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Abstract. We provide a general, model-independent approach to the construction
of optimal simultaneous validation tests of credit default probabilities, dependen-
cies between creditors, and credit risk models that maximize the power of test for
any given portfolio-size and number of periods of data available. Results can be
used to validate banks’ estimates of rating default probabilities, correlations and
choice of credit risk models in the Basel II supervisory review process. Example-
analyses are given for the generalized asset value model.
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1 Introduction

Clients’ default probabilities, dependencies between clients and the choice of the
particular unifying credit risk model are the main drivers of the credit risk found
in bank portfolios and in the banking sector in general. Errors in the estimation of
these key inputs may lead to considerable misconceptions of the overall credit risk
a financial institution is exposed to and, in turn, also lead to insufficient action by
risk managers as well as regulators.

Therefore, risk managers and regulators are vitally interested in having at their
disposal a technology to validate key risk drivers as a cornerstone of a consolidated
credit risk management process.
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Moreover, in most approaches to model portfolio credit risk the estimations
of clients’ default probabilities and of the size of dependencies between clients
are interrelated in the sense that dependencies result solely from an incomplete
knowledge of the factors that commonly influence clients’ default probabilities.
Assuming increasing ex ante information about these systematic risk factors entails
a refined estimation of default probabilities and usually decreases dependencies
between defaults of clients. This implies that default probabilities, dependencies,
and their interrelation as described by the credit risk model applied should not be
assessed in isolation, but in their modelled connection.

In this article, we provide a general, model-independent approach to the con-
struction of optimal simultaneous validation tests of credit default probabilities,
dependencies between creditors, and credit risk models. The resulting tests max-
imize the power of test for any given number of clients and number of periods of
data available. They, thus, also represent a benchmark for the maximal quality of
validation tests a bank can reach if the amount of data at disposition is limited.

The paper is organized as follows: section 2 gives a brief overview about the
literature, section 3 provides the general validation approach, section 4 applies the
approach to the generalized asset value model and serially independent defaults
and gives quantitative examples. Section 5 concludes.

2 Brief Review of the Literature

Jose Lopez and Marc Saidenberg (2000) were among the first who suggested to
consider credit portfolio model structures to facilitate validation of model inputs,
outputs, and of the model itself. In order to compensate for the sparsity of histor-
ical data, they proposed a bootstrap approach. Making the implicit assumption
that defaults are independent, large numbers of smaller portfolios were sampled
from a large portfolio, and model results were compared to actual portfolio per-
formance so that numerous standard tests could be applied. If defaults happen to
be dependent, though, as usually has to be accounted for in real world situations,
the Lopez- and Saidenberg-approach becomes invalid.

Taking up an idea of Jeremy Berkowitz (2001), Hergen Frerichs and Günter
Löffler (2003) suggest to apply the estimated cumulative distribution function F̂
of portfolio defaults to the number of observed defaults x in order to transform
them to the unit interval and then in a second step to further transform them
to the real axis by the inverse standard normal cumulative distribution function
Φ−1. They then test the hypothesis that y := Φ−1

(
F̂ (x)

)
be standard normally

distributed against the alternative that y follows a specific non-standard normal
distribution that depends on the quantity to be tested.

Albeit their results show large imprecisions under the null which cannot be
due to simulation uncertainty, the authors do not consider the impact of some
misspecifications of the constructed test. In particular, the distribution of portfo-
lio defaults is in general not absolutely continuous with respect to the Lebesgue
measure. y can, therefore, not be standard normally distributed even under the
null. Hence, the test-statistic cannot be χ2

n−distributed under the null, as the
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authors state without proof. Own simulation exercises have shown that the true
distribution of the test-statistic under the null is far longer tailed than the χ2

n-
distribution and that the misspecification of the correct distribution leads to a
relative overstatement of the power of test of up to 53%.

Moreover, even if the distribution of portfolio defaults were continuous with
respect to the Lebesgue measure, y would not be normally distributed under the
alternative so that the test is suboptimal even in the limiting case.

