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An Empirical Evaluation of Value at Risk by Scenario Simulation 
 
 

 
One major obstacle to using Monte Carlo simulation for Value at Risk (VaR) calculations 

on large bank portfolios is the need to revalue a very large number of positions. 

Jamshidian and Zhu (1997) propose scenario simulation as a method to drastically reduce 

the computational burden. The key feature of this technique is the separation of 

revaluation and simulation. Scenario simulation samples a fixed set of precomputed 

“scenarios” using a Monte Carlo procedure. In contrast, as Jamshidian and Zhu (JZ) put 

it, standard Monte Carlo involves an “extortionate” number of portfolio revaluations.  

While rapid advances in computing speed may eventually obviate the need for 

approximation techniques, such approximations are widely used at financial institutions 

today. It is common for such institutions to rely on different valuation models for  

computing VaR from those used in the “front-office” system for pricing and hedging. The 

former models generally have simple closed-form formulas, whereas the latter may use 

numerically intensive lattice, Monte Carlo, or finite difference solutions for prices and 

other outputs. Risk management practice is also moving toward more timely and frequent 

VaR reports, such as intra-day VaR. In addition, since January 1, 1998, the banking 

regulatory agencies have required capital to be charged against market-risk exposures in 

trading portfolios held by banks that meet certain criteria.1 The charge is determined by 

the daily computation of VaR based on a bank’s own internal model.  

                                                 
1The risk-based capital regulations are contained in the Federal Register, September 6, 1996 (Volume 61, 
Number 174) [61 FR 47357 12 CFR Part 3, 208, 225, 325 - Joint Final Rule: Risk-Based Capital Standards: 
Market Risk]. The rule was issued jointly by the Office of the Comptroller of the Currency, the Board of 
Governors of the Federal Reserve System, and the Federal Deposit Insurance Corporation. Compliance has 
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The examples in Jamshidian and Zhu give some evidence that scenario simulation 

approximations are accurate. These examples include 10-year currency and interest rate 

swaps, a 5-year interest rate floor, and a 5 5×  interest-rate receiver’s swaption.2 Because 

these instruments have long-term tenors, convexity effects for the options-based 

instruments are minor. VaR at the 97.5 and 99.0 percent levels are reported only for the 

swaps, whereas the floor and swaption examples are limited to mean, standard deviation, 

and extrema of the 30-day horizon value. The scenario simulated values are within 2 

percent of the Monte Carlo values. 

The purpose of this paper is twofold: first, to detail the steps involved in doing 

scenario simulation and to show its relationship with standard Monte Carlo and principal 

component simulation; and, second, to evaluate the relative performance of these three 

methods on several test portfolios. The precise meaning of “scenario” is defined below. 

The empirical focus of the paper is on LIBOR-based option portfolios, in which 

convexity effects are more pronounced than those found in JZ’s long-dated instruments. 

JZ’s examples are also based on LIBOR derivatives.  

The results indicate that the relative performance of scenario simulation on nonlinear 

portfolios deteriorates compared with alternative approaches. Low dimensional 

discretizations of the risk factor inputs can give poor estimates of VaR for linear and 

nonlinear portfolios. The quality of the approximation depends on the extent of 

nonlinearity in a portfolio. Furthermore, the tests described below demonstrate that 

convergence of scenario simulation VaR results to benchmark values is slow as the 

                                                                                                                                                 
been mandatory since January 1, 1998, for banks whose trading activity [gross sum of trading assets and 
liabilities on a worldwide consolidated basis] equals: 10 percent or more of total assets; or $1 billion or 
more. However, the banking regulators have discretion in deciding which banks must comply.  
2 The swaption is a 5-year option on a 5-year swap which comes into being if the option is exercised. 
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discretization gets finer. Although scenario simulation appears to be a useful alternative 

to other, more computationally intensive methods, periodic validation of scenario-

simulated VaR results by cross-checking with other methods is advisable. 

Alternative approaches to accelerating VaR by Monte Carlo have been proposed. 

Picoult (1997) develops an extension of a Taylor series approach that relies on “grids of 

factor sensitivities.” In contrast to the local approximation of a Taylor series, factor 

sensitivities are the derivatives of the instrument value with respect to the risk factor 

evaluated along a discrete set of values of a risk factor. Before running a VaR, these 

sensitivities, including first, second, and higher order derivatives, including possibly 

cross derivatives, are computed and stored, and then subsequently, in the VaR simulation, 

changes in portfolio value are calculated by interpolation based on the stored factor 

sensitivities. The user decides how many and what type of terms to include in the 

approximation. Frye (1997) proposes a conservative approximation to VaR that is 

predicated on a discrete scenario analysis rather than a Monte Carlo. He defines principal 

component-based scenarios using a small set of large, prespecified shocks to the risk 

factors, such as 2.33 standard deviations for a 99th percentile VaR. The greatest loss that 

results in the process of revaluing a portfolio to these shocks is recorded as the VaR. Frye 

(1998) suggests a Monte Carlo approach based on a stored multidimensional grid of 

portfolio values as a function of a multidimensional grid of shocks to principal 

components. Simulation proceeds by revaluing the portfolio by linearly interpolating 

along the precomputed grid of portfolio values with respect to Monte Carlo draws for the 

risk factors.  
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The final paper related to JZ is Reimers and Zerbs (1998), who use simple, multi-

currency portfolios of fixed-rate government bonds to assess the impact of the principal 

component stratification technique proposed by JZ. This method is described in detail in 

the following sections. They conclude that the relative difference in VaR based on the 

full covariance matrix versus the stratified principal component covariance matrix is on 

the order of one percent. 

Sections 1, 2, and 3 review standard “brute-force” Monte Carlo, principal component 

Monte Carlo, and scenario simulation, respectively. Most of the exposition focuses on 

scenario simulation. Section 4 discusses the construction of test portfolios of LIBOR-

derivatives, and section 5 compares the simulation results on these portfolios for all three 

methods. Section 6 gives concluding observations. 

 

1. Brute-Force Monte Carlo 

Monte Carlo methods are widely used in empirical finance and asset pricing.3 The basic 

algorithm for VaR is: 

1. Mark portfolio to market on initial date. 

2. Generate simulated changes in risk factors based on estimated covariance matrix. 

3. Revalue portfolio using simulated changes. 

4. Iterate revaluations a large number of times. 

5. Sort changes in portfolio value by size. 

6. Select the desired percentile of the changes as the VaR. 

 

                                                 
3 There are many good sources on Monte Carlo methods applied to finance. Hull’s (2000) text gives a 
thorough overview of the general procedure for valuing derivatives. Chapter 7 of the RiskMetrics—
Technical Document [J.P. Morgan/Reuters, December 1996] covers Monte Carlo as applied to VaR. This 
chapter does not discuss principal component data reduction. 
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A frequently insurmountable roadblock to using this algorithm on large portfolios is that 

each Monte Carlo draw for the risk factors requires revaluation of all securities in the 

portfolio. A second-order Taylor series (delta-gamma) approximation for the portfolio 

value can be used to avoid the burden of full revaluation. However, such approximations 

may perform poorly in VaR applications for portfolios that contain free-standing or 

embedded out-of-the-money options, which would be missed by a local approximation. 

 

2. Principal Component VaR 

Principal component (PC) VaR reduces the computational burden by compressing the 

number of risk factors through the use of a reduced set of principal components. Fewer 

random numbers need to be drawn; however, the principal components must be inverted 

back into the original number of risk factors in order to revalue the portfolio. The VaR 

algorithm is the same as that for brute-force Monte Carlo, except for the addition of the 

computation of the principal components and the inversion process.4  

By construction, principal components are uncorrelated. The principal components 

for the test portfolios are derived from the covariance matrix of the monthly log changes 

in a set of “key” interest rates along the yield curve. A complete discussion of the data 

construction appears below. Let the interest rate risk factors be given by the 1n ×  vector 

RF  and evolve through one discrete time step as  

(1) ( )1 0exp=RF RF u , 

where the shocks ~ (0, )N Qu .  

                                                 
4 Recent references on principal component VaR are Singh (1997) and Kreinin et al. (1998). Singh’s 
examples use a Taylor series approximation to the pricing function rather than full revaluation. 
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The covariance matrix Q is factored into a diagonal matrix of eigenvalues Λ and an 

orthogonal matrix of eigenvectors [ ]nE e e= 1L : 

(2) .EQE′Λ =  

Both the eigenvalue and eigenvector matrices are truncated to m n<  columns in order to 

include only a subset of the largest eigenvalues and their associated eigenvectors. The 

shock vector u is generated by a linear combination of standard normal shocks 

~ (0, )mN Iη : 

(3) 
1m mn m m

E η
×× ×

′= Λu , 

where the principal components are ηΛ . PC simulation consequently entails using a 

covariance matrix approximation for the full n n×  covariance matrix. 

