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Abstract  
 

We describe a framework of a system for risk estimation and portfolio 
optimization based on stable distributions and the average value-at-risk risk 
measure. In contrast to normal distributions, stable distributions capture the fat 
tails and the asymmetric nature of real-world risk factor distributions. In 
addition, we make use of copulas, a generalization of overly restrictive linear 
correlation models, to account for the dependencies between risk factors during 
extreme events. Using superior models, VaR becomes a much more accurate 
measure of downside risk. More importantly Stable Expected Tail Loss (SETL) 
can be accurately calculated and used as a more informative risk measure. 
Along with being a superior risk measure, SETL enables an elegant approach to 
risk budgeting and portfolio optimization Finally, we mention alternative 
investment performance measurement tools.  
 

 
1. Introduction 

 
The two main conventional approaches to modeling asset returns are based either on a 
historical or a normal (Gaussian) distribution for returns. Neither approach adequately 
captures unusual behavior of asset prices and returns. The historical model is bounded by 
the extent of the available observations and the normal distribution model inherently 
cannot produce extreme returns. 
 
The inadequacy of the normal distribution is well recognized by the risk management 
community. To quote one major vendor: 
 

“It has often been argued that the true distributions returns (even after standardizing by 
the volatility) imply a larger probability of extreme returns than that implied from the 
normal distribution. Although we could try to specify a distribution that fits returns 
better, it would be a daunting task, especially if we consider that the new distribution 
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would have to provide a good fit across all asset classes.“ (Technical Manual, RMG, 
2001)  

 
There are many studies exploring the non-normality of assets returns and suggesting 
alternative approaches. Among the well known candidates are Student’s t distribution, 
generalized hyperbolic distributions (see Bibby and Sorensen (2003)) and stable Paretian 
distributions (see Rachev and Mittnik (2000)). At least some of their forms are 
subordinated normal models and thus provide a very practical and tractable framework. 
Rachev et al (2005) provide an introduction to heavy-tailed models in finance.  
 
In response to these challenges, we use generalized multivariate stable distributions and 
generalized risk-factor dependencies, thereby creating a paradigm shift to consistent and 
uniform use of the most viable class of non-normal probability models in finance. Our 
paper discusses re-working of the classical approaches into a framework that allows for 
increased flexibility, accurate assets modeling, and sound risk measurement employing 
Generalized Stable Distributions together with average value-at-risk (AVaR) risk 
measure, see Rachev, et al (2007).  
 
The paper is organized as follows. Section 1 discusses several heavy-tailed models with a 
special attention to the Generalized Stable Distributions. In Section 2, we discuss 
multivariate modeling. Section 3 provides a summary of risk and performance measures 
properties and describes the AVaR measure. Section 4 discusses risk budgeting based on 
AVaR and Section 5 is devoted to optimal portfolio problems. In Section 6, we remark on 
performance measures consistent with AVaR. Section 7 contains an empirical example 
with Russell 2000 universe.  
 

2. Heavy-tailed and asymmetric models for assets returns 
 
Specifying properly the distribution of assets returns is vital for risk management and 
optimal asset allocation. A failure may lead to significant underestimation of portfolio 
risk and, consequently, to wrong decisions.  
 
The distributional modeling of financial variables has several dimensions. First, there 
should be a realistic model for the returns of each financial variable considered 
separately. That is, we should employ realistic one-dimensional models. Second, the 
model should capture properly the dependence between the one-dimensional variables. 
Therefore, we need a true multivariate model with the above two building blocks 
correctly specified.  
 

2.1.One-dimensional models 
 
The cornerstone theories in finance such as mean-variance model for portfolio selection 
and asset pricing models that have been developed rest upon the assumption that asset 
returns follow a normal distribution. Yet, there is little, if any, credible empirical 
evidence that supports this assumption for financial assets traded in most markets 
throughout the world. Moreover, the evidence is clear that financial return series are 
heavy-tailed and, possibly, skewed. Fortunately, several papers have analyzed the 
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consequences of relaxing the normality assumption and developed generalizations of 
prevalent concepts in financial theory that can accommodate heavy-tailed returns (see 
Rachev and Mittnik (2000) and Rachev (2003) and references therein). 
 
