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Abstract

In this paper we study copula-based models for aggregation of operational 
risk capital across business lines in a bank. A commonly used method of 
summation of the value-at-risk (VaR) measures, that relies on a hypothesis 
of full correlation of losses, becomes inappropriate in the presence of 
dependence between business lines and may lead to over-estimation of the 
capital charge. The problem can be further aggravated by the persistence 
of heavy tails in operational loss data; in some cases, the subadditivity 
property of value-at-risk may fail and the capital charge becomes under-
estimated. We use α-stable heavy-tailed distributions to model the loss 
data and then apply the copula approach in which the marginal 
distributions are consolidated in the symmetric and skewed Student t-
copula framework. In our empirical study, we compare VaR and 
conditional VaR estimates with those obtained under the full correlation 
assumption. Our results demonstrate significant reduction in capital when 
a t-copula is employed. However, the capital reduction is significantly 
smaller than in cases where a moderately heavy-tailed or thin-tailed 
distribution is calibrated to loss data. We also show that for confidence 
levels below 94% VaR exhibits the super-additivity property.
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1. INTRODUCTION

The financial industry’s attention to operational risk has been on increase in recent years. 
Operational risk is defined as the risk of loss resulting from inadequate or failed internal 
processes, people and systems or from external events.1 Operational risk is believed to be 
largely a firm-specific non-systematic risk: According to the Basel Committee, “unlike 
market and perhaps credit risk, the [operational] risk factors are largely internal to the 
bank.”2

In 2001, the Basel II Capital Accord (hereforth, Basel II) provided a detailed set of 
guidelines for banks on the basis of which they are required to estimate operational risk 
capital to serve as a buffer against potential future losses. The firm-specific nature of 
operational risk has prompted development of statistical models that make efficient use of 
historic operational loss data on the basis of which the capital charge can be estimated. 
The most sophisticated of such approaches, and the one most favoured by regulators3 is 
the Loss Distribution Approach (LDA). LDA falls in the category of the Advanced 
Measurement Approaches.4 LDA is the most accurate from the statistical point of view as 
it utilizes the exact distribution of historic losses – both frequency and severity – and is 
based on an individual bank’s internal loss data. The core principle of the capital charge 
estimation under this approach is the value-at-risk (hereforth, VaR) metric that is 
measured based on a principle of aggregation of the frequency and severity distributions 
of losses forecasted for a one-year ahead time horizon. 

Two tasks are central to an accurate estimation of operational VaR. The shape of the 
upper tail of the loss distribution largely determines the amount of the risk capital. One 
approach, extreme value theory (EVT), involves a separation of the main body of the loss 
distribution from the tails and modelling the tails with a Generalized Pareto Distribution 
(GPD); see for example, Chavez-Demoulin, Embrechts, and Neslehova (2006). In 
operational risk, EVT has been also used to model external data that is then used to 
“populate” scarce internal data; see Baud, Frachot, and Roncalli (2002) for a more 
detailed discussion.5

Aggregation of operational losses across business units or event types (or both) remains 
as important issue. A simplistic approach involves estimation of VaR measures for each 
cell independently and them adding them up to produce the aggregate measure of bank’s 
risk. The problem with such an approach is that it assumes a perfect positive correlation 
between cells. As a result, the aggregate measure of risk represents an upper bound for a 
bank’s true total level of risk. This property, often referred to as sub-additivity of risk 
measures, suggests that a bank can effectively reduce its risk capital by taking into 
account the dependence structure that exists between cells. 
                                                
1 See BCBS (2001b).
2 See BCBS (1998).
3 Banks are allowed to choose an approach based on the bank’s size and risk exposure and the ability to 
meet required criteria.
4 A detailed description of the approaches to measure the operational risk capital charge is documented in 
BCBS (2001a,b; 2006).
5 Overview of EVT and its applications to risk management can be found in Embrechts, Kluppelberg, and 
Mikosch (1997). Applications to operational risk are discussed in Chernobai, Rachev, and Fabozzi (2007) 
and McNeil, Frey, and Embrechts (2005), among others.
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Some problems with sub-additivity are often cited in literature. The sub-additivity 
property may fail when risk is measured by VaR (see Artzner, Delbaen, Eber, and Heath 
(1999)). In this sense, VaR is not a coherent measure of risk. On the contrary, conditional 
value-at-risk (CVaR) is coherent in that the sub-additivity property holds. The failure of 
sub-additivity (i.e., super-additivity) may be aggravated in the presence of heavy tails in 
the loss data. As shown in Ibragimov and Walden (2007), this may have adverse 
implication for diversification. Our empirical analysis, presented later in this paper, also 
shows evidence of super-additivity.