In LIBOR derivative portfolios examined below, four principal component risk 

factors are retained from the original eight key-rate risk factors per market. These account 

for over 97 percent of the total variance of the original data (as measured in the standard 

way by the ratio of the sum of the eigenvalues of the four components to the sum of all 

the eigenvalues). 

 

3. Scenario Simulation 

The mechanics of scenario simulation are quite different from the other types of Monte 

Carlo applied to VaR because of the separation of the revaluation stage from the 

simulation stage. 

The core step in scenario simulation is the approximation of the multivariate normal 

distribution by the binomial distribution. The joint occurrence of particular discrete states 
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of the risk factors constitutes a “scenario.” Such discrete approximations are conventional 

in statistics, but their incorporation into a simulation analysis, and particularly the 

“stratified” discretization discussed below, make the JZ approach a novel way to 

calculate VaR.  

Principal component analysis is treated as a necessary adjunct to scenario simulation 

because the number of scenarios becomes huge even for a relatively small number of risk 

factors. JZ note that with 12 key rates in a yield curve model and an assumption that each 

can take three possible values, the total number of scenarios is 123 531,441= . With five 

states for each variable, the total number of scenarios explodes to more than 200 million. 

The use of principal component analysis can dramatically reduce the number of scenarios 

with relatively little sacrifice of accuracy because interest rate movements tend to be 

highly correlated. Even with principal components standing in for market factors, the 

number of scenarios for portfolios involving term structures in more than just a few 

currencies can number in the trillions. Further assumptions must be made on the structure 

of the covariance matrix of the risk factors to pare down the problem into one of 

manageable proportions. The large number of scenarios requires a Monte Carlo 

procedure to compute VaR, instead of a direct calculation based on the full set of 

scenarios and their associated probabilities of occurrence. These procedures are explained 

below, reproducing JZ’s equations (15)–(17) and adding some further explanatory detail. 

There are assumed to be 1m +  states, ordered from 0 to m , with probabilities 

determined in the conventional way for the binomial: 

(4) 
!

Probability( ) 2 , 0, ,
!( 1)!

m m
i i m

i m
−= ⋅ =

−
L . 
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These probabilities are not explicitly calculated or used in scenario simulation. They 

enter the VaR calculation in the construction of the “lookup table” for scenarios. The 

essence of scenario simulation is the discretization of continuously distributed random 

variables that represent the principal components (linear transformations of the risk 

factors). For example, if each principal component can be in five possible states, the total 

number of states is 35 125= . These can be enumerated and the portfolio can be revalued 

for each discrete shock. The key step is the mapping of a continuously distributed shock 

into a discrete shock. Although normality is assumed, the method can be applied to other 

distributions. The relationship between the normal and the binomial is given by  

(5) 
1 21 2 !
exp , 0, ,

2 !( )!2

i

i

a m

a

x m
dx i m

i m iπ

+ − 
− = =  − 

∫ L . 

Starting from 0a = −∞  for the initial lower limit of integration, the next boundary point 

1a  that equates the area of the normal density to the binomial probability for the 0th 

binomial state is determined numerically by any standard root-solving procedure. The 

remaining upper limits of integration 1ia + , defining areas under the normal density curve 

in the interval 1[ , ]i ia a + , are then found successively, state by state. For five states, these 

values are: 

(6) 1 2 3 41.53412; 0.48878; 0.48878; 1.53412a a a a= − = − = = . 

A standard normal variate z drawn from a random number generator can then be mapped 

into a discrete state by testing where it falls relative to the break points: 

(7) ( )
1( ) ifm

i iB z i a z a += ≤ < , 
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where {0, , }i m∈ … . This mapping comes into play in two places: in the construction of 

the lookup table of scenarios and in the simulation of scenarios.  

 

Lookup Table Construction 

The discrete variable ( )( )mB z , which represents a particular state, can be normalized as  

(8) ( ) ( )( ) (2 ( ) ) /m mz B z m mβ = − , 

that is, the transformed random variable has mean 0 and variance 1 (the mean of the 

binomial distribution is / 2m  and the variance is / 4m ). This variable’s dependence on z 

is not explicitly used in the lookup table construction. Rather, a set of shocks ( )( )m zβ is 

defined based on the set of integers that the discrete variable B  assumes. For 5 states 

( 4)m = , the variable ( )( )mB z  takes values {0,1, 2,3,4} and this translates into 

normalized shocks ( )( )m zβ  with possible values { 2, 1,0,1,2}− − .  

The ( )( )m zβ  values are the discrete values of z that are the primary ingredients for 

constructing the lookup table. A matrix of scenario indexes is computed that exhausts all 

possible state combinations. These discrete state values {0, , }i m∈ …  for each principal 

component are translated into the corresponding ( )( )m zβ , which in turn are plugged in as 

simulated principal components. These in turn are inverted into realizations of the risk 

factors that are used to revalue each instrument in each scenario. The resulting valuations 

are stored for later use during the simulation. The following table illustrates the mapping 

process using 5 states and a total of 125 possible scenarios. 



 10

 
Table 1 

Mapping of Discrete States into 
Shocks and Changes in Portfolio Value  

5-State Discretization of 3 Principal Components 
Discrete 

State Index 
⇒            ( )( )m zβ  

Invert into 
Risk Factors 

Change in 
Portfolio Value 

Row 

0 0 0 ⇒  -2.0 -2.0 -2.0 ⇒  -0.075 1 
1 0 0 ⇒  -1.0 -2.0 -2.0 ⇒  -0.008 2 
2 0 0 ⇒  0.0 -2.0 -2.0 ⇒  0.061 3 
3 0 0 ⇒  1.0 -2.0 -2.0 ⇒  0.132 4 
4 0 0 ⇒  2.0 -2.0 -2.0 ⇒  0.205 5 
0 1 0 ⇒  -2.0 -1.0 -2.0 ⇒  -0.093 6 
1 1 0 ⇒  -1.0 -1.0 -2.0 ⇒  -0.025 7 
M  M  M   M  M  M   M  M  
2 3 4 ⇒  0.0 1.0 2.0 ⇒  -0.048 118 
3 3 4 ⇒  1.0 1.0 2.0 ⇒  0.021 119 
4 3 4 ⇒  2.0 1.0 2.0 ⇒  0.092 120 
0 4 4 ⇒  -2.0 2.0 2.0 ⇒  -0.198 121 
1 4 4 ⇒  -1.0 2.0 2.0 ⇒  -0.132 122 
2 4 4 ⇒  0.0 2.0 2.0 ⇒  -0.065 123 
3 4 4 ⇒  1.0 2.0 2.0 ⇒  0.004 124 
4 4 4 ⇒  2.0 2.0 2.0 ⇒  0.075 125 

 
Simulation 
 
Each ( )( )mB z  will substitute for a principal component in the simulation. A set of k  such 

discrete state indexes defines a particular sampled scenario: 

(9) ( ) ( ) ( )
1( ( ), , ( ))m m m

kB B z z= = B B… , 

where the iz  are independently drawn standard normal variates. (The principal 

components are assumed to be independent.) As noted above, the first four principal 

components per market are used in the examples of interest rate derivative portfolios. All 

possible scenarios are enumerated in the lookup table. 
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The discretization of any draw from a “continuous” random number generator on a 

computer is assigned to an element of the discrete vector of shocks.5 The probability of 

the occurrence of any particular draw for ( )( )mB z  (given by equation (4)) is implicitly 

captured by the process of sorting the draws of the continuous variable z  into discrete 

states as represented by equations (5) and (7). For independent principal components, the 

joint probability of a scenario—a combination of discrete variables represented by 

equation (9)—is the product of probabilities of each individual discrete variable. (The 

general case of correlated discrete variables is discussed subsequently.) In other words, 

the simulation samples with replacement from the scenarios in the lookup table. The 

frequency of the sampling of any given scenario is in proportion to its discrete 

probability.  

 
A synopsis of the scenario simulation algorithm is:  

 
1. Construct the lookup table by enumerating all possible scenarios involving the 

predefined states for each principal component or risk factor. 

2. Compute ( )( )m zβ  for each principal component or risk factor in a given scenario. 

3. Compute the corresponding risk factors for each scenario (see equations (13) and 
(14) below).  

4. Revalue each instrument in the portfolio using the risk factors for each scenario. 
Compute the change in portfolio value from its initial value. Assign an index 
number (the row number in the table) to the change in portfolio value based on a 
given scenario. 