Mandelbrot (1963) strongly rejected normality as a distributional model for asset returns, 
conjecturing that financial return processes behave like non-Gaussian stable processes. 
To distinguish between Gaussian and non-Gaussian stable distributions, the latter are 
commonly referred to as "stable Paretian" distributions or "Levy stable" distributions.1 
 
While there have been several studies in the 1960s that have extended Mandelbrot's 
investigation of financial return processes, probably, the most notable is Fama (1963) and 
Fama (1965). Fama’s work and others led to a consolidation of the stable Paretian 
hypothesis. In the 1970s, however, closer empirical scrutiny of the "stability" of fitted 
stable Paretian distributions also produced evidence that was not consistent with the 
stable Paretian hypothesis. Specifically, it was often reported that fitted characteristic 
exponents (or tail-indices) did not remain constant under temporal aggregation.2 Partly in 
response to these empirical "inconsistencies," various alternatives to the stable law were 
proposed in the literature, including fat-tailed distributions being only in the domain of 
attraction of a stable Paretian law, finite mixtures of normal distributions, the Student t-
distribution, and the hyperbolic distribution, see Bibby and Sorensen (2003). 
 
Recent attacks on Mandelbrot's stable Paretian hypothesis focus on the claim that 
empirical asset return distributions are not as heavy-tailed as the non-Gaussian stable law 
suggests. Studies that come to such conclusions are typically based on tail-index 
estimates obtained with the Hill estimator. Because sample sizes beyond 100,000 are 
required to obtain reasonably accurate estimates, the Hill estimator is highly unreliable 
for testing the stable hypothesis. More importantly, Mandelbrot's stable Paretian 
hypothesis is interpreted too narrowly, if one focuses solely on the marginal distribution 
of return processes. The hypothesis involves more than simply fitting marginal asset 
return distributions. Stable Paretian laws describe the fundamental “building blocks” 
(e.g., innovations) that drive asset return processes. In addition to describing these 
"building blocks," a complete model should be rich enough to encompass relevant 
stylized facts, such as  
 

• non-Gaussian, heavy-tailed and skewed distributions 
• volatility clustering (ARCH-effects) 
• temporal dependence of the tail behavior 
• short- and long-range dependence 

 
An attractive feature of stable models – not shared by other distributional models – is that 
they allow us to generalize Gaussian-based financial theories and, thus, to build a 
coherent and more general framework for financial modeling. The generalizations are 
                                                 
1 Stable Paretian is used to emphasize that the tails of the non-Gaussian stable density have Pareto power-
type decay. "Levy stable" is used in recognition of the seminal work of Paul Levy's introduction and 
characterization of the class of non-Gaussian stable laws. 
2 For a more recent study, see Akgiray and Booth (1988) and Akgiray and Lamoureux (1989).  
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only possible because of specific probabilistic properties that are unique to (Gaussian and 
non-Gaussian) stable laws, namely, the stability property, the Central Limit Theorem, and 
the Invariance Principle for stable processes. Detailed accounts of properties of stable 
distributed random variables can be found in Samorodnitsky and Taqqu (1994) and 
Janicki and Weron (1994).  
 
Stable distributions are defined by the means of their characteristic functions, 

( ) itX
X Eet =ϕ . The characteristic function has the following form, 
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In the general case, no closed-form expressions are known for the probability density and 
distribution functions of stable distributions. The formula in (1) implies that they are 
described by four parameters: α , called the index of stability, which determines the tail 
weight or density's kurtosis with 20 ≤<α , β , called the skewness parameter, which 
determines the density's skewness with 11 ≤≤− β , 0>σ  which is a scale parameter, 
and μ  which is a location parameter. Stable distributions allow for skewed distributions 
when 0≠β  and when β  is zero, the distribution is symmetric around μ . Stable Paretian 
laws have fat tails, meaning that extreme events have high probability relative to the 
normal distribution when 2<α . The Gaussian distribution is a stable distribution with 

2=α . (For more details on the properties of stable distributions, see Samorodnitsky, 
Taqqu (1994).) Of the four parameters, α  and β  are most important as they identify two 
fundamental properties that are atypical of the normal distribution – heavy tails and 
asymmetry.  
 