3 General Validation Approach

In order to be able to describe our general validation approach, we define some
notation and make the following assumptions:

• Default data is available for periods t = 1, ..., T .

• In period t clients are indexed i = 1, ..., nt for t = 1, ..., T .

• Let H and A denote the hypothesis and alternative, respectively.

• Under the hypothesis, in period t clients have default probabilities pH
1t, ..., p

H
ntt

for t = 1, ..., T .

• Under the alternative, in period t clients have default probabilities pA
1t, ..., p

A
ntt

for t = 1, ..., T .

• Under the hypothesis, default distributions are determined by credit portfolio
model MH .

• Under the alternative, default distributions are determined by credit portfo-
lio model MA.

• Under the hypothesis, portfolio model MH can be fully parameterized
through clients’ default probabilities and a list DH of known parameters
that comprises all dependencies between clients.

• Under the alternative, portfolio model MA can be fully parameterized
through clients’ default probabilities and a list DA of known parameters
that comprises all dependencies between clients.

• Let 1it = 1 if client i defaults in period t, and 1it = 0 otherwise for i =
1, ..., nt and t = 1, ..., T .

• Let xit ∈ {0, 1} for i = 1, ..., nt and t = 1, ..., T .

• Let

pI
[x11,x21,...,xnT T ] (1)

:= PI{111 = x11, ...,1nT T = xnT T }, (2)
:= P{111 = x11, ...,1nT T = xnT T | M I , DI , pI

11, ..., p
I
nT T }, (3)
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I = A,H, be the probability to observe the event 111 = x11, ...,1nT T = xnT T

under the hypothesis or alternative, respectively.

• Define the test-statistic T as

T (x11, ..., xnT T ) :=
pA
[x11,...,xnT T ]

pH
[x11,...,xnT T ]

. (4)

• Let
φ(x11, ..., xnT T ) := P{H is rejected | x11, ..., xnT T }

be a randomized test of the hypothesis H against the alternative A.

We can now state our main result.

Theorem 1
Let γ ∈ [0, 1] and k ∈ R≥0 and let α ∈ (0, 1) be a significance level. Let

φ(x11, ..., xnT T ) :=





1 if T (x11, ..., xnT T ) > k

0 if T (x11, ..., xnT T ) < k

γ if T (x11, ..., xnT T ) = k

(5)

Then γ and k can be chosen so that

EHφ(x11, ..., xnT T ) = α (6)

and the test φ maximizes the power among all tests of hypothesis H against
alternative A.

Proof:
The result follows from Lehmann (1997) chapter 3.2. theorem 1.

¤

A number of important implications directly follow from the theorem:

• Theorem 1 is valid for any portfolio models.

• Theorem 1 allows to test all model parameters, for instance default proba-
bilities, individually or simultaneously, even including the model itself. In all
cases, dependencies between clients are naturally integrated in the analysis.

• Although usually difficult to calculate analytically, the distribution of the
test-statistic T under the hypothesis and the alternative, respectively, can
always be approximated by computer simulation. The same is true for the
probabilities pH

[x11,...,xnT T ] and pA
[x11,...,xnT T ].

• The test in theorem 1 maximizes the power, i.e. the probability to correctly
reject the hypothesis if the alternative is true, for any given amount of data.
This means that it allows for optimal testing even if data is sparse, i.e. if
there are only few periods of data and / or few clients.
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• Theorem 1 establishes a benchmark that makes evident what power of test
is achievable given a certain amount of data.

• It also gives a clue whether the prospective costs of data collection lead to
the desired increase in power of test.

4 An Example

To illustrate the approach, we apply theorem 1 to a specific family of credit port-
folio models, the generalized asset value model.

The classical asset value model was developed by Stephen Kealhofer, Andrew
McQuown, and Oldrich Vasicek (see e.g. Kealhofer (1993)) and by Greg Gupton,
Christopher Finger, and Mickey Bhatia (1997) based on a seminal article by Robert
Merton (1974) and is amply documented in literature.