5. Simulate by drawing independent normal random variates z and map them into 
the states ( )( )mB z .  

6. Scan the lookup table for the corresponding scenario and return the precomputed 
change in portfolio value and store it. 

                                                 
5 Of course, any computer-based random number generator is also discrete, given the finite number of 
integers that can be represented as a 32-bit integer, based on current system constraints. Still, typical linear 
congruential generators can create at least 2 billion unique random numbers, and many can crank out vastly 
more than this (at the cost of being slower in execution) before they start to repeat their cycle. See Dwyer 
(1995). 
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7. Repeat simulation steps (5) and (6) a large number of times. 

8. Sort the vector of simulated changes in portfolio value by size and evaluate the 
desired percentile value for the VaR. 

 
In contrast with standard Monte Carlo or principal component Monte Carlo, the 

number of portfolio revaluations is independent of the number of simulation iterations 

under scenario simulation. Although the discretization limits the sampling from a given 

risk factor’s distribution, the joint probabilities across risk factors can be very low. In the 

example given here, the principal components are independent. For example, in the 5 

state example, while the smallest probability for one variable is 1/16 0.0625= , the 

smallest joint probability is 3(1/16) 0.0002= . Nevertheless, for portfolios with 

sufficiently nonlinear payoffs, the failure to sample far enough into the tails may result in 

material inaccuracies of the scenario simulation approximation. The same may be true of 

extreme positions in digital options or other options positions that create spikes that the 

discretization misses. 

 
Stratification of Principal Components 
 
JZ propose a stratification of principal components to handle multimarket, multi-currency 

portfolios. Principal components are computed for a given market, say, for the term 

structure in a given currency, and consequently individual markets retain a distinct 

identity in the simulation. Although mutually uncorrelated for interest rates in a given 

currency, the principal components have correlations with principal components of 

interest rates in other currencies, as well as with other risk factors, such as foreign 

exchange rates. 
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However, even with the reduction in dimension gained through the use of principal 

components, there still can be trillions of scenarios to reckon with in multicurrency, 

multimarket portfolios. The number of dimensions for the scenario simulation could 

easily explode out of hand, wiping out its advantage over conventional Monte Carlo. For 

example, the total number of scenarios in the multicountry portfolios examined below is 

123.4 10×  for the 7-state discretization and 154.7 10×  for the 11-state discretization.6 The 

solution to the dimensionality problem is simply to use Monte Carlo to simulate the 

discrete joint distribution of the risk factors. Scenarios need to be tabulated only within 

each currency block. 

Dealing with dependent discrete joint random variables is straightforward. Let sQ  be 

the covariance matrix based on the stratified decomposition of risk factors into principal 

components. Generating correlated standard random normal variates follows the usual 

procedure for Monte Carlo. A factorization of the covariance matrix sQ  is used to create 

a vector of correlated shocks  X  from the vector  z  of uncorrelated standard normal 

variates, such that   

(10) 1( , , ) ~ (0, ).n sX X X N Q= …   

 
The discrete scenarios (9) use  X  in place of z: 
 
(11) ( ) ( ) ( )

1( ( ), , ( ))m m m
nB B X X= = B B… . 

 
Otherwise, scenario simulation proceeds exactly as given in the synopsis above. JZ 

formally prove the convergence of the multinomial approximation given by (11) to the 

continuously distributed random vector (10). 

                                                 
6 This is computed by 

( ) ( ) ( )( )3

# states per $ yield curve factor # states per foreign yield curve factor # states per exchange rate  .× ×  



 14

As JZ note, premultiplying the B matrix derived from uncorrelated normal variates by 

the Cholesky factor of sQ  to induce the desired covariance structure would scramble the 

stratification. To avoid this loss of information, the Cholesky factor is applied to create 

the X vector in (10) before discretization.  

 
4. Test Portfolios 
 
Four kinds of multicurrency, LIBOR-derivatives portfolios are constructed to compare 

standard Monte Carlo, principal component Monte Carlo, and scenario simulation. Each 

type of portfolio was designed to contain one type of instrument: swaps, caps/floors, 

caplets/floorlets, and swaptions. Such derivatives represent an important share of most 

large banks’ trading portfolios, and typically trading books are organized into 

subportfolios by instrument type.  

Data 

All portfolios involve swap or option positions on four currencies: the U.S. dollar, 

German mark, Swiss franc, and British pound. The exchange rate and interest rate data 

were obtained from the Bloomberg History Tool and are end-of-day Wednesday 

observations. The data sample period runs from December 1, 1993 to November 25, 

1998, totaling 261 observations per time series. The use of Wednesday observations 

minimized the number of missing observations in the data set. There were eight missing 

Wednesday observations across all countries for interest rates or FX. These dates were 

backfilled using observations from the day before.  

Spot LIBOR at maturities of 3, 6, 9, and 12 months and swap rates at maturities of 2, 

5, 7, and 10 years were used to derive forward LIBOR curves. These maturities constitute 

the key rate maturities. Standard Granger causality tests, reported in the appendix, 
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indicate that daily spot swap rates Granger-cause daily spot LIBOR rates, but not the 

converse. To mitigate potential distortion to measured correlations of daily changes in 

rates, weekly changes in risk factors, and hence a weekly holding period for the VaR, was 

employed in the simulations.7  

All derivatives considered in this study have quarterly resets. Linear interpolation was 

used to fill out points along the yield curve: 8 key rates were expanded into 40 rates at 

quarterly maturity intervals out to 10 years.8 Spot swap rates with maturity less than 2 

years were derived from the spot LIBOR rates. In turn, daily 3-month forward LIBOR 

curves in each currency were derived from the spot swap rate curve.9  

The forward LIBOR curve was used to construct a discount bond price curve and 

corresponding yield curve. Yields are more compactly represented in a principal 

component decomposition and are less contaminated by noise than are forward rates. 

Yields are the variables that get simulated in the VaR calculations. Bond prices are 

needed as inputs into the Black model for pricing interest-rate derivatives.  

Covariance Matrix  

The five-year data sample is subdivided into five subsamples, each spanning one year 

starting with the first Wednesday in December. This choice was motivated by the Basle 

Committee for Banking Supervision’s internal models approach for setting regulatory 

                                                 
7 The general issue of data nonsynchroneity is discussed in RiskMetrics (RM Data Sets.pdf), section 8.5. 
Strips of Eurodollar futures rates for intermediate tenors are often used in constructing LIBOR curves. See 
Overdahl et al. (1997). 
8 Linear interpolation of a small set of key rates is a problematic practice because the resulting forward 
curve takes a saw-tooth shape. A difference in liquidity between the interbank deposit market (the spot 
LIBOR rates) and the swap market may also contribute to a jump in the derived forward LIBOR curve 
where the two maturity segments join. See Wang (1994).  
9 Formulas and conventions for LIBOR-based derivatives are described in Rebonato (1998) and Musiela 
and Rutkowski (1997). 
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capital for trading portfolios.10 (The U.S. banking regulations for using VaR for capital 

determination, which derive from the Basle framework, stipulate that no less than one 

year’s worth of daily data be incorporated into the covariance matrix and that a given 

yield curve incorporate no fewer than six “segments” of the curve “to capture differences 

in volatility and less than perfect correlation of rates along the yield curve.”11) 

The full covariance matrix consists of interest rate and foreign exchange rate blocks 

of risk factors: the yield curve key rates from each country and their exchange rates, 

giving a total of 31 factors. A stratified principal component decomposition of each yield 

curve, retaining the four largest factors, reduced the dimension of the covariance matrix 

to 19 19× . The first four principal components captured at least 97 percent of the total 

variation in the interest rate data in each currency. Tables 2–6 show the stratified 

correlation matrix for 1995–1998, respectively, where correlations for the first three 

interest rate PCs are displayed to conserve space. The currency labels are USD, DEM, 

CHF, and GBP, denoting the U.S., Germany, Switzerland, and U.K, respectively. The 

transformation of the original covariance matrix into the stratified matrix is similar to the 

standard decomposition of a covariance matrix in (2). The off-diagonal blocks, such as 

the covariance of DEM principal components with USD principal components, are 

computed by pre- and post-multiplying the original covariance matrix block by the DEM 

and USD blocks of eigenvector matrices, respectively. The main diagonal of own-country 

interest rate principal component blocks are identity matrices since principal components 

are orthonormal. However, the off-diagonal blocks show a pattern of correlations 

between countries that exhibits a degree of stability from year to year. 

                                                 
10 Basle Committee on Banking Supervision, “Amendment to the Capital Accord to Incorporate Market 
Risk,” January 1996. 
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The tables indicate correlations greater than 0.20 in absolute value in dark shading. 