Rachev et al (2006) consider the daily return distribution of 382 U.S. stocks in the 
framework of two probability models – the homoskedastic independent, identical 
distributed model and the conditional heteroskedastic ARMA-GARCH model. In both 
models, the Gaussian hypothesis is strongly rejected in favor of the stable Paretian 
hypothesis which better explains the tails and the central part of the return distribution. 
The companies in the study are the constituents of the S&P 500 with complete history in 
the 12-year time period from January 1, 1992 to December 12, 2003. Figure 1 illustrates 
the estimated ( )βα ,  pairs from historical data. The estimated parameters suggest 
significant heavy-tail and asymmetry which are phenomena that cannot be accounted for 
by the normal distribution.  
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Figure 1. Scatter plot of the index of stability and the skewness parameter for the daily 
returns of 382 stocks. (Reproduced from Figure 1.1 in Rachev et al (2006).) 
 

2.2.Multivariate models 
 
For the purposes of portfolio risk estimation, constructing one-dimensional models for 
the instruments is incomplete. Failure to account for the dependencies between the 
instruments may be fatal for the analysis. 
 
There are two ways to build a complete multivariate model. It is possible to hypothesize a 
multivariate distribution directly (i.e., the dependence between stock returns as well as 
their one-dimensional behavior). Assumptions of this type include the multivariate 
normal, the multivariate Student t, the more general elliptical family, the multivariate 
stable, etc. Sometimes, in analyzing dependence, an explicit assumption is not made, for 
instance, the covariance matrix is very often relied on. While an explicit multivariate 
assumption is not present, it should be kept in mind that this is consistent with the 
mutivariate normal hypothesis. More generally, the covariance matrix can describe only 
linear dependencies and this is a basic limitation. 
 
In the last decade, a second approach has become popular. One can specify separately the 
one-dimensional hypotheses and the dependence structure through a function called 
copula. This is a more general and more appealing method because one is free to choose 
separately different parametric models for the stand-alone variables and a parametric 
copula function. For more information, see Embrechts et al (2003).  
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2.3.Generalized Stable Distribution modeling  
 
Figure 1 indicates that the tail behavior of financial variables may vary. Generalized 
stable distribution modeling is based on fitting univariate stable distributions for each one 
dimensional set of returns or risk factors, each with its own parameter estimates αi, βi, μi, 
σi, i=1,2,…,K , where K is the number of risk factors, along with a dependency structure.  
 
One way to produce the cross-sectional dependency structure is through a scale mixing 
process (called a “subordinated” process in the mathematical finance literature) as 
follows.  
 

a) compute a robust mean vector and covariance matrix estimate of the risk factors 
to get rid of the outliers, and have a good covariance matrix estimate for the 
central bulk of the data. 

b) multiply each of the random variable component of the scenarios by a strictly 
positive stable random variable with index αi/2, i=1,2,…,K. The vector of stable 
random variable scale multipliers is usually independent of the normal scenario 
vectors, but it can also be dependent. See, for example, Rachev and Mittnik 
(2000). 

 
Another very promising approach to building the cross-sectional dependence model is 
through the use of copulas, an approach that is quite attractive because it allows for 
modeling higher correlations during extreme market movements, thereby accurately 
reflecting lower portfolio diversification at such times. The next section briefly discusses 
copulas. 
 

2.4.Copula dependence models 
 
Correlation is a widespread concept in modern finance and insurance and stands for a 
measure of dependence between random variables. However, this term is very often 
incorrectly used to mean any notion of dependence. Actually correlation is one particular 
measure of dependence among many. In the world of multivariate normal distribution 
and, more generally in the world of spherical and elliptical distributions, it is the accepted 
measure.  
 
Financial theories and risk management analysis rely crucially on the dependence 
structure of assets. A major limitation of correlation as a measure of the dependence 
between two random variables is that zero correlation does not imply independence for 
non-Gaussian distributions. Furthermore, correlation is symmetric and, in order to be 
more realistic, we need a more general notion which can reflect the local variation in 
dependence that is related to the level of returns, in particular, those shapes that 
correspond to higher correlations with extreme co-movements in returns than with small 
to modest co-movements.  
 