In this paper, we extend discussion in Giacometti, Rachev, Chernobai, Bertocchi, and 
Consigli (2007) that focused on various modelling techniques for operational loss data. 
Here, we examine the issue of aggregation of operational losses across different business 
lines using a copula approach. Copulas are gaining popularity in measuring dependence 
in financial risk. They will be described later in this paper. In operational risk, copulas 
have been applied by Chavez-Demoulin, Embrechts, and Neslehova (2006), Embrechts 
and Puccetti (2006a,b), Dalla Valle, Fantazzini, and Giudici (2007), and Chapelle, Crama, 
Hubner, and Peters (2004), to name a few. Using copulas tends to lead to significant 
reductions in total VaR. For example, Chapelle, Crama, Hubner, and Peters (2004) 
showed that for a 99% VaR a bank can achieve a 35% reduction in capital estimates by 
using copula, echoing the results in Dalla Valle, Fantazzini, and Giudici (2007) who 
demonstrated that using copulas can result in savings for a bank in the range of 30% to 
50%.

We use t-copulas to model the dependence between losses. t-copulas are optimal for 
modelling dependence between operational losses from different groups in that they 
succeed in capturing dependence in the tails. Other copulas, such as the Gaussian copula, 
has no tail dependence. For the loss distribution we use (i) a variation of the α-stable 
distribution and (ii) a mixture of the α-stable distribution and Generalized Pareto 
distribution. Such choice of loss distributions ensures that we do not leave out any 
extreme events and they are appropriately accounted for. We apply the methodology in 
an empirical study to operational loss data of a European bank. 

The paper is organized as follows. Section 2 describes a statistical model for operational 
risk. Section 3 presents the data and empirical methodology. Section 4 describes the 
results of applying copulas to operational loss data and its implications for operational 
risk management. Finally, Section 5 concludes the paper and summarizes the findings. 

2. A Modified Loss Distribution Approach for Operational Risk

The concept of compound Poisson process provides an accurate analytical framework to 
address the modelling problem of operational risk and is utilized in the Loss Distribution 
Approach (LDA) of the Advanced Measurement Approaches proposed by Basel II. The 
timing of the events is captured by the intensity of the Poisson process and the losses by 
an appropriate state distribution. Consider a bank with K “business lines/event type”
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combinations, i=1,2,…,K. Then the aggregate operational loss for i-th business line are 

considered to follow a random process  
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The operational loss distribution is thus jointly determined by the average number of 
losses per unit of time – the intensity   of the Poisson process tN , the counting process 

with integer variables – and by the loss magnitudes Xk – in monetary terms – observed 
over a pre-determined interval of time usually taken to be one year. In our case Xk  belong 
to a  family F  of parametric continuous distributions. 

Value-at-Risk is a risk measure that can be used as proxy for capital charge. It is 
computed as a high quantile (such as 99.9%) of the aggregate loss distribution. For cell i,

)999.0(1 L
i
t GVaR (2)

Where G is the cumulative distribution of L. Then, under the LDA, the total capital 
charge for a bank with M cells can be estimated as the sum of VaR measures6 across 
cells:
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This LDA methodology assumes that the losses belonging to different “business 
line/event type” cells are perfectly positively correlated with each other. However, if the 
correlation is not perfect, under “nice” conditions LDA provides an upper bound for the 
total capital charge for a bank. As a result, LDA would generally tend to over-estimate 
the amount of risk capital a bank should use.