The cross-correlations of PCs in the off-diagonal blocks tend to show positive correlation 

of corresponding PCs—for example, first USD PC with first DEM PC. The results are 

variable from year to year, with 1998 having the greatest correlations and 1997 the 

weakest. 

Exchange rate–interest rate principal component correlations, though strong at times 

(such as the first Swiss interest rate PC versus FX rates in 1995), are much more erratic. 

However, the FX block has high cross-rate FX correlation every year. 

Portfolio Construction 

An arbitrary set of positions in each instrument is assumed for each currency. The 

basic portfolios are designed to investigate nonlinear payoffs, the classic inverted “U” of 

a negative gamma exposure. As in any Monte Carlo exercise, the results do not 

necessarily generalize. They are valid for the particular portfolios being examined. 

However, qualitatively similar results were obtained for other test portfolios, which are 

not reported here to conserve space.  

The portfolios consist of identical positions in derivatives in each currency that have 

identical U.S. dollar notional value ($10,000) at the initial date. The four types of 

portfolios are: 

1. 10-year pay-fixed/receive floating swaps at current market rates. 

2. 6-year caps and floors. At-the-money long cap and long floor (that is, strikes are 
set equal to the current forward LIBOR curve). Short out-of-the-money caps and 
floors with strikes set equal to exp( 3 )T TL σ± , where T  is the reset date of a 

caplet, TL is forward LIBOR for time T , and Tσ  is the volatility of forward 
LIBOR for a weekly holding period. The notional value of the out-of-the-money 
positions is twice that of the at-the-money positions.  

                                                                                                                                                 
11 See footnote 1.  
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3. 3-month caplets and floorlets. This portfolio is the first leg of (2), but with out-
of-the-money strikes spaced at 2 Tσ± . 

4. 6-month swaptions on forward-start 9-year pay-fixed swaps. The portfolio has 
the same structure as (2) and (3). The strike for the long at-the-money payor and 
receiver swaptions is the current forward swap rate for a 9-year swap. The strikes 
for the short out-of-the-money payor and receiver swaptions is exp( 3 )T TS σ± , 

where TS  is the forward swap rate and Tσ  is its volatility.12 

The swap portfolio is taken as the base case because swaps were used in JZ’s examples. 

The caps/floors portfolio is an intermediate-term options portfolio. The caplets/floorlets 

portfolio is a short-dated options portfolio. The swaptions portfolio is a shorted-dated 

options portfolio on a long-maturity reference rate.  

These portfolios involve all currencies and identical positions. The inherent 

diversification of a multicurrency portfolio will ameliorate extreme outcomes, although 

key interest rate PC cross correlations tend to be (weakly) positive, propagating shocks in 

the same direction across portfolios. Because the FX–interest rate correlations are weaker 

than the interest rate block cross correlations, the FX shocks mainly register as noise in 

the results.  

Figure 1 shows the payoff profiles as of the initial date and exchange rates to shocks 

ranging 3±  standard deviations (measured weekly) of the underlying forward LIBOR, 

swap, or forward swap rates; that is, the current underlying TL  is varied from 

exp( 3 )T TL σ−  to exp( 3 )T TL σ+ . The first panel of Figure 1 illustrates the approximately 

linear response (except for a very slight convexity effect) of the individual swaps in each 

currency in the portfolio. All have zero value at the current market rate. The remaining 

figures exhibit negative convexity to different degrees. These figures simply trace out the 

pricing function as the underlying rate varies. The VaR results will assess the portfolio 
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performance as simulated interest rate and currency shocks hit these portfolios over the 

weekly holding period. A volatility shock could also readily be included as an additional 

risk factor in each market, but the focus of this study is on “price” risk, as in JZ. 

Risk Factor Simulation 

Following the examples in JZ, risk factors are simulated as lognormal processes. 

Incorporating other continuous distributions for the risk factors is readily done using the 

fractile-to-fractile mapping described in Hull and White (1998).  

For the crude Monte Carlo simulation, the vector of risk factors RF at the one-week 

horizon is generated by 

(12) ( )0exp=RF RF u , 

where the vector of shocks ~ (0, )N Qu  and is 35 1× . The risk factors are the eight key 

rates along the yield curve for each country and three foreign exchange rates. For the 

stratified principal component simulation, the vector is given by 

(13) ( )0exp=RF RF u% , 

where  

3 18 4 4 4 4 1
USD USD USD DEM DEM DEM CHF CHF CHF GBP GBP GBP FXE E E Eη η η η

×× × ×

′ ′ ′ ′= Λ Λ Λ Λu u%  , 

1 2x x  denotes stacked vectors, and NE  is the truncated eigenvector matrix for country N 

that retains eigenvectors corresponding to the four largest eigenvalues of that country’s 

yield curve. The interest rate principal components and FX rate shocks are 

 | | | ~ (0, )s
USD USD GBP GBP FX N Qη ηΛ Λ uL ,  

                                                                                                                                                 
12 A receiver swaption is a call on a swap; that is, the right to receive fixed and pay floating. A payor 
swaption is a put on a swap; that is, the right to pay fixed and receive floating.  
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where sQ  is the 19 19×  stratified covariance matrix. The main diagonal of the stratified 

covariance matrix contains the (stratified) eigenvalues of the principal components and 

its last three elements are the variances of the log changes in exchange rates.  

Scenario simulation tabulates risk factors and corresponding changes in portfolio 

value in a lookup table. The risk factor equation is equivalent to (13), except that the 

vector of shocks u%  is replaced by  

(14) 
3 18 4 4 4 4 1

ˆ USD USD USD DEM DEM DEM CHF CHF CHF GBP GBP GBP FXE B E B E B E B B
×× × ×

′ ′ ′ ′= Λ Λ Λ Λu ,  

where NB  is a vector of standardized discrete shocks to country N’s yield curve that have 

been stored as a particular scenario, as in the example displayed in Table 1, and FXB  

contains standardized discrete shocks to the exchange rates. Separate lookup tables for 

interest rate scenarios and corresponding changes in portfolio values are constructed for 

each currency. FX rate changes are also tabulated in separate lookup tables. As discussed 

above, Monte Carlo simulation is used to sample from the discretized joint distribution of 

the risk factors. The correlated normal random variables X  defined by (10) drives the 

sampling from both interest rate and exchange rate scenarios, which translate the 

discretized multicurrency portfolio value changes back into dollars. 

Portfolio Valuation 

The VaR evaluated in this study represents a ten-day exposure, measured from the 

first business day of December for each year in the sample. Each portfolio is priced at the 

initial date and fully revalued ten days later. On each draw, the simulated 8 yield risk-

factor values per currency are interpolated to a set of 40 yields, from 3 months to 10 years 

at quarterly maturity intervals. The corresponding discount price curve is computed, 
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which provides the discount factors for all options-based instruments and from which is 

derived spot and forward swap rates (for swaps and swaptions) or the forward LIBOR 

curve (for caps and caplets).  

Caps, floors, and swaptions are valued by the standard one-factor Black model. 

Although once regarded as an inconsistent, ad hoc application of the Black-Scholes 

model to interest rate derivatives, in recent years academic research has established that 

the model is fully consistent and arbitrage-free when applied to single instrument classes, 

such as caps or swaptions.13  

In the examples below, a VaR run consists of 1,000 draws for Monte Carlo risk factor 

vector (12) or principal components risk factor vector (13), and 10,000 draws for scenario 

simulation vector (14), which drives the sampling from the joint discrete distribution for 

the portfolio value changes. Although 1,000 draws is relatively small and inaccurate for 

crude Monte Carlo (that is, without variance reduction techniques), this number is of the 

same order of magnitude as the number of iterations that large banks use for Monte Carlo 

and historical VaR simulation. Scenario simulation can be iterated to much higher 

numbers for the same total CPU time as Monte Carlo; 10,000 iterations was arbitrarily 

chosen. All of these runs are repeated 20 times and the means and standard errors of the 

resulting VaRs are reported in Table 8. 

Two discretization choices for four principal components were used for scenario 

simulation: a coarse discretization of 7 5 3 3× × × , yielding 315 distinct scenarios for a 

                                                 
13 See Rebonato (1998) or Musiela and Rutkowski (1997). The Black model for interest rate derivatives can 
be derived as a single-factor, lognormal case of the Brace-Gatarek-Musiela (1995) model. The Black model 
is inconsistent across instruments, the most notable case being the model’s simultaneous assumption that 
forward LIBOR is lognormally distributed in valuing caps while forward swap rates are lognormally 
distributed in valuing swaptions. Nevertheless, this discrepancy is negligible compared to other sources of 
error in VaR calculations. Furthermore, most practitioners and some academics disregard the inconsistency 
in pricing and hedging applications (see Jamshidian (1997) and Derman (1996)). 
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single country’s yield curve, and a fine discretization of 11 7 5 5× × × , giving 1925 

scenarios. The fine discretization is intended to sample deeper into the tails of the risk 

factor distributions to approximate more accurately the convexity of the option portfolios. 