From a mathematical viewpoint, a copula function C is nothing more than a probability 
distribution function on the d-dimensional hypercube  
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1 2( , , , ),      [0,1] for 1,2, ,n iC u u u u i n∈ =L L  
 
where ( ) ii uuC = , ni K,1= .  
 
It is known that for any multivariate cumulative distribution function:  
 

1 2 1 1 2 2( , , , ) ( , , )n n nF x x x P X x X x X x= ≤ ≤ ≤L L  
 
there exists a copula C such that 
 

1 2 1 1 2 2( , , , ) ( ( ), ( ), , ( ))n n nF x x x C F x F x F x=L L  
 
where the ( )i iF x  are the marginal distributions of 1 2( , , , )nF x x xL , and conversely for 

any copula C the right-hand-side of the above equation defines a multivariate distribution 
function 1 2( , , , )nF x x xL . See, for example, Bradley and Taqqu (2001), Sklar (1996), and 
Embrechts et al (2003). 
 
The main idea behind the use of copulas is that one can first specify the marginal 
distributions in whatever way makes sense (e.g. fitting marginal distribution models to 
risk factor data, and then specify a copula C to capture the multivariate dependency 
structure in the best suited manner).  
 
A possible approach for choosing a flexible copula model is to adopt the copula of a 
parametric multivariate distribution. In this way, the copula itself will have a parametric 
form. There are many multivariate laws mentioned in the literature, which can be used for 
this purpose. One such example is the Gaussian copula, i.e. the copula of the multivariate 
normal distribution. It is easy to work with but it has one major drawback: It implies that 
extreme events are asymptotically independent. Thus, the probability of joint occurrence 
of large in absolute value negative returns of two stocks is significantly underestimated. 
An alternative to the Gaussian copula is the Student’s t copula (i.e., the copula of the 
multivariate Student’s t distribution). It models better the probability of joint extreme 
events but it has the disadvantage that it is symmetric. Thus, the probability of joint 
occurrence of very large returns is the same as the probability of joint occurrence of very 
small returns. This deficiency is not present in the skewed Student’s t copula which we 
believe is a much more realistic model of dependency. This is the copula of the 
multivariate skewed Student’s t distribution defined by means of the following stochastic 
representation,  
 

WZWX ++= γμ  
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where ( )2/,2/ vvIGW ∈ , i.e. W is inverse gamma distributed, Z is multivariate normal 
random variable, ( )Σ∈ ,0nNZ , W and Z are independent, and the constants μ  and γ  are 
such that the sign of a given component of γ  controls the asymmetry of the 
corresponding component of X and μ  is a location parameter contributing to the mean of 
X. The skewed Student’s t copula has the following parametric form,  
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γ  is the inverse cdf of the one-dimensional skewed Student’s t distribution, and 
( )nxxf ,,1 K  is the density of the multivariate skewed Student’s t distribution,  
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in which ( )xKλ  stands for the modified Bessel function of the third kind. The skewed 
Student’s t copula has the following features which make it a flexible and attractive 
model  

• it has a parametric form which makes the copula an attractive model in higher 
dimensions 

• the underlying stochastic representation facilitates scenario generation from the 
copula 

• it can describes tail dependence, if present in the data 
• it can describes asymmetric dependence, if present in the data 

 
3. Average Value-at-Risk 

 
A major activity in many financial institutions is to recognize the sources of risk, then 
manage and control them. This is possible only if risk is quantified. If we can measure the 
risk of a portfolio, then we can identify the financial assets which constitute the main risk 
contributors, reallocate the portfolio, and, in this way, minimize the potential loss by 
minimizing the portfolio risk.  
 
From a historical perspective, Markowitz (1952) was the first to recognize the 
relationship between risk and reward and introduced the standard deviation as a proxy for 
risk. The standard deviation is not a good choice for a risk measure because it penalizes 
symmetrically both the negative and the positive deviations from the mean. It is an 
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uncertainty measure and cannot account for the asymmetric nature of risk, i.e. risk 
concerns losses only. The deficiencies of the standard deviation as a risk measure were 
acknowledged by Markowitz who was the first to suggest the semi-standard deviation as 
a substitute, Markowitz (1959).  
 