3. Data and Methodology

The data set selected for the study covers operational losses for a large European bank 
from January 2002 to August 2005 – a total of 3 years and 8 months. The sample consists 
of a total of slightly under 2,700 observations. The data are classified in accordance with 
the Basel II guidelines into business lines and event types. Due to relatively small data 
samples, the business lines considered for this study are: Retail Banking (using the Basel 
II definitions, this refers to business line 3 or BL3), Commercial Banking (BL4), and 
Retail Brokerage (BL8). We do not further granulate the data by event types for our 
estimations. BL3 accounts for 77.69% of the data, BL4 accounts for 7.82%, and BL8 
accounts for 8.17% of our sample.

                                                
6 An alternative to VaR is conditional VaR (or CVaR) which is estimated as the average loss given that it 
exceeds VaR. 
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Table 1. Descriptive statistics for internal, external, and pooled operational loss data (in 
Euro).

Internal Data External Data Pooled Data
Business 
Line

Sample 
Statistic original Log-scale original Log-scale original

Log-
scale

Mean 15,888.12 8.12 37,917.35 9.71 11,021.80 8.36

Median 2,500 7.82 13,200 9.49 3,406.98 8.13

St. Dev. 97,668.29 1.39 184,787.23 0.99 59,968.38 1.03

Skewness 20.17 1.02 26.53 1.29 26.60 1.32

Retail 
Banking 
(BL3)

Kurtosis 516.07 4.16 910.88 5.23 953.26 5.41

Mean 28,682.11 8.11 61,880.06 9.73 10,175.51 7.59

Median 2,235.60 7.71 12,080 9.40 1,347.44 7.21

St. Dev. 133,873.92 1.67 653,409.10 1.11 83,252.98 1.24

Skewness 7.60 1.13 29.65 1.44 19.11 1.53

Commercial 
Banking 
(BL4)

Kurtosis 63.14 4.01 904.11 5.70 413.87 6.02

Mean 13,089.05 8.11 40,808.30 9.60 19,674.84 8.87

Median 2,755.90 7.92 11,000 9.31 5,273.24 8.57

St. Dev. 48,801.21 1.40 305,524.49 0.99 144,912.26 0.99

Skewness 9.49 0.89 35.67 1.59 35.87 1.58

Retail 
Brokerage 
(BL8)

Kurtosis 108.83 3.62 1,642.25 6.81 1,668.56 6.71

We populate our sample with additional data extracted from an external database. The 
external database is a consortium-type database provided by a European vendor.7 The 
data that constitute the database are collected from nearly 200 institutions. The size of the 
external data used for the analysis in this paper is approximately six times the sample size 
of internal data. In the external database, BL3 accounts for 60.63%, BL4 accounts for 
6.46%, and BL8 accounts for 28.71% of the data.

To combine the internal data with external, we first standardized all data by the 
respective means and standard deviations and then scaled the pooled data back using the 
mean and the standard deviation of the original internal data to obtain an expanded 
internal dataset. Table 1 summarizes descriptive statistics of the data.

For the frequency distributions we considered a non-homogeneous Poisson process 
model; see Giacometti et al. (2007) for further details. For the loss distributions, we 
considered a large spectrum of candidate distributions: Lognormal, Generalized Pareto, 
Weibull, Logweibull, and symmetrised α-stable.

                                                
7 We refrain from providing the consortium name in order to preserve confidentiality of the bank.
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Symmetrised α-stable distribution belongs to the class of stable distributions.8 For the 
symmetrised α-stable distribution we symmetrised the data by applying the 
transformation Y = [X; -X] to the original data X and then fitting a 2-parameter (shape 
and dispersion) symmetric α-stable distribution. The advantage of fitting a symmetric α-
stable distribution to symmetrised data over fitting a 4-parameter (shape, dispersion, 
skewness, and location) α-stable distribution to original data is that symmetric α-stable 
distribution requires estimation of only two parameters (shape and dispersion) allowing 
for more efficient estimates. The shape parameter α identifies the heaviness in the tail: 
α>1 refers to a moderately heavy tail with a finite mean, while α≤1 indicates a very 
heavy-tailed distribution with an infinite mean.

We refer as Model 1 to the approach in which a hypothesized loss distribution is fitted to 
the entire dataset. Goodness-of-fit test results showed that the symmetric α-stable 
distribution resulted in best fit to our full-sample loss data.9 For the three business lines, 
BL3, BL4, and BL8, the shape parameters were estimated as 0.99, 0.83, and 0.99, 
respectively, and point to a very heavy tail.