Foreign exchange rate distributions were discretized into 7 states for both high and low-

density interest rate discretizations. 

The results in the next section are based on crude Monte Carlo, principal component 

Monte Carlo, and scenario simulation runs. The VaR outcome for each of the methods is 

repeated 20 times to determine empirical distributions of the estimates for each method.  

 
5. Test Portfolio VaR Results.  

The simulation results are sensitive to time period and to type of portfolio. Chart 1 

summarizes the output for the basic portfolios for the full four-currency portfolios. The 

panels give a relative comparison of 99th percentile VaRs, based on averages of 20 

simulation runs. Within the chart, each panel gives individual yearly results, for each type 

of instrument portfolio (caps, caplets, swaps, and swaptions). The bars on the left show 

the percentage deviation of the principal component VaR in relation to the Monte Carlo 

VaR. The central bars indicate the comparison of the 7 5 3 3× × ×  scenario simulation 

(SS7) with principal components taken as the benchmark, and the bars on the right 

represent the comparison of the 11 7 5 5× × ×  scenario simulation (SS11) with principal 

components.  

At the 99th percentile level, the PC/MC comparison for swaps is in good agreement—

off by less than 1.5 percent, except for 1997 where the discrepancy is an underestimate 

by PC of 7.5 percent. The PC/MC match is good for the nonlinear instruments, except for 

caplets in 1996 and swaptions, for which a 5 percent gap exits in most years. Evidently, 
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the approximation error due to excluding higher order PCs as risk factors has a disparate 

impact on the VaR outcomes, particularly for nonlinear instruments. The PC results are 

taken as the benchmark for scenario simulation rather than the Monte Carlo results in 

order to keep errors arising from discretization distinct from those stemming from PC 

approximation of the risk factors.14 

The deviations in Chart 1 tend to be in the same direction from year to year for each 

instrument portfolio, with scenario simulation understating the VaR in relation to PC 

simulation. These gaps can be substantial. The 1995 SS7 underestimates the VaR by over 

20 percent and the SS7 swaption errors are consistently greater than 10 percent. The 

discrepancy narrows only slightly in the SS11 results. In the case of the caps, the 

deviation reverses sign and equals or exceeds 10 percent in 1994, 1997, and 1998. Table 

7 gives the output in tabular form along with the corresponding 95th percentile results, 

while Table 8 shows the dollar values of the VaRs and corresponding standard 

deviations, as well as the standard error for the mean of the 20 VaR estimates. Generally, 

the differences in outcomes across simulation runs, particularly for scenario simulation, 

are statistically significant. 

These results contrast with JZ’s, who find in their single currency swap examples that 

scenario simulation VaRs (at the 97.5 and 99 percent confidence levels) differ by no 

more than 2 percent from the Monte Carlo results. In their Table 6, JZ give an example of 

                                                 
14 Furthermore, one can argue that Monte Carlo is not the appropriate benchmark against which to judge 
the other results because Monte Carlo places too few restrictions on the way in which key rates can evolve 
through time. The covariance matrix only weakly constrains the way shocks hit the yield curve. Monte 
Carlo allows improbable movements in yields of different maturities in relation to one another, such as the 
6-month and 2-year key rates rising sharply as the 1-year key rate falls. On the other hand, shocking 
principal components greatly limits the possible configuration of relative rate movements. However, low-
order representations of the term structure, such as by two or three components, limit the possible 
movements and shapes too much. See Rebonato (1998), chapter 3. Another consideration is that the 
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a multicurrency interest rate swap portfolio, but they only report results for one 

discretization that is sampled at different iteration levels and make no comparison to 

Monte Carlo.  

Accounting for Erratic Results 

The variation in scenario simulation results in relation to the PC benchmarks appears to 

be analogous to well-known behavior of binomial option pricing models—namely, as the 

density of the approximating lattice decreases, the binomial model value oscillates more 

widely around the true analytic price. A similar phenomenon may account for the 

scattered values of the scenario simulation VaR around the PC benchmark. Simply 

increasing the number of nodes by using a moderate number of time steps remedies the 

oscillation problem for standard options. In contrast, the computational burden of 

scenario simulation rapidly becomes excessive as the discretization of each state becomes 

finer.  

The size of the deviations induced by coarse discretizations of the risk factors and 

their variation with finer discretizations is examined systematically in another simulation 

exercise. The interest-rate derivatives portfolios above are too complex to use in a 

computationally intensive convergence analysis. Instead, simplified linear and nonlinear 

portfolios are used. The linear portfolio consists of two assets, with one unit of each. 

Each unit is valued initially at par. Their prices are correlated and are lognormally 

distributed. The VaR of the portfolio is determined by scenario simulation, with each 

price (risk factor) distribution discretized into an equal number of odd-numbered states 

ranging from 5 to 63. The nonlinear portfolio is similar to the interest rate caplet portfolio 

                                                                                                                                                 
excluded higher order PCs contain most of the errors in the data. Monte Carlo includes all sources of 
variation. 
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above, with out-of-the-money options spaced at two standard deviations from the at-the-

money price; instead of four currencies there are two prices. The constituent options are 

priced by Black-Scholes as before. 

Chart 2 displays the percentage deviation of the scenario simulation VaRs for the 

linear portfolio, at both the 95th and 99th percentile levels, from the VaR computed by the 

standard covariance method. The upper panel shows the outcome for zero correlation 

between the two risk factors; the lower the results for a correlation of 0.5. Each 95th and 

99th percentile VaR pair for a given discretization level was generated based on one 

million scenario simulation draws. Virtually the same plot is reproduced if the 

simulations are repeated—the deviations do not predominately represent random 

“sampling variation.” The pattern varies with instrument portfolio and correlation 

assumption. 

Qualitatively, the two plots for the linear portfolio are similar: the most striking 

aspect of these graphs is that the deviations oscillate in an irregular pattern as the 

discretization becomes finer. Although the fluctuations diminish as the number of states 

in a simulation run increases, they are still sizable—convergence is slow. For the coarse 

discretization cases that would typically be used for scenario simulation, the deviations 

can swing 15 to 20 percentage points from one discretization level to the next. Although 

accurate results are possible with a coarse discretization, the problem is knowing which 

size partition achieves an accurate approximation. Another feature of the plots is that 

throughout the range of discretization fineness, the 99th percentile scenario simulation 

VaRs appear to underestimate the corresponding Monte Carlo VaR more so than do the 

95th percentile scenario simulations. 
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The volatility in the convergence results is most pronounced in the tails of the 

distribution of changes in portfolio value, the area that matters for VaR measurement. In 

contrast, the means and medians of these empirical distributions (considered by 

instrument or correlation assumption) show much less variation as the number of states 

per risk factor increases. For the linear portfolio, the standard deviation of the VaRs at the 

99th or 95th percentile level, computed across all discretizations levels in Chart 2, is about 

100 times greater than the standard deviation of the medians of the empirical distributions 

and 25 times greater than that for the means. 

The pattern for the nonlinear portfolio shown in Chart 6 differs from the one in Chart 

5 mainly in the substantial underestimate of the scenario simulation VaR in relation to the 

corresponding Monte Carlo VaR. The sizable understatement diminishes only at 

discretization levels—about 13 to 20 states per factor—that probably are impractical for 

scenario simulation on large portfolios. As in the linear case, there also appears to be a 

stronger tendency for the 99th percentile VaRs to underestimate the actual 99th percentile 

VaR compared to the 95th percentile results.15  

6. Conclusions 
 
The chief difficulty with standard Monte Carlo and principal component simulation in 

VaR applications is the potentially intractable number of portfolio revaluations that must 

be made in the course of computing VaR for very large portfolios. Jamshidian and Zhu 

have suggested scenario simulation as a solution that permits the use of full revaluation. 

                                                 
15 Non-parametric 99 percent confidence intervals on the Monte Carlo benchmarks are:  
 

Correlation 99% VaR 95% VaR 
0.0 (-0.85%, 0.63%) (-0.64%, 0.50%) 
0.5 (-0.98%, 0.67%) (-0.71%, 0.58%) 
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This paper has clarified the mechanics of computing VaR by scenario simulation and has 

compared the VaR results from scenario simulation on several LIBOR-derivatives 

portfolios with those from standard Monte Carlo and principal component simulation.  