A risk measure which has been widely accepted since 1990s is the value-at-risk (VaR). In 
the late 1980s, it was integrated by JP Morgan on a firmwide level into its risk-
management system. In this system, JP Morgan developed a service called RiskMetrics 
which was later spun off into a separate company called RiskMetrics Group. It is usually 
thought that JP Morgan first formulated the VaR measure. In fact, similar ideas had been 
used by large financial institutions. For more information about risk measures, the reader 
is referred to Rachev et al (2008) and the references therein.  
 
Although VaR has been widely adopted as a standard risk measure in the financial 
industry, it has a number of deficiencies recognized by financial professionals. One 
important deficiency is that VaR cannot always account for the risk diversification effect. 
There are examples in which portfolio VaR is larger than the sum of the VaRs of the 
portfolio constituents. Another important deficiency is that VaR is not informative about 
the extreme losses beyond the VaR level. A risk measure which lacks these deficiencies 
is the average value-at-risk (AVaR). It is defined as the average VaR beyond a given VaR 
level. Not only does it have an intuitive definition, but there are also convenient ways of 
computing and estimating it. As a result, AVaR turns into a superior alternative to VaR 
suitable for management of portfolio risk and optimal portfolio problems. The average of 
VaRs is computed through the integral,  
 

( ) ( )∫=
ε

ε ε 0

1 dpXVaRXAVaR p  

 
where ε  denotes the tail probability and ( ) ( ){ }pxXPXXVaRp ≥≤−= :inf  is the VaR 
of X at tail probability p. For additional information about AVaR, see Rachev, et al 
(2008). If the distribution of X is absolutely continuous, then the notion of AVaR 
coincides with the expected tail loss (ETL) defined through the conditional expectation,  
 

( ) ( )( ).| XVaRXXEXETL εε −<−=  
 
For this reason, in stable Paretian models for asset returns distributions, we can use both 
terms interchangeably. However, even though from a mathematical viewpoint both terms 
are equivalent for absolutely continuous distributions, we choose the notion of ETL when 
combining with stable distributions for asset returns modeling since ETL is intuitively 
linked to the tail behavior which is a central notion in stable Paretian distributions.  
 
We summarize the attractive properties of AVaR below:  
 

• AVaR gives an informed view of losses beyond VaR. 
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• AVaR is a convex, smooth function of portfolio weights, and is therefore 
attractive to optimize portfolios (see Uryasev and Rockafellar, (2000)). 

 
• AVaR is sub-additive and satisfies a set of intuitively appealing coherent risk 

measure properties (see Artzner et al, (1999)). 
 
• AVaR is a form of expected loss (i.e., a conditional expected loss) and is a very 

convenient form for use in scenario-based portfolio optimization. It is also quite a 
natural risk-adjustment to expected return (see STARR, or Stable Tail Adjusted 
Return Ratio). 

 
Even though AVaR is not widely adopted, we expect it to become an accepted risk 
measure as portfolio and risk managers become more familiar with its attractive 
properties. For portfolio optimization, we recommend the use of Stable distribution ETL 
(SETL), and limiting the use of historical, normal or stable VaR to required regulatory 
reporting purposes only. Finally, organizations should consider the advantages of SETL 
for risk assessment purposes and non-regulatory reporting purposes.  
 

4. Risk decomposition based on SETL 
 
The concept of SETL allows for scenario-based risk decomposition which is a concept 
similar to the standard deviation based percentage contribution to risk (PCTR). The 
practical issue is to identify the contribution of each position to portfolio risk and since 
ETL is a tail risk measure, percentage contribution to ETL allows one to build a 
framework for tail risk budgeting. The approach largely depends on one of the properties 
of coherent risk measures given in Artzner et al (1999), which is the positive 
homogeneity property  
 

( ) ( ) 0, >= aXaETLaXETL εε  
 
There is a formula in calculus known as Euler’s formula which is valid for such 
functions. According to it, the risk measure can be expressed in terms of a weighted 
average of the partial derivatives with respect to portfolio assets assuming that there 
exists a small cash account,  
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The cash account is used to finance the infinitesimal increase of portfolio holdings in 
order to compute the partial derivatives of the risk measure. The left hand-side of the 
equation equals total portfolio risk and if we divide both sides by it, we obtain the needed 
tail risk decomposition,  
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The same idea can be applied if there is an underlying factor model in order to get the 
factor percentage contribution to tail risk or, on a more general level, the systematic and 
non-systematic percentage contribution. Furthermore, the partial derivatives of ETL can 
be computed from scenarios (see Zhang and Rachev (2006)).  
 