The generalized asset value model (for details see Wehrspohn (2002), pp. 112ff.,
Wehrspohn (2003)) extends the classical model in the way that the normal dis-
tribution as asset return distribution is replaced by a general variance mixture
of normals. This is an important topic for testing because it can be shown that
tail-risk increases for any deviations from the normal distribution as asset return
distribution in the generalized asset value model (Wehrspohn (2003)).

To keep the number of parameters as small as possible, we assume that data is
available about n clients in periods t = 1, ..., T independent of t. All clients have
default probabilities p in all periods. Defaults are serially independent. Within
the same period, asset return correlations ρ between two asset return distributions
may be positive and are the same for any two clients and all periods.

In the generalized asset value model, firm i, i = 1, ..., n, defaults in a given
period if √

w
(√

ρ Y +
√

1− ρ Zi

)
≤ F−1(p) (7)

where Y and Zi, i = 1, ..., n, are independent standard normally distributed ran-
dom variables, w is a random variable that only takes values on R+ and is inde-
pendent of Y and Zi, i = 1, ..., n, and F is the cumulative distribution function of
L (
√

w · Y ). Note that Y and w are systematic risk factors common to all clients,
while Zi is individual to client i = 1, ..., n.

The classical asset value model appears as a special case of the generalized
asset value model for w ≡ c and some positive constant c.

Let x1t, ..., xnt ∈ {0, 1} be defined as above and let
∑n

i=1 xit = mt. Then it
can be shown (Wehrspohn (2002) theorem 11) that for all t = 1, ..., T

p[x1t,...,xnt] =
∫

R+

∫

R

[
Φ

(
F−1(p)−√w · √ρ · Y√

1− ρ

)]mt

·
[
1− Φ

(
F−1(p)−√w · √ρ · Y√

1− ρ

)]n−mt

· φ(Y )dY ·W (dw)(8)

where Φ is the cumulative standard normal distribution function, φ is the standard
normal density function, and W = L (w).
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Due to the assumed serial independence of defaults, it follows that

p[x11,...,xnT ] =
T∏

t=1

p[x1t,...,xnt] (9)

with a specific combination of mt defaults in period t = 1, ..., T .
Let now the model parameters p and ρ and the model itself, i.e. the mixing

distribution W = L(w), depend on the hypothesis and the alternative, respectively,
to get pI , ρI and W I , I = A,H. Then the test-statistic T is given as

T (x11, ..., xnT ) :=
pA
[x11,...,xnT ]

pH
[x11,...,xnT ]

. (10)

To be able to produce numerical results, we further specialize the example and
choose the symmetric version of the normal inverse Gauss distribution as asset
return distribution to get a subfamily of the generalized asset value model. The
symmetric normal inverse Gauss distribution has the density

nig(x; α, δ, µ) =
αδ

π
exp (δα)

K1

(
α
√

δ2 + (x− µ)2
)

√
δ2 + (x− µ)2

(11)

where x, µ ∈ R, δ ≥ 0, and Kλ(·) is the modified Bessel function of the third kind.
The symmetric normal inverse Gauss distribution can be written as a variance

mixture of normals with the inverse Gauss distribution as mixing distribution.
The inverse Gauss distribution has the density

ig(x; ψ, χ) =
√

χ

2πx2
· exp

(
−1

2

(χ

x
+ ψx

)
+

√
ψχ

)
(12)

with χ = δ2 and ψ = α2. Without loss of generality, we can choose the symmetric
normal inverse Gauss distribution to have unit variance, i.e. α = δ. δ now is a
free shape-parameter that leaves the variance unchanged, but deforms the tails
of the distribution. Note that for δ → ∞ the normal inverse Gauss distribution
converges against the normal distribution. For δ < ∞ the distribution has long
tails (Wehrspohn (2002) theorem 4) that turn longer with falling δ. For an exten-
sive discussion of the normal inverse Gauss, the inverse Gauss and other related
distributions refer to Eberlein and Prause (1998) and Prause (1999).