For the multicurrency interest rate derivatives portfolios examined in this paper, 

the relative performance of scenario simulation was erratic. The outcomes for the 

nonlinear test portfolios demonstrate that scenario simulation using low- and moderate- 

dimensional discretizations can give “poor” estimates of VaR. Although the discrete 

distributions used in scenario simulation converge to their continuous distributions, 

convergence appears to be slow, with irregular oscillations that depend on portfolio 

characteristics and the correlation structure of the risk factors. It would therefore be 

prudent for any bank adopting this approach to test scenario-simulated VaR results 

periodically against results from standard Monte Carlo or principal component 

simulation. 

 

   

                                                                                                                                                 
The two-sided confidence intervals were computed using the method in Morokoff et al. (1998). 
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Appendix 
 
Standard Granger causality tests were run on “adjacent” maturity spot LIBOR tL  and 

swap rates tS  to determine the degree of nonsynchroneity in the two data sources for the 

LIBOR term structure. The spot LIBOR maturity was 1 year and the swap rate tenor was 

2 years, the breakpoint in the market data used to estimate the forward LIBOR curve. The 

following autoregression tests the null that coefficients 1 2 0pβ β β= = = =L , that is, the 

swap rates do not Granger-cause spot LIBOR: 

(A.1) 1
1 1

p p

t j t j j t j
j j

L c L Sα β− −
= =

= + +∑ ∑ . 

 
Similarly, the null that spot LIBOR does not Granger-cause the swap rate is assessed 

using 

(A.2) 2
1 1

p p

t j t j j t j
j j

S c S Lα β− −
= =

= + +∑ ∑ . 

These autoregressions are run on both daily and weekly interest rate data. The null is 

tested based on the White heteroscedasticity-consistent covariance matrix estimator; 

hence a chi-square rather than an F statistic is reported.  

Granger Causality Tests 
  Daily  Weekly 

Variable 
tested: 

 
LIBOR 

Swap 
Rate 

 
LIBOR 

Swap 
Rate 

USD 2χ  22.5 300.19  7.95 29.97 
 p-value 0.001 0  0.242 0 

DEM 2χ  7.08 244.39  10.23 11.86 
 p-value 0.31 0  0.115 0.065 

CHF 2χ  8.17 273.36  13.35 18.2 
 p-value 0.226 0  0.038 0.006 

GBP 2χ  13.39 312.78  10.53 14.6 
 p-value 0.037 0  0.104 0.024 

 



 29

The table shows the results for 6 lags in the autoregressions. Qualitatively similar results 

were obtained for other values of p. The chi-square values overwhelmingly indicate that 

swap rates Granger-cause spot LIBOR in the daily data, with weaker reverse feedback 

from LIBOR to the swap rate for USD and GBP. Switching to a weekly periodicity 

greatly reduces the magnitudes of the chi-square statistics for the swap rates, although 

Granger-causation is still highly statistically significant for USD, CHF, and GBP. 
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Table 2 
Correlation Matrix for 1994 

 
Orange or dark shading denotes correlation coefficients ≥ 0 20. . 

 
Table 3  

Correlation Matrix for 1995 

 
 

Orange or dark shading denotes correlation coefficients ≥ 0 20. . 

   USD   DEM   CHF   GBP     

  PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 DEM CHF GPB 

 PC1 1.0000 0.0000 0.0000                         

USD PC2 0.0000 1.0000 0.0000                 

 PC3 0.0000 0.0000 1.0000                         

 PC1 0.2433 -0.0357 0.1458 1.0000 0.0000 0.0000                   

DEM PC2 -0.2416 0.0137 0.0724 0.0000 1.0000 0.0000             

 PC3 0.1810 -0.0906 -0.1117 0.0000 0.0000 1.0000                   

 PC1 0.2366 0.1240 0.2267 0.7006 -0.0345 -0.0837 1.0000 0.0000 0.0000             

CHF PC2 -0.2309 0.0207 0.2085 -0.3727 0.3201 -0.0895 0.0000 1.0000 0.0000         

 PC3 0.0708 0.0886 -0.1887 0.0094 -0.5085 0.2588 0.0000 0.0000 1.0000             

 PC1 0.4194 -0.0908 -0.1216 0.5305 -0.3091 0.1053 0.4163 -0.4553 0.1207 1.0000 0.0000 0.0000       

GBP PC2 -0.2337 0.0954 0.1328 -0.1965 0.4296 -0.1241 -0.1825 0.1844 -0.2631 0.0000 1.0000 0.0000     

 PC3 0.0438 -0.0724 -0.0660 -0.0469 0.0377 0.3783 -0.2672 -0.0510 -0.1307 0.0000 0.0000 1.0000       

 DEM 0.0314 -0.0725 0.0206 -0.1388 0.2672 0.1691 -0.0511 0.1776 -0.1031 -0.1736 0.0332 0.0499 1.0000 0.9239 0.7634 

 CHF 0.1150 -0.0036 0.0726 -0.1197 0.2388 0.1932 -0.0426 0.1977 -0.1046 -0.1348 -0.0313 0.0040 0.9239 1.0000 0.7563 

 GPB 0.1943 -0.1161 0.0324 -0.0663 0.2006 0.2157 0.1110 0.3074 -0.1020 -0.0765 -0.1612 -0.0256 0.7634 0.7563 1.0000 

   USD   DEM   CHF   GBP     

  PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 DEM CHF GPB 

 PC1 1.0000 0.0000 0.0000             

USD PC2 0.0000 1.0000 0.0000             

 PC3 0.0000 0.0000 1.0000             

 PC1 0.2977 0.2511 0.1268 1.0000 0.0000 0.0000          

DEM PC2 -0.4841 0.0152 0.0831 0.0000 1.0000 0.0000          

 PC3 0.0688 0.0644 0.1454 0.0000 0.0000 1.0000          

 PC1 0.0872 0.1761 0.0553 0.5861 0.1963 -0.0588 1.0000 0.0000 0.0000       

CHF PC2 -0.3354 -0.0020 -0.0035 -0.3962 0.5769 0.0562 0.0000 1.0000 0.0000       

 PC3 -0.0124 0.1440 0.0728 -0.0835 0.0840 0.0833 0.0000 0.0000 1.0000       

 PC1 0.4785 0.1449 0.0788 0.4872 -0.5455 0.0555 0.1444 -0.4044 -0.1173 1.0000 0.0000 0.0000    

GBP PC2 -0.0648 0.1061 0.0908 0.0392 0.4639 0.1713 0.1627 0.2105 0.1186 0.0000 1.0000 0.0000    

 PC3 0.2025 0.1449 0.0325 0.2762 -0.0923 0.2700 -0.0187 -0.3401 0.1400 0.0000 0.0000 1.0000    

 DEM -0.1973 0.0410 -0.1658 0.1313 0.2656 -0.3284 0.4029 0.0970 0.0320 -0.2285 0.0287 -0.1690 1.0000 0.9480 0.7821 

 CHF -0.1110 0.0157 -0.0788 0.2146 0.1769 -0.2842 0.4599 -0.0012 -0.0406 -0.1278 0.0159 -0.1737 0.9480 1.0000 0.7399 

 GPB -0.2338 -0.1090 -0.2077 0.0544 0.2291 -0.1911 0.2107 0.2654 -0.0347 -0.1588 -0.1547 -0.1733 0.7821 0.7399 1.0000 
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Table 4 
Correlation Matrix for 1996 

   USD   DEM   CHF   GBP     

  PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 DEM CHF GPB 

 PC1 1.0000 0.0000 0.0000                         

USD PC2 0.0000 1.0000 0.0000                 

 PC3 0.0000 0.0000 1.0000                         

 PC1 0.1835 0.1280 -0.0053 1.0000 0.0000 0.0000                   

DEM PC2 -0.3702 -0.0632 -0.0320 0.0000 1.0000 0.0000             

 PC3 0.1874 -0.0636 -0.0646 0.0000 0.0000 1.0000                   

 PC1 0.1885 0.0743 0.0426 0.2008 -0.5270 0.0857 1.0000 0.0000 0.0000             

CHF PC2 0.0028 0.0696 -0.0599 0.2304 0.1536 -0.3383 0.0000 1.0000 0.0000         

 PC3 -0.1078 -0.0376 -0.2738 -0.2031 0.2122 0.1032 0.0000 0.0000 1.0000             

 PC1 0.2976 -0.0748 -0.1314 0.0387 -0.3411 0.2986 0.1992 -0.1477 -0.2207 1.0000 0.0000 0.0000       

GBP PC2 -0.3897 0.1677 -0.1583 0.0812 0.2347 -0.3899 -0.2045 0.2512 0.0176 0.0000 1.0000 0.0000     

 PC3 -0.0415 -0.1877 0.0432 -0.1639 0.1666 -0.0255 0.1491 -0.2525 0.1632 0.0000 0.0000 1.0000       

 DEM -0.1648 0.0493 -0.0433 -0.0331 0.3982 -0.0179 -0.0414 0.1605 0.2381 -0.3227 0.1500 0.0664 1.0000 0.9082 0.5467 

 CHF -0.1446 0.1074 -0.0079 -0.0147 0.2580 0.0678 0.1123 0.0395 0.2135 -0.2431 0.1968 0.0786 0.9082 1.0000 0.3939 

 GPB 0.0158 -0.1582 0.0315 -0.1182 0.4321 0.1001 -0.2499 0.2005 0.1301 -0.3019 -0.1001 -0.1275 0.5467 0.3939 1.0000 

 
Orange or dark shading denotes correlation coefficients ≥ 0 20. . 

