
replaced by 


, i.e.  is equal to the right-hand-side of (33) with  replaced

by 

. The proof of the following proposition is in the appendix.
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Proposition 2 Assume (S). The following is an REE.

The REE diffusion coefficients are  = +
−1


̃, and for  6= ,  =
− 1


̃. Also, Σ


 = Var(return on security ) = 2̃2+

1


¡
22 − 2̃2

¢
,

and for  6= , Σ
 = Cov(return on security  return on security ) =

1


¡
22 − 2̃2

¢
and Corr(return on security  return on security ) =

2− 1

2̃2

2+
−1


2̃2
.

Risky holdings are 
 =


32

.

The risk-reward relationship is given by

 − 


=

1

2 

̃

(


µ
 +

 − 1


̃

¶2
− √


̃+

√

³
 − 


̃

´ ∙
22 +

2


− 2
¸¾

(49)

The intuition and form of the drift term is very similar to the  = 1 case

and reduces to it if  is set equal to 1.

With multiple securities and with active banks, each idiosyncratic shock

is transmitted through the system. On the one hand this means that less

than the full impact of the shock on security  will be transmitted into the
security return , potentially leading to a less volatile return. The reason is
that a smaller fraction of the asset portfolio is invested in security , reducing
the extent of the feedback effect. On the other hand, the demand shocks to

securities other than  will be impounded into return , potentially leading
to a more volatile return, depending on the extent of mutual cancellations

due to the diversification effect on the FIs’ equity. In a world with multiple

risky securities satisfying the assumptions in the proposition, the extent of

contagion across securities is given by  =  − 1

̃, for  6= . In the

absence of FIs,  = (0) = 1

̃, so any given security return is unaffected

by the idiosyncratic shocks hitting other securities.

For comparison purposes, denote the scalar diffusion coefficient from the

 = 1 case, as given by (33), by =1 , and fix  = 0. The first direct

effect can be characterized as follows: 11  =1 iff ̃  =1 . In words,

each security return is affected less by its own noise term than in a setting

with only this one security, for small levels of capital. The reason for this

latter effect lies in the fact that any given amount of FI capital needs to be

allocated across multiple securities now. For capital levels larger than the

critical level  ∗ : =1 ( ∗) = ̃, the direct effect is larger than in the
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 = 1 economy4 because the (now less constrained) risk-neutral FIs tend to

absorb aggregate return risk as opposed to idiosyncratic return risk. Whereas

all uncertainty vanishes in the  = 1 case since FIs insure the residual

demand when capital becomes plentiful (lim→∞ =1 = 0), with   1 on
the other hand individual volatility remains (lim→∞Σ11 = −1


2̃2  0)

but the fact that correlations tend to −1 means that lim→∞Var(return on
the equilibrium portfolio)= 0. So again as FI capital increases, aggregate

equilibrium return uncertainty is washed out, even though returns continue

to have idiosyncratic noise.

Combining direct and indirect effects, return variance is lower in the multi

security case if  is small: Σ11  (=1 )2 iff 2̃2
2  2 . Still, as in the

 = 1 case securities returns are more volatile with active banks (  0),

provided capital is not too large.

[Figures 7 and 8 here]

Diversification across the  i.i.d. demand shocks lessens the feedback

effect on prices to some extent. Since the VaR constraints bind forcefully for

small levels of capital, the fact that idiosyncratic shocks are mixed and affect

all securities implies that security returns become more correlated for small

capital levels. FIs tend to raise covariances by allowing the i.i.d. shocks that

affect security  to be also affecting security  6=  through their portfolio
choices. This effect has some similarities to the wealth effect on portfolio

choice described by Kyle and Xiong (2001). The intuition is as follows.

Without FIs, returns on all securities are independent. With a binding VaR

constraint, in the face of losses, FIs’ risk appetite decreases and they are

forced to scale down the risk they have on their books. This leads to joint

downward pressure on all risky securities.

This effect is indeed confirmed in an REE, leading to positively correlated

returns. This effect is consistent with anecdotal evidence on the loss of

diversification benefits suffered by hedge funds and other traders who rely on

correlation patterns, when traders are hit by market shocks. The argument

also works in reverse: as FIs start from a tiny capital basis that does not

allow them to be much of a player and accumulate more capital, they are

eager to purchase high Sharpe ratio securities. This joint buying tends to

raise prices in tandem.

Figure 7 shows the correlation as a function of  for the  = 0 case.

4For instance, as  →∞, we have lim→∞ 11 = −1
 ̃  0 = lim→∞ =1 .
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As can be seen on Figure 7, variances move together, and so do variances

with correlations. This echoes the findings in Andersen et al (2001) who

show that

“there is a systematic tendency for the variances to move to-

gether, and for the correlations among the different stocks to

be high/low when the variances for the underlying stocks are

high/low, and when the correlations among the other stocks are

also high/low.”

They conjecture that these co-movements occur in a manner broadly con-

sistent with a latent factor structure (the  process in our model).

5 Concluding Remarks

We have examined a rational expectations model of stochastic volatility with

the feature that traders act as if their preferences are changing in response

to market outcomes. In this sense, we have shown how risk appetite and risk

are determined together and how both are tied to market outcomes. The

channel through which such apparent preferences and beliefs are linked are

the risk constraints. As risk constraints bind harder, effective risk aversion

of the traders also increases. We have argued that this simple story of risk

aversion feedbacks can explain much of the observed counter-cyclical features

of volatility, vol of vol, correlations, implied vols, risk premia and Sharpe

ratios. They can all be thought of as being driven by the single factor of

endogenous risk aversion.