Table 2. Estimates of the shape parameters.

Panel A: Full-sample distribution approach (Model 1)

α of the symmetrised α-stable distribution

BL3 0.99

BL4 0.83

BL8 0.99

Panel B: Mixture distribution approach (Model 2)

Body Tail

α of the symmetrised          
α-stable distribution

1/ξ of the Generalized Pareto distribution

MLE estimate Hill estimate

BL3 0.99 1.22 1.03

BL4 0.83 0.94 0.84

BL8 0.99 1.11 1.03

In a separate approach (Model 2), we combined Extreme Value Theory with the notion of 
mixture distributions to model the loss data. We first identified a level of threshold 
beyond which the losses were assumed to follow the Generalized Pareto Distribution 
(GPD). We then estimated the parameters of the GPD for the tails with the Maximum 

                                                
8 See Rachev and Mittnik (2000) for a thorough discussion.
9 See Giacometti et al. (2007) for a detailed description of the goodness-of-fit test results.



8

Likelihood estimator (MLE) and the Hill estimator, and used symmetric α-stable 
distribution to model the body of the loss data. Finally, we combined the two 
distributions into a 2-model mixture distribution constructed as the weighted average of 
the two member distributions. Table 2 summarizes the estimated shape parameters from 
Models 1 and 2. The estimates suggest very heavy-tailed mixture distributions especially 
for BL4.

4. Aggregation of Losses Using Copulas

This section focuses on the discussion of two issues. The first issue is related to 
dependence between losses belonging to different “business line/event type” 
combinations.10 When the correlation is sub-perfect, i.e. Equation 3 provides an upper 
bound for a bank’s risk capital, the knowledge on the form of the dependence structure is 
needed. Computing correlation between cells implies a linear form of dependence and 
therefore may not be an optimal solution. If the dependence is of a non-linear nature, then 
copulas provide a natural solution. 

A second issue we will address in this section is examining scenarios in which
subadditivity property of VaR fails. Sub-additivity property dictates that









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i
i

i
i LVaRVaR (4)

Sub-additivity property may fail in cases when a loss distribution is very heavy-tailed. In 
essence, this means that the VaR of aggregate losses may actually exceed the sum of the 
VaR measures computed for each cell separately.

4.1. Definition of Copula

Definition 1 (Copula): A copula function is a mapping from a set of univariate marginals 
to their full multivariate distribution. For m uniform random variables mUUU ,...,, 21 , the 

joint distribution function C, or copula, is

 mmm uUuUuUPuuuC  ,...,,),,...,,( 221121  .      (5)

Copula functions can be used to link given marginal distributions with a joint 
distribution, since for given marginal distribution functions )(),...,(),( 2211 mm lFlFlF , we 

have:
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10 For the sake of simplicity and data consideration, in this paper we classify losses by business lines only.
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Sklar (1959) established the fundamental converse result: he showed that any 
multivariate distribution function F can be written in the form of a copula function, 
namely: If ),...,,( 211 mlllF  is a joint multivariate distribution function with univariate 

marginal distribution functions )(),...,(),( 2211 mm lFlFlF , then there exists a copula 

function ),...,,( 21 muuuC such that ))(),...,(),((),...,,( 2211211 mmm lFlFlFClllF  . If each iF

is continuous then the copula is unique.

Although copulas may be difficult to work with, the convenient aspect of  copula 
estimation is that it can be performed independently from the estimation of the marginal 
severity distributions. In this paper, we consider symmetric Student t-copula and a 
skewed Student t-copula because these copulas are capable of capturing the dependence 
in the upper tail of the distributions.   

4.2.  Symmetric Student t-Copula

A symmetric Student t-copula ),,,...,( 1 Ruuc m  is a function of the degrees of freedom 
and the correlation matrix R . For the 3-business line example, the symmetric t-copula 
has joint distribution function of the form:
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where the vector )(,),,( 1
221 ii

T utwwwww    has components directly computed from 

the inverse t distribution.