 
Table 5 

Correlation Matrix for 1997 
 

 
Orange or dark shading denotes correlation coefficients ≥ 0 20. .

   USD   DEM   CHF   GBP     

  PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 DEM CHF GPB 

 PC1 1.0000 0.0000 0.0000                         

USD PC2 0.0000 1.0000 0.0000                 

 PC3 0.0000 0.0000 1.0000                         

 PC1 0.2038 0.2331 -0.2225 1.0000 0.0000 0.0000                   

DEM PC2 -0.4812 -0.0061 -0.0237 0.0000 1.0000 0.0000             

 PC3 0.3724 -0.2849 0.1437 0.0000 0.0000 1.0000                   

 PC1 -0.0521 0.2049 -0.0963 0.1181 -0.3524 -0.3831 1.0000 0.0000 0.0000             

CHF PC2 -0.2835 -0.1072 0.2664 -0.3935 0.2929 -0.2211 0.0000 1.0000 0.0000         

 PC3 0.1981 -0.0974 -0.1996 0.0757 -0.0847 -0.0414 0.0000 0.0000 1.0000             

 PC1 0.3952 0.1504 0.0119 0.1930 -0.4372 0.3689 0.0344 -0.2904 0.1653 1.0000 0.0000 0.0000       

GBP PC2 -0.4174 0.3071 -0.0839 -0.1467 0.2206 -0.3406 -0.0340 0.1567 0.1784 0.0000 1.0000 0.0000     

 PC3 -0.1641 0.1786 0.0832 0.1539 -0.1095 -0.2622 0.1541 0.0241 -0.3206 0.0000 0.0000 1.0000       

 DEM -0.0067 0.1331 -0.2346 0.0235 0.0594 -0.1519 0.0677 -0.0728 0.0815 -0.1494 -0.0170 0.0382 1.0000 0.8619 0.5048 

 CHF 0.0445 0.0899 -0.2982 0.0595 0.0594 -0.1570 0.1325 -0.1244 0.0245 -0.2129 -0.0648 0.0383 0.8619 1.0000 0.5042 

 GPB 0.0636 0.0025 0.0284 0.1569 -0.1351 -0.1548 0.2061 -0.1543 0.0300 -0.1859 -0.2212 0.2953 0.5048 0.5042 1.0000 
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Table 6 
Correlation Matrix for 1998 

   USD   DEM   CHF   GBP     

  PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 DEM CHF GPB 

 PC1 1.0000 0.0000 0.0000                         

USD PC2 0.0000 1.0000 0.0000                 

 PC3 0.0000 0.0000 1.0000                         

 PC1 0.5895 0.1920 0.1399 1.0000 0.0000 0.0000                   

DEM PC2 -0.1843 0.3053 -0.1411 0.0000 1.0000 0.0000             

 PC3 -0.0164 0.1013 0.4459 0.0000 0.0000 1.0000                   

 PC1 0.2457 0.2168 -0.3287 0.2157 0.1724 -0.3276 1.0000 0.0000 0.0000             

CHF PC2 -0.4962 0.1380 -0.3000 -0.5829 0.2149 0.1660 0.0000 1.0000 0.0000         

 PC3 -0.0526 -0.3017 0.2418 -0.0585 -0.2248 -0.0174 0.0000 0.0000 1.0000             

 PC1 0.3325 0.0345 0.2870 0.4608 -0.3084 0.1082 0.0504 -0.4726 0.1368 1.0000 0.0000 0.0000       

GBP PC2 0.0275 0.2709 -0.1490 -0.0509 0.2179 -0.0809 0.0849 0.1430 0.0367 0.0000 1.0000 0.0000     

 PC3 -0.0440 -0.1809 0.3284 -0.0185 -0.1246 0.1316 -0.1899 -0.1496 0.0957 0.0000 0.0000 1.0000       

 DEM 0.2576 0.0872 -0.3963 0.1789 -0.0970 0.0143 0.2737 0.0900 -0.3002 0.2587 0.0303 -0.1092 1.0000 0.9109 0.5094 

 CHF 0.2706 0.0921 -0.4253 0.2371 -0.0515 -0.1046 0.4369 -0.0251 -0.2704 0.3278 -0.0036 -0.1872 0.9109 1.0000 0.3912 

 GPB 0.1794 -0.0708 -0.2995 0.0843 -0.0901 -0.1089 0.1925 0.1464 -0.1175 -0.2163 0.0882 -0.0387 0.5094 0.3912 1.0000 

 
 

Orange or dark shading denotes correlation coefficients ≥ 0 20. .
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Chart 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PC/MC denotes the percentage deviation of the principal components VaR from 
the Monte Carlo VaR; SS7/PC denotes the 7 5 3 3× × ×  scenario simulation VaR 
relative to principal components VaR; SS11/PC denotes the 11 7 5 5× × × scenario 
simulation VaR relative to principal components VaR. 
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Chart 1, continued 
 
 

 
 

 
 
 
PC/MC denotes the percentage deviation of the principal components VaR from 
the Monte Carlo VaR; SS7/PC denotes the 7 5 3 3× × ×  scenario simulation VaR 
relative to principal components VaR; SS11/PC denotes the 11 7 5 5× × × scenario 
simulation VaR relative to principal components VaR. 
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Table 7 

Four-Currency Interest Rate Derivate Portfolios 
 
 

1994 Caps/Floors  Caplets/Floorlets Swaps  Swaptions 
 99th 95th   99th 95th  99th 95th   99th 95th

PC/MC -3.90 -1.28 -2.89 -1.35 1.52 -1.06 -3.95 -3.12
SS7/PC -5.82 -3.93 -10.29 -5.86 -6.08 -2.24 -10.65 -5.12
SS11/PC 9.14 15.21  -6.78 -4.19  -3.33 -0.19  -8.25 -8.35
            
1995 Caps/Floors  Caplets/Floorlets Swaps  Swaptions 

 99th 95th   99th 95th  99th 95th   99th 95th
PC/MC -3.99 -5.09 1.22 -2.18 0.44 1.02 -4.45 -3.82
SS7/PC -21.88 -17.74 -12.35 -4.77 -6.18 -3.65 -11.17 -6.48
SS11/PC 2.09 13.47  -8.23 -3.76  -2.40 -0.54  -7.98 -9.87
            
1996 Caps/Floors  Caplets/Floorlets Swaps  Swaptions 

 99th 95th   99th 95th  99th 95th   99th 95th
PC/MC -0.09 -0.99 -8.14 -9.52 -1.52 -4.30 -5.92 -4.28
SS7/PC -11.11 -7.49 -7.26 -5.29 -4.62 -1.37 -12.71 -7.90
SS11/PC 1.13 7.24  -4.69 -4.84  -1.17 0.91  -9.27 -8.67
            
1997 Caps/Floors  Caplets/Floorlets Swaps  Swaptions 

 99th 95th   99th 95th  99th 95th   99th 95th
PC/MC -2.00 -5.75 0.94 -4.24 -7.56 -1.95 -1.32 -6.21
SS7/PC -9.30 -3.56 -11.06 -6.19 -3.44 -3.71 -16.83 -8.56
SS11/PC 10.48 22.80  -7.56 -4.61  -0.98 -1.46  -12.76 -10.49
            
1998 Caps/Floors  Caplets/Floorlets Swaps  Swaptions 

 99th 95th   99th 95th  99th 95th   99th 95th
PC/MC 0.67 -1.62 -2.02 -2.57 -0.17 -2.83 -5.76 -4.11
SS7/PC -2.93 0.66 -6.66 -3.75 -7.06 -2.61 -14.40 -8.32
SS11/PC 15.74 23.78  -4.87 -2.97  -4.01 -0.20  -10.82 -10.19
            