5. Portfolio optimization with SETL 
 
The solution of the optimal portfolio problem is a portfolio that minimizes a given risk 
measure provided that the expected return is constrained by some minimal value R. In our 
framework, we adopt the ETL as a risk measure:  
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    (2) 

 
where the vector notation w’r stands for  the returns of a portfolio with composition w = 
(w1, w2, …, wn), l is a vector of lower bounds, A is a matrix, u is a vector of upper bounds, 
and rb is some benchmark (which could be set equal to zero). The set comprised by the 
double linear inequalities in matrix notation l ≤ Aw ≤ u includes all feasible portfolios.  
 
If the benchmark is zero, rb = 0, and instead of ETL we use the standard deviation, which 
is an uncertainty measure, then the optimization problem transforms into the classical 
Markowitz problem. Optimal portfolio problems with a benchmark are called active. The 
benchmark could be non-stochastic or stochastic, for example the return of another 
portfolio or a market index. In case rb is non-zero and we use the standard deviation 
instead of ETL, the problem transforms into the classical tracking error problem.  
 
The set of all solutions of (2), when varying the value of the constraint, is called the 
efficient frontier. Along the efficient frontier, there is a portfolio that provides the 
maximum expected return per unit of risk; that is, this portfolio is a solution to the 
optimal ratio problem 
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An example of a reward-risk ratio is the celebrated Sharpe ratio or the information ratio 
depending on whether the benchmark is stochastic. In both cases, the standard deviation 
is used instead of the ETL. Beside the Sharpe ratio, or the information ratio, many more 
examples can be obtained by changing the risk and, possibly, the reward functional (see 
Biglova et al (2004) for an empirical study).  
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Problem (3) can be transformed into a simpler problem on the condition that the risk 
measure is strictly positive for all feasible portfolios  
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where t is an additional variable. If (xo, to) is a solution to (4), then wo = xo/to is a solution 
to problem (3). There are other connections between problems (3) and (4), see Stoyanov 
et al (2007) for further details.  
 
Following the approach in Uryasev and Rockafellar (2000), problem (4) can be solved by 
a linear programming problem,  
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where ( )Nrr ,,1 K  and ( )N

bb rr ,,1 K  are scenarios for the assets returns and the benchmark 
generated according to the generalized stable distribution framework. See also Rachev et 
al (2008) for geometric interpretations and further information on computational 
complexity.  
 

6. Performance measures 
 
The celebrated Sharpe ratio for a given portfolio p is defined as follows: 
 

fp
p

p

ER r
SR

σ
−

=  

 
where ERp is the portfolio expected return, σp  is the portfolio return standard deviation as 
a measure of portfolio risk, and fr  is the risk-free rate. While the Sharpe ratio is the 
single most widely used portfolio performance measure, it has several disadvantages due 
to its use of the standard deviation used as a proxy for risk measure: 
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• pσ  is a symmetric measure that does not focus on downside risk 

• pσ  is not a coherent measure of risk (see Artzner et al, 1999) 

• pσ  has an infinite value for non-Gaussian stable distributions. 
 
Two alternative performance measures consistent with the SETL framework can be 
constructed, see Rachev et al (2007). One of them, the stable tail adjusted return ratio 
(STARR) defined as  
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calculates the portfolio excess return per unit of downside risk measured by the ETL. The 
other performance measure is the Rachev ratio (R-ratio),  
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where 1ε  and 2ε  are two different tail probabilities and frr −  is the vector of asset 
excess returns. The R-ratio is a generalization of the STARR. Choosing appropriate 
levels 1ε  and 2ε  in optimizing the R-ratio the investor can seek the best risk/return 
profile of her portfolio. For example, an investor with portfolio allocation maximizing the 
R-ratio with 01.021 == εε  is seeking exceptionally high returns and protection against 
high losses.  
 