For the numerical analyses, we choose as the base case that data is available
for 5 periods for a portfolio containing 500 clients. To show the impact of the size
of the portfolio and of the length of history of data, we deviate from the base case
to histories of 1, 3, 5, 10, and 15 periods of data on the one hand, and to portfolios
containing 50, 100, 250, 500, 1000, and an infinite number of clients on the other
hand. The significance level (error of the first kind) is kept fixed at 0.05.

For all analyses, the hypothesis is that clients have default probabilities p =
0.01, asset return correlations ρ = 0.1, and that the asset return distribution
is normal. The alternative always only deviates in one parameter-value from the
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Figure 1: Tests on default probability for varying portfolio sizes

hypothesis. We successively test default probabilities to range from 0.0005 to 0.03,
asset return correlations to range form 0 to 0.3, and the shape parameter δ of the
normal inverse Gauss distribution to range from 0.5 to 20.

Figure 1 shows the power of tests on deviations from a default probability
of 0.01 for portfolio sizes varying from 50 to 1000 and infinitely many clients,
respectively. It turns out that in very small portfolios containing less than 250
clients it is very unlikely to detect even larger deviations from the hypothesis. On
the other hand, if the portfolio size exceeds 250, the power increases rapidly so that
the comparative advantage of large banks over middle-sized banks with 500-1000
clients in one rating class is relatively small.

Figure 2 displays the power of the same test for a portfolio with 500 clients if
varying lengths of histories of data are available. It is evident that long histories of
data significantly improve the results and sometimes more than doubles the power
of test, particularly if the hypothesis is tested against deviations to higher default
probabilities. Thus, also for regulatory purposes, it is worthwhile to collect data
over longer periods if this is possible.

Figures 3 and 4 show the same analyses for tests on deviations of the asset
return correlations from the hypothesis of a correlation of 0.1. Note that it turns
out that here deviations from the hypothesis are much more difficult to detect
than deviations in default probability. This seems to indicate that in middle-sized
portfolios default probabilities are the primary driver of default behavior of clients.
This is in line with the observation that large banks have a greater advantage over
small and middle-sized banks when asset return correlations are tested as opposed
to a test of default probabilities.

Figures 5 and 6 present the results for deviations from the normal distribution
as asset return distribution. The choice of the asset return distribution is critical in
the generalized asset value model because it can be shown that tail-risk and, thus,
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Figure 2: Tests on default probability for varying length of data histories

Figure 3: Tests on asset return correlations for varying portfolio sizes
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Figure 4: Tests on asset return correlations for varying length of data histories

Figure 5: Tests on asset return distributions for varying portfolio sizes
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Figure 6: Tests on asset return distributions for varying length of data histories

values at risk and shortfalls at high confidence levels increase for any deviations
from the normal distribution as asset return distribution (Wehrspohn (2003)).
Note that small deviations from the normal distribution, i.e. values of δ ≥ 8 are
very difficult to detect even if the portfolio is large and many periods of data are
available. Only alternatives that are further away from the hypothesis are more
readily detected. Similar to the tests of asset return correlations, here again to
have a large portfolio and a long history of data is clearly advantageous.

Finally note that in all cases a power of test above 40% can only be reached
if the alternative deviates from the hypothesis to a relatively large extent, albeit
the fact that the test under discussion maximizes the power and is already a best
test. This indicates that it is under all circumstances paramount for banks and
regulators to pool data, if possible, to get large portfolios and to collect long
histories of default observations.

5 Conclusion

We have defined a general, model-independent framework that allows banks and
regulators to construct optimal validation tests for their credit risk models and
risk parameters. We have applied the approach to the generalized asset value
models and have given numerical examples for the performance of tests on default
probabilities, asset return correlations, and the asset return distribution.

The results have shown that it is relatively easy to test on deviations of default
probabilities from a given hypothesis as compared to asset return correlations and
asset return distributions. However, high detection probabilities, if the alternative
is true, can only be obtained if the alternative is far away from the hypothesis or
if there are many periods of data available for a large portfolio. This shows that
data consolidation is one of the most important tasks for banks and regulators.
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