 
PC/MC is the percentage deviation of the principal component VaR from the Monte 
Carlo VaR. SS7/PC is the percentage deviation of the 7 5 3 3× × ×  scenario simulation 
VaR from the principal component VaR. SS11/PC is the percentage deviation of the 
11 7 5 5× × × scenario simulation VaR from the principal component VaR. 
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Table 8 
Detailed Results 

 
 
 

            

 1994: Caps/Floors 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th   99th 95th  99th 95th   99th 95th

VaR 159.153 111.127  152.946 109.700 144.040 105.383  166.926 126.387

Std Dev. 8.127 3.466  9.734 3.325 1.970 1.089  2.087 0.787

Std Error 1.817 0.775   2.177 0.743  0.440 0.243   0.467 0.176

            

 1994: Caplets/Floorlets 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th   99th 95th  99th 95th   99th 95th

VaR 2.674 1.437  2.597 1.418 2.330 1.334  2.421 1.358

Std Dev. 0.227 0.081  0.225 0.079 0.057 0.022  0.058 0.028

Std Error 0.051 0.018   0.050 0.018  0.013 0.005   0.013 0.006

            

 1994: Swaps 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th   99th 95th  99th 95th   99th 95th

VaR 940.829 648.902  955.140 642.013 897.066 627.647  923.356 640.762

Std Dev. 59.107 23.946  50.360 24.845 13.049 8.117  13.351 7.966

Std Error 13.217 5.355   11.261 5.556  2.918 1.815   2.985 1.781

            

 1994: Swaptions 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th   99th 95th  99th 95th   99th 95th

VaR 130.812 65.544  125.649 63.502 112.269 60.251  115.281 58.198

Std Dev. 10.996 4.782  12.274 4.701 3.219 1.445  3.010 1.009

Std Error 2.459 1.069   2.744 1.051  0.720 0.323   0.673 0.226

            
            

 
Results reported in dollars. The standard error is for the VaR at a given percentile, 
computed based on 20 runs of 1,000 iterations each for Monte Carlo and principal 
component VaR and 10,000 iterations for scenario simulation. 
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Table 8, continued 
Detailed Results 

 
 

 
 1995: Caps/Floors 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR 73.824 52.779 70.880 50.091 55.374 41.205 72.359 56.837

Std Dev. 4.667 1.910 3.777 2.125 0.814 0.379 0.845 0.361

Std Error 1.044 0.427  0.844 0.475  0.182 0.085  0.189 0.081

            

 1995: Caplets/Floorlets 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR 1.896 1.013 1.919 0.991 1.682 0.943 1.761 0.954

Std Dev. 0.275 0.048 0.205 0.105 0.035 0.019 0.036 0.019

Std Error 0.061 0.011  0.046 0.023  0.008 0.004  0.008 0.004

            

 1995: Swaps 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR 491.033 333.107 493.177 336.520 462.707 324.244 481.345 334.692

Std Dev. 19.749 15.063 29.659 16.037 8.865 4.157 7.262 5.181

Std Error 4.416 3.368  6.632 3.586  1.982 0.930  1.624 1.159

            

 1995: Swaptions 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR 59.544 30.463 56.895 29.298 50.539 27.401 52.357 26.408

Std Dev. 8.161 2.243 4.390 1.780 1.418 0.429 1.415 0.549

Std Error 1.825 0.502  0.982 0.398  0.317 0.096  0.316 0.123

            
            

 
Results reported in dollars. The standard error is for the VaR at a given percentile, 
computed based on 20 runs of 1,000 iterations each for Monte Carlo and principal 
component VaR and 10,000 iterations for scenario simulation. 
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Table 8, continued 
Detailed Results 

 
 
 

 1996: Caps/Floors 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR 81.816 58.560 81.744 57.980 72.660 53.638 82.666 62.176

Std Dev. 3.240 1.912 3.975 1.953 0.965 0.389 1.468 0.531

Std Error 0.724 0.428  0.889 0.437  0.216 0.087  0.328 0.119

            

 1996: Caplets/Floorlets 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR 2.070 1.096 1.901 0.992 1.763 0.939 1.812 0.944

Std Dev. 0.157 0.088 0.244 0.050 0.045 0.019 0.048 0.018

Std Error 0.035 0.020  0.054 0.011  0.010 0.004  0.011 0.004

            

 1996: Swaps 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR 479.380 333.362 472.100 319.029 450.281 314.660 466.572 321.944

Std Dev. 24.958 12.000 29.377 12.295 5.680 3.803 5.553 3.963

Std Error 5.581 2.683  6.569 2.749  1.270 0.850  1.242 0.886

            

 1996: Swaptions 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR 59.738 30.539 56.200 29.233 49.059 26.924 50.993 26.698

Std Dev. 7.046 2.134 5.280 2.087 1.149 0.413 1.309 0.609

Std Error 1.575 0.477  1.181 0.467  0.257 0.092  0.293 0.136

            
 

Results reported in dollars. The standard error is for the VaR at a given percentile, 
computed based on 20 runs of 1,000 iterations each for Monte Carlo and principal 
component VaR and 10,000 iterations for scenario simulation. 
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Table 8, continued 
Detailed Results 

 
 
 

 1997: Caps/Floors 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR 74.880 53.855 73.385 50.759 66.557 48.951 81.074 62.333

Std Dev. 4.696 2.266 4.007 2.293 0.998 0.405 1.111 0.458

Std Error 1.050 0.507  0.896 0.513  0.223 0.091  0.249 0.102

            

 1997: Caplets/Floorlets 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR 2.259 1.189 2.281 1.139 2.028 1.068 2.108 1.086

Std Dev. 0.218 0.076 0.232 0.063 0.048 0.027 0.084 0.025

Std Error 0.049 0.017  0.052 0.014  0.011 0.006  0.019 0.006

            

 1997: Swaps 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR 558.799 368.531 516.547 361.331 498.765 347.917 511.459 356.071

Std Dev. 19.522 14.999 30.331 19.930 6.500 5.030 9.029 3.694

Std Error 4.365 3.354  6.782 4.456  1.453 1.125  2.019 0.826

            

 1997: Swaptions 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR 68.428 35.532 67.523 33.326 56.162 30.472 58.906 29.829

Std Dev. 4.922 2.109 6.603 2.784 1.571 0.574 1.485 0.708

Std Error 1.101 0.472  1.476 0.622  0.351 0.128  0.332 0.158

            
 

Results reported in dollars. The standard error is for the VaR at a given percentile, 
computed based on 20 runs of 1,000 iterations each for Monte Carlo and principal 
component VaR and 10,000 iterations for scenario simulation. 
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Table 8, continued 
Detailed Results 

 
 
 

 1998: Caps/Floors 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR -59.022 -42.418 -59.416 -41.731 -57.677 -42.005 -68.770 -51.656

Std Dev. 3.485 1.903 3.451 1.855 0.838 0.319 0.931 0.476

Std Error 0.779 0.426  0.772 0.415  0.187 0.071  0.208 0.106

            

 1998: Caplets/Floorlets 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR -2.122 -1.091 -2.080 -1.063 -1.941 -1.023 -1.978 -1.032

Std Dev. 0.252 0.098 0.235 0.070 0.065 0.021 0.045 0.021

Std Error 0.056 0.022  0.053 0.016  0.014 0.005  0.010 0.005

            

 1998: Swaps 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR -481.901 -331.331 -481.069 -321.947 -447.116 -313.537 -461.794 -321.300

Std Dev. 17.660 13.655 25.037 13.649 7.782 4.240 7.434 3.308

Std Error 3.949 3.053  5.598 3.052  1.740 0.948  1.662 0.740

            

 1998: Swaptions 

 Monte Carlo  PC4  7x5x3x3  11x7x5x5 

 99th 95th  99th 95th  99th 95th  99th 95th

VaR -60.657 -30.439 -57.164 -29.187 -48.933 -26.759 -50.979 -26.211

Std Dev. 6.669 2.145 4.641 2.284 1.092 0.588 1.163 0.524

Std Error 1.491 0.480  1.038 0.511  0.244 0.132  0.260 0.117

 
Results reported in dollars. The standard error is for the VaR at a given percentile, 
computed based on 20 runs of 1,000 iterations each for Monte Carlo and principal 
component VaR and 10,000 iterations for scenario simulation. 
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Chart 2 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Each pair of VaRs at a given discretization level is derived from a simulation of 
1,000,000 iterations.  
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Chart 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Each pair of VaRs at a given discretization level is derived from a simulation of 
1,000,000 iterations. 

 
 

Convergence Properties of Scenario Simulation of Nonlinear Portfolio
Two risk factors with correlation = 0.5
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