The degrees of freedom of the copula can be estimated using a recursive procedure
proposed by Mashal and Naldi (2001). Given the initial estimate 
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the degrees of freedom in Equation 7 are determined as optimal values of the log-copula: 
For increasing 1, 01    djj , we generate recursively for ,...2,1,0k
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Then, a limit correlation matrix is input into the copula function up to the point in which 
the log-likelihood is maximised for the current correlation matrix and degrees of 
freedom:

)|(lim
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The iterative procedure will converge to a copula estimate that can be then incorporated 
into the simulator.
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We estimated the limit value of the degrees of freedom to be between 6 and 7. The 
degrees of freedom and the optimal correlation matrix allow for a correct definition of the 
multivariate density for a bank’s aggregate losses.   

The empirical correlation and copula-based correlation structures can be illustrated in a 3-
dimensional space. Figure 1 shows the joint losses of the three business lines’ internal 
data on the top left and the empirical joint distribution on the top right. Simulated losses
are on the bottom left and the symmetric t-copula-based joint distribution are in the 
bottom right corner. Comparison of the figures in the top row and in the bottom row 
suggests that the symmetric t-copula succeeds in effectively “reproducing” the true 
dependence structure between the losses.

Figure 1. Correlation structure of the losses in the three business lines and a 
canonical example with a symmetric t-copula. Top left: Weekly aggregated losses, 
empirical data; top right: Empirical distribution of weekly aggregated losses; bottom left: 
Weekly aggregated losses, simulated data; and bottom right: Distribution of simulated 
losses, weekly aggregated using symmetric t-copula.
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4.3. Skewed Student t-Copula

We use the following form of the multivariate skewed Student t-distribution for the 
copula function, defined by the stochastic representation as follows:11

WZWX  : (11)

where )2,2( IGW  and )1,0(NZ  , Z is independent of W,  ),,( 1 n   is an n-

dimensional vector accounting for the skewness, ),,( 1 n   is n-dimensional 

location parameter vector, and ν is the degrees of freedom. We denote this distribution 

by ),,(   ntX . The notation )2,2( IG stands for the inverse Gamma distribution 

with both parameters equal to 2
 . Thus, W is a one-dimensional random variable and Z

is a random vector having a zero-mean multivariate normal distribution with covariance
matrix
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The multivariate skewed Student’s t-distribution allows for closed-form expression of its 
density,

n

nn

n

X
xx

xx

xxxaK
xf 










 








)
)()(

1()))()((

))exp(()))()(((
)(

1
411

111

2
)(

(13)

where nRx , K is the modified Bessel function of the third kind and
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The skewed Student’s t copula is defined as the copula of the multivariate distribution of 
X. Therefore, the copula function is

                                      ))(,),((),...,,( 1
1

1
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121 nnXn uFuFFuuuC              (15)

                                                
11 For more information, see Section 12.7 in Rachev and Mittnik (2000) and Demarta and McNeil (2005).



12

where XF is the multivariate distribution function of X and nkuF kk ,,1),(1  , is the 

inverse of the distribution function of the k-th marginal of X. That is, )(xFX  has the 

density defined in Equation 13 and the density function )(xfk  of each marginal is
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where kk is the k-th diagonal element in the covariance matrix . defined in Equation 12.

For the skewed Student’s t-copula estimation we assume that there are n “business 
lines/event types” combinations of aggregate loss data samples: ),,,( 21 nnT XXXX  .

We first estimate the parameters of the skewed Student’s t-multivariate distribution on 
historical operational losses following the following procedure from Rachev, Stoyanov,
and Milov (2007):

Step 1. Fit one-dimensional skewed Student’s t-distribution over all risk variables
on a stand-alone basis. The result from that step is:

niiii ,,1,)ˆ,ˆ,ˆ,5(  (17)

We use MLE method to obtain the estimates. For the degrees of freedom we use 
γ=5 because at this value the copula is most sensitive to the asymmetry of 
parameters; the skewed distribution reduces to the symmetric case at 0 .

Step 2. Estimate the correlation matrix  of the multivariate skewed Student’s t
distribution by the following formula:

2

2
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)4()2(

2
)(cov(ˆ

2

2 




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X (18)

where 5  and )ˆ,,ˆ,ˆ(ˆ 21 n  .