Our discussion has focused purely on the positive questions, rather than

normative, welfare questions on the appropriate role of financial regulation

and other institutional features. We recognize that such normative questions

will be even more important going forward, especially in the light of the

experiences gained in the financial crisis of 2007-8. Brunnermeier et al.

(2009), Danielsson and Zigrand (2008) and Morris and Shin (2008) are recent

discussions on how the debate on the future of financial regulation can take

account of the themes explored here.
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Appendix

Lemma 3 [Properties of the diffusion term][S1] lim→0 () = 
[S2] lim→∞ () = 0 and lim→∞ () =∞
[S3] lim→0




= 
2

and lim→0
2
 2


= 4

(2)2
. [Call ( ) := −



and notice that lim→0 ( ) = lim→0 

. Since we know the expression

for 


by (32), we see that the problem can be transformed into lim  =

lim 1

[2( ) − ]. In turn, we can replace 


definitionally by  + 


to

get to lim  = lim ( )[2− ]−


. If lim  is not equal to the constant given
here, then the RHS diverges. Since the denominator of the RHS converges to

zero, so must the numerator. Thus the constant is the one shown here. The

proof of the second limit is similar.]

[S4] { ∗ ∈ R : ( ∗) = 0} is a singleton. At  ∗,  is strictly decreasing.
[The second observation comes from (32) while the first one comes from the

fact that the mapping  7→ R∞
−2



−

 is a bijection between R+ and R, so

for each chosen , there is a unique  () setting
h
− 2

R∞
− 2
 ()

−


i
=

0.]

[S5] ( ) has exactly one minimum and one maximum. The minimum is at
 0 s.t. ( 0)  0. The maximum is at  00 s.t. ( 00)  0.

Proof of Proposition 2 First, we can read off (48) the variables of interest

as  = ̃

³


1−
+ 1
´
and  = 12 = ̃


1−

= 11 − ̃.

Next, we compute the variance-covariance matrix, the square of the dif-

fusion matrix (48):

Σ =  = 2̃2[ +11
>] = 2̃2 + 11

>

where

 := 

µ


1

1


1−1
1


¶2
+ 2


1

1


1−1
2


=
1

2̃2
(11 − ̃)

£
2̃ +(11 − ̃)

¤
 : = 

2̃2

where we used the fact that ̃
1

1


1−1
1

= 11 −̃. Then insert Σ into the

reward-to-risk equation Σ
1
1 =

1−√

1 to get

p


1
 [̃ +(11 − ̃)]

2
=

1 − .
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Next compute . By definition,  := (1 − )21>Σ−1 1. Since 1 +

(̃)
−2 6= 0, by the Sherman-Morrison theorem we see that

Σ−1 = (̃)
−2 − 

(̃)4 +(̃)2
11>

and therefore that

 = (
1
 − )2(̃)

−2
∙
1− 

(̃)2 +

¸
Inserting the expression for  into the expression for 

1
 we get, using the

fact that [̃ +(11 − ̃)]
2 =  + (̃)

2,

1 =
√

 [̃ +(11 − ̃)]

where  := 1 −  and  := 11 − ( − 1)̃. Using again the fact that
[̃ +(11 − ̃)]

2 =  + (̃)
2, we see that

1 = 
1√


£
̃ +(11 − ̃)

¤
By definition of 1 :

1 =
1

2


∙
1√

[̃ +(11 − ̃)] + 

√

11


¸
(50)

Inserting all these expressions into the equation for 11 , 
11
 = ̃

1−(−1)1 1
1−

1
 
1


and defining  :=
1

̃ + (

11
 − ̃), the resulting equation is the ODE

(32) with  replaced by  and where ( ) is replaced by ( ).
As to risky holdings, we know that  =



. Noticing that ̃ +

( − ̃) = , we find that 
1
 =

1

32
from which the expression for

 follows.

Finally we compute the risk premia. Using Itô’s Lemma on (19) we get

 −
1

2
(11 )

2 = 1 (drift of ) + +
1

2

1


(diffusion of )
2

Now the drift of equity can be seen to be equal to

drift of  =  +>
 ( − ) =  + (

1
 − )




√

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and using  =
¡
 − 1


̃
¢
11> + ̃ the squared diffusion term can be

verified to be equal to
 2


2
. The drift equation becomes

(1 − )

∙
1− 1

√


¸
=
1

2
(11 )

2 + 21  +
1

2

 2




1


We can rewrite (5) by inserting the ODE for  to get rid of the partial
derivative term:

1 = 

√




³
 − 


̃

´
Performing the differentiation of 1 and inserting into the drift equation com-
pletes the proof.

Figure 1: Volatility and mean of the price process
This shows a plot of  (33) and  from (34) with parameters from Section ??.
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Figure 2: Lagrange Multiplier
This shows a plot of the Lagrangian  from (14) with parameters from Section ??.
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Figure 3: Portfolio holdings
Risky assets  (16) and cash holdings  with parameters from Section ??.
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Figure 4: Volatility and 

This shows a plot of  (33), and  from (36) , with parameters from Section ??.
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Figure 5: Variance and ()2

This shows a plot of  (33), and  from (36) , with parameters from Section ??.
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Figure 6: Implied Volatility
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Figure 7:  = 2,,  and 
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Figure 8:  = 2,Σ and ΣΣ
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