7. An empirical example 
 
Racheva-Iotova and Stoyanov (2006) provide a back-testing example of a long-only 
optimal portfolio strategy using the Russell 2000 universe. The back-testing time period 
is ten years (December 1993 to December 2004) with monthly frequency. In the 
optimization algorithm, they employ the proprietary stable model in Cognity Risk & 
Portfolio Optimization System in which the SETL methodology is implemented. In the 
strategies, the Russell 2000 index is used as the benchmark; that is rb is the return of 
Russell 2000. 
 
The optimization constraints are the following.  
 

• 0% to 3% limit on single stock 
• +/- 3% industry exposure with respect to the benchmark; the industries being 

defined by Ford Equity Research 
• The active return is strictly positive 
• The two-way turnover is below 15% per month. This constraint is used as a soft 

constraint (i.e., may be exceeded at times). Also, no limit is imposed in July 
because the benchmark is adjusted in July.  
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The back-testing is performed in the following way. They use 450 stocks as initial 
universe. One year of daily data is used to calibrate the model and monthly scenarios are 
produced by it. Then a version of the optimal portfolio problem (8) is solved in which a 
tail probability of 5% is selected for the ETL. At the end of the month, the portfolio 
present value is calculated. The process is repeated next month. Figure 2 shows the stable 
ETL portfolio present values compared to the Russell 2000 index.  
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Figure 2. The time evolution of the present values of the stable ETL portfolio compared 
to the Russell 2000 index. (Reproduced from Figure 1 in Racheva-Iotova and Stoyanov 
(2006).) 
 
In addition to the stable method, monthly back-testing is performed for a version of the 
Markowitz problem (6). Racheva-Iotova and Stoyanov use a factor model of eight factors 
and five years of monthly data to calibrate it. Each month the covariance matrix is 
estimated through the factor model and the optimization problem is solved. The portfolio 
present value is calculated at the end of month. Figure 3 shows the evolution of the 
portfolios present values. Note that the present value of the stable portfolio is scaled to 
start with the same capital as the Markowitz model.  
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Figure 3. The time evolution of the present values of the Markowitz and the stable ETL 
(scaled) portfolios compared to the Russell 2000 index (Reproduced from Figure 2 in 
Racheva-Iotova and Stoyanov (2006).) 
 
Additional information is given in Tables 1 and 2. The average monthly turnover is 
defined as the dollar-weighted purchases plus the dollar weighted sales. Tables 3 and 4 
provide details on return-risk ratios. The information ratio is the active return per unit of 
tracking error.  
 
 

 Stable ETL Markowitz
10 year 112  
5 year 105 137
3 year 102 110
2 year 100 104
1 year 104 100

 
Table 1. Average number of holdings (Reproduced from Table 1 in Racheva-Iotova and 
Stoyanov (2006).) 
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 Stable ETL Markowitz
11 months 16% 18%
July 163% 85%
All months 27% 24%

 
Table 2. Average monthly turnover (Reproduced from Table 2 in Racheva-Iotova and 
Stoyanov (2006).).  
 

 Stable ETL Markowitz
10 year 0.74  
5 year 0.71 0.29
3 year 0.93 -0.24
2 year 0.74 -0.57
1 year 1.22 1.03

 
Table 3.Annualized information ratio (Reproduced from Table 3 in Racheva-Iotova and 
Stoyanov (2006).).  
 

 Stable ETL Markowitz Russell 2000 
10 year 1.01  0.42 
5 year 0.92 0.68 0.36 
3 year 1.22 0.71 0.58 
2 year 2.13 1.99 1.82 
1 year 1.66 2.16 1.19 

 
Table 4. Sharpe ratios (Reproduced from Table 4 in Racheva-Iotova and Stoyanov 
(2006).). 
 

8. Conclusion 
 
In this paper, we described and discussed the SETL framework which is implemented in 
Cognity Risk Management and Portfolio Optimization product. The SETL framework is 
appealing because it is based on realistic assumptions about asset return distributions, 
incorporates a downside risk measure, and can be used for risk budgeting and portfolio 
optimization. With the help of empirical examples, we demonstrated that the SETL 
framework is more realistic than the traditional models based on the normal distribution 
and may lead to better performance.  
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