Step 3. Adjust the matrix ̂  so that it becomes positive definite. 

Having estimated the parameters of the skewed t-distribution, we obtain the skewed t-
copula using the following 2-step simulation algorithm:

Algorithm Step 1. Draw N independent n-dimensional vectors from the 
multivariate skewed Student’s t distribution using the stochastic representation 
defined in Equation 11 and the set of fitted parameters niiii ,,1,)ˆ,ˆ,ˆ,5(  . 

The result from that step is nN  matrix  ijsS  with simulations. This is 

obtained by, first, drawing N independent n-dimensional vectors from the 
multivariate Normal distribution )1,0(N , second, drawing N independent random 
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numbers from the inverse Gamma distribution with parameters )2,2( IG , and, 

third, obtaining final simulations using Equation 11 with the estimated parameter
values.

Algorithm Step 2. Transform simulations S to uniform simulations U using the 

sample distribution function of the marginals. Denote by )(ˆ xFk  the sample

cumulative distribution function of the k-th marginal,

 



N

j
jkk xSI

N
xF

1

1
)(ˆ , (19)

where I{A} stands for the indicator function of the set A. Then

nkNjSFU jkkjk ,,1,,1,)(ˆ   . (20)

4.4. Results of Copula Estimation with Operational Loss Data

In this section, we apply the symmetric Student t-copula and skewed Student t-copula to 
our data samples. We consider two models for the marginal distributions of the losses 
that were summarized in Section 3. 

Table 3 summarizes the estimates of population descriptive statistics and risk capital 
measures at confidence levels 97.5, 98, 99, and 99.9 percent, by business line. These 
statistics refer to the marginals that will later be aggregated with copulas. It is notable that 
Model 2 produces uniformly significantly larger estimates than Model 1. 

In order to estimate concordance measures between the three business lines, we 
aggregated losses on a weekly basis. Table 3 presents results of the Spearman correlation 
coefficient and Kendall correlation coefficient for each pair of the business lines. The 
estimates suggest very low degree of dependence between the losses.

To aggregate the losses belonging to the three business lines, we use the symmetric
Student t-copula and skewed Student t-copula, described in Sections 4.2 and 4.3, 
respectively. The degrees of freedom were estimated for the former copula as ν=6.27 and 
for the latter copula as ν=5.

To apply the copulas to the loss data, we first estimate the copula parameters using 
historical losses aggregated weekly. We then repeat the following steps a very large 
number of times. In the first step, from the estimated copula we sample a multivariate 
random vector with marginals distributed as uniform [0,1] random variables. In the next 
step, for each business line, we obtain scenarios for the cumulative loss realization by 
inverting the uniform [0,1] variate from the previous step and then sum them up to obtain 
the total loss for the bank. Repeating these steps produces the distribution of aggregate 
losses. Finally, VaR and CVaR are computed from the obtained aggregate distributions.
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Table 3. Population descriptive statistics and risk capital estimates by business line.

Panel A: Model 1.

Risk capital estimates (Euro ‘000 000)Population 
descriptive 
statistics

(Euro ‘000 000)
VaR CVaR

Mean St.Dev. 97.5% 98% 99% 99.9% 97.5% 98% 99% 99.9%

BL3 0.022 0.239 0.070 0.092 0.211 4.271 0.605 0.736 1.337 6.376

BL4 0.008 0.048 0.051 0.059 0.106 0.854 0.190 0.223 0.370 1.043

BL8 0.026 0.141 0.175 0.197 0.353 1.914 0.507 0.586 0.920 3.377

Panel B: Model 2.

Risk capital estimates (Euro ‘000 000)Population 
descriptive
statistics

(Euro ‘000 000)
VaR CVaR

Mean St.Dev. 97.5% 98% 99% 99.9% 97.5% 98% 99% 99.9%

BL3 0.030 0.320 0.130 0.170 0.290 6.090 0.860 1.040 1.860 8.430

BL4 0.050 0.880 0.180 0.220 0.490 3.920 1.430 1.730 3.170 22.960

BL8 0.080 0.360 0.550 0.610 1.190 4.280 1.570 1.820 2.760 8.330

Table 4. Estimates of concordance.

BL3 BL4 BL8

BL3
Spearman

Kendall

1.000

1.000

BL4
Spearman

Kendall

-0.004

0.003

1.000

1.000

BL8
Spearman

Kendall

-0.040

-0.031

0.026

0.020

1.000

1.000
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Table 5. Population descriptive statistics and risk capital estimates for aggregate 
loss data. The numbers in parentheses indicate percentage reduction (if “-“) or increase 
(if “+”) from the corresponding risk measure under perfect positive correlation scenario.

Panel A: Model 1.

Risk capital estimates (Euro ‘000 000)Population 
descriptive 
statistics

(Euro ‘000 000)
VaR CVaR

EL UL 97.5% 98% 99% 99.9% 97.5% 98% 99% 99.9%

Perfect 
positive 

correlation
0.056 0.280 0.296 0.347 0.670 7.039 1.546 1.302 2.626 10.796

Symmetric       
t-copula

0.055

(-1.8%)

0.277

(-1.1%)

0.287

(-3.0%)

0.366

(-5.5%)

0.657

(-1.9%)

4.940

(-29.8%)

1.040

(-32.7%)

1.219

(-6.4%)

1.967

(-25.1%)

6.647

(-38.4%)

Skewed       
t-copula

0.055

(-1.8%)

0.298

(+6.4%)

0.281

(-5.4%)

0.351

(+1.2%)

0.645

(-3.7%)

5.228

(-25.7%)

1.065

(-31.1%)

1.254

(-3.7%)

2.051

(-21.9%)

7.106

(-34.2%)

Panel B: Model 2.

Risk capital estimates (Euro ‘000 000)Population 
descriptive 
statistics

(Euro ‘000 000)
VaR CVaR

EL UL 97.5% 98% 99% 99.9% 97.5% 98% 99% 99.9%

Perfect 
positive  

correlation
0.155 1.004 0.859 0.990 1.963 14.289 4.591 3.860 7.782 39.721

Symmetric       
t-copula

0.152

(-1.9%)

0.978

(-2.6%)

0.853

(-0.7%)

1.021

(+3.1%)

1.936

(-1.4%)

11.311

(-20.8%)

3.135

(-31.7%)

3.680

(-4.7%)

5.995

(-23.0%)

24.877

(-37.4%)

Skewed         
t-copula

0.148

(-4.5%)

1.004

(0.0%)

0.835

(-2.8%)

1.020

(+3.0%)

1.857

(-5.4%)

10.277

(-28.1%)

3.064

(-33.3%)

3.596

(-6.8%)

5.870

(-24.6%)

25.761

(-35.1%)

Panel C: Historical data.

Risk capital estimates (Euro ‘000 000)Population 
descriptive 
statistics

(Euro ‘000 000)
VaR CVaR

EL UL 97.5% 98% 99% 99.9% 97.5% 98% 99% 99.9%

Historical data 0.245 0.561 1.025 1.236 3.306 5.850 3.589 2.978 4.671 5.850

Historical data 
excluding 

worst 2 losses
0.209 0.340 0.868 0.977 1.404 3.492 2.021 1.739 2.459 3.492
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Table 5 summarizes the estimates for expected and unexpected losses (EL and UL) and 
the bank’s cumulative risk capital, derived from the copula-based approach and compared 
to the perfect correlation approach. The estimates are based on a one week horizon. It is 
notable that in our results there is a negligible difference in EL and UL and the effect is 
more pronounced for the VaR and CVaR estimates. In vast majority of cases copula 
approach results in a substantial reduction in risk capital for the bank. For example, for 
99.9% VaR, reduction in capital ranges from 21% to 29% and for 99.9% CVaR, 
reduction in capital is roughly in the 34%-38% range. Another notable result is that if 
Model 1 is used, symmetric Student t-copula generally produces higher reduction in risk 
capital than the skewed Student t-copula, while the relation is reverse in most part if 
Model 2 is used.  However, because skewed Student t-copula is a generalized version of 
the symmetric Student t-copula, a risk manager would prefer the former one.

Panel C of Table 5 shows capital estimates based on historical data. Comparison of the 
figures with those under Model 1 and Model 2 reveals that for percentiles below 99.9, the 
former model uniformly under-estimates the true historic loss while the latter model 
produces results fairly consistent (only slightly higher) with those actually experienced. 
Then, because Model 2 corresponds to a more heavy-tailed distribution than Model 1, the 
CVaR figures under Model 2 reveal overestimation of the historic counterparts roughly 
by a factor of 2. On the contrary, Model 1 in most part underestimates CVaR. A risk 
manager would favour Model 2 over Model 1 based on the above discussion.

Our findings indicate lower reduction in risk capital from those reported by Chapelle, 
Crama, Hubner, and Peters (2004) and Dalla Valle, Fantazzini, and Giudici (2007). 
Chapelle, Crama, Hubner, and Peters (2004) showed that for a 99% VaR a bank can 
achieve reduction in capital estimates by 35% by using copula, and Dalla Valle, 
Fantazzini, and Giudici (2007) showed reduction in the range of 30%-50%. One 
explanation is that we used a much more heavy-tailed loss distribution than in the two 
other studies. This means that, if a thin-tailed loss distribution is used to model loss data, 
copula-based aggregation would result in much more significant reduction in total capital. 
In essence, this implies that if a bank has mistakenly chosen to use a thin-tailed loss 
distribution when the data are in fact heavy-tailed, the resulting capital would be 
understated. The converse is also true. The choice of the loss distribution thus becomes of 
central concern and must be estimated with high degree of accuracy. 
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Figure 2. Illustration of super-additivity and sub-additivity of historic VaR.

4.5. Super-Additivity of VaR

Panels A and B of Table 5 show that for the 98% confidence level, we observe super-
additivity of VaR measures in 3 out of 4 cases. Super-additivity is also observed in our 
results for the historic estimates of VaR under 99.9% for Models 1 and 2 and CVaR 
estimates under 99.9% for Model 1. Super-additivity has been documented in literature; 
see, for example, McNeil, Frey, and Embrechts (2005). Figure 2 illustrates super-
additivity and sub-additivity in historical VaR estimates. The horizontal line is the 
benchmark representing a VaR estimate based on the aggregation of historical data for 
BL3, BL4, and BL8 using historical correlations. The plot represents the summation of 
individual VaR estimates for each of the three business lines. Super-additivity is observed 
for confidence levels under 94%. One must pay extra care when choosing a confidence 
level to provide VaR and CVaR measures: for confidence levels chosen too low, the 
estimated capital charge may be under-estimated while for confidence levels too high, it 
may be over-estimated. The phenomenon of super and sub-additivity seems more severe 
for more heavy-tailed loss distributions. 
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5. Conclusions

In this empirical paper we used a copula approach to model the dependence between 
operational losses belonging to different business lines. The contributions of this paper 
can be summarized as follows: 

(1) For the loss distributions that constitute the marginals of copulas we used very 
heavy-tailed symmetric α-stable distribution (a member of α-stable distributions) and 
a combination of a symmetric α-stable distribution with the Generalized Pareto 
distribution for the tails. In operational risk, such heavy-tailed distributions are 
superior to thin-tailed and moderately heavy-tailed distribution due to their capacity 
to detect and account for the heaviness in the upper tails. 

(2) We selected symmetric Student t-copula and skewed Student t-copula due to their 
ability to capture tail dependence. Our empirical study has shown that using t-copulas 
results in substantial reduction in risk capital for the bank. Although our findings are 
consistent with other empirical studies that have documented capital reduction when 
using copula, upon drawing comparisons with other similar studies, we have found 
that the magnitude in capital reduction is smaller than if thin-tailed or moderately-
tailed distributions, such as Lognormal and Gamma, are used to constitute the 
marginals. 

(3) Another finding was presence of the super-additivity phenomenon in the VaR 
estimates. For our data sample, super-additivity was observed for confidence levels 
below 94%.

Our findings effectively demonstrate that falsely settling on a loss distribution that is not 
sufficiently heavy-tailed for given data puts the capital estimates at the risk of severe 
underestimation for very high confidence levels or overestimation for confidence levels 
insufficiently high. Careful analysis and a variety of goodness-of-fit tests are thus crucial 
in selecting a loss distribution which is central to the accuracy of the capital charge 
estimates.
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