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Abstract

Lévy copulas, introduced in [8], are functions that completely char-
acterize the law of a multidimensional Lévy process given the laws of
its components. In this paper, after recalling the basic properties of
Lévy copulas, we discuss the simulation of multidimensional Lévy pro-
cesses with dependence structure given by a Lévy copula. Being able
to describe the dependence structure of a Lévy process in terms of its
Lévy copula allows us to quantify the effect of dependence on the prices
of basket options in a multidimensional exponential Lévy model. We
conclude that these prices are highly sensitive not only to the linear
correlation between assets but also to the exact type of dependence
beyond linear correlation.

Key words: correlation, dependence, Lévy copulas, multi-asset op-
tions, simulation

1 Introduction

Many financial applications require a multidimensional model with jumps,
taking into account the dependence between components. While Lévy pro-
cesses have been successfully applied by many authors to construct one-
dimensional jump models (cf. e.g. [2, 5, 9, 10, 15]), multivariate applications
continue to be dominated by Brownian motion (but cf. [12] in this respect).
To fill this gap, the notion of Lévy copula was introduced in [8] (see also
Chapter 5 in [4]).

A Lévy copula allows to describe in a time-dependent fashion the de-
pendence structure of a Lévy process without Gaussian component. On the
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other hand, given n one-dimensional Lévy processes X 1, . . . , Xn, Lévy copu-
las allow to characterize all n-dimensional Lévy processes whose components
have the same laws as X1, . . . , Xn. In Section 3 we recall the definition of
Lévy copula and the main theorem, explaining the relation between Lévy
copulas and Lévy processes.

Lévy copulas turn out to be a convenient tool for simulating multidi-
mensional Lévy processes with specified dependence. In Section 4 we prove
two theorems which show how multidimensional Lévy processes with de-
pendence structures given by Lévy copulas can be simulated in the finite
variation case (Theorem 4.3) and in the infinite variation case (Theorem
4.4).

Section 5 discusses the applications of Lévy copulas to multi-asset op-
tion pricing. We construct a two-dimensional exponential Lévy model with
variance gamma margins and compute the prices of two types of multi-asset
options using the Monte Carlo method. Choosing different sets of depen-
dence parameters corresponding to the same correlation level enables us to
quantify the sensitivity of prices to the exact type of dependence beyond
linear correlation.

2 Lévy processes

In this section we recall the essential properties of Lévy processes. The
reader can consult [16] or [4] for details.

A Lévy process (Xt)t≥0 is a càdlàg stochastic process with stationary
independent increments, satisfyingX0 = 0. The characteristic function of an
Rd-valued Lévy process has the following form, called the Lévy-Khintchine
representation [16]:

E[ei〈z,Xt〉] = etψ(z), with

ψ(z) = −1

2
〈z,Az〉 + i〈γ, z〉 +

∫

�
d

(ei〈z,x〉 − 1 − i〈z, x〉1|x|≤1)ν(dx), (2.1)

where A is a symmetric nonnegative-definite d×dmatrix (the unit covariance
matrix of the Brownian motion part of the Lévy process), γ ∈ Rd and ν is
a positive measure on Rd verifying ν({0}) = 0 and

∫

�
d

(|x|2 ∧ 1)ν(dx) <∞.

The triplet (A, ν, γ) is called the characteristic triplet of X.
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If the Lévy measure satisfies
∫

�
d(|x| ∧ 1)ν(dx) < ∞, (this means that

the jump part of the Lévy process is of finite variation) one does not need to
truncate small jumps in (2.1) and the Lévy-Khintchine representation can
be rewritten as

ψ(z) = −1

2
〈z,Az〉 + i〈b, z〉 +

∫

�
d

(ei〈z,x〉 − 1)ν(dx). (2.2)

The vector b is in this case called drift of the process X.

Example 2.1. The variance gamma process [3, 10] is a one-dimensional Lévy
process without Gaussian component (A = 0). It is obtained by time-
changing a Brownian motion with drift with a gamma process and has the
characteristic exponent of the form:

ψ(u) = ibu− 1

κ
log(1 +

u2σ2κ

2
− iθκu). (2.3)

The Lévy measure of the variance gamma process has a density given by

ν(x) =
c

|x|e
−λ−|x|1x<0 +

c

x
e−λ+x1x>0, (2.4)

where c = 1/κ, λ+ =

√
θ2+2σ2/κ

σ2 − θ
σ2 and λ− =

√
θ2+2σ2/κ

σ2 + θ
σ2 .

In the same way as the law of a random vector can be represented by its
distribution function, the Lévy measure of a Lévy process can be represented
by its tail integral.

Definition 2.1. Let X be a Rd-valued Lévy process with Lévy measure ν.
The tail integral of X is the function U : (R \ {0})d → R defined by

U(x1, . . . , xd) :=

d
∏

i=1

sgn(xi)ν





d
∏

j=1

I(xj)



 ,

where for every x ∈ R,

I(x) :=

{

[x,∞), x ≥ 0,
(−∞, x), x < 0.

(2.5)

For a nonempty set I ⊂ {1, . . . , d}, the I-marginal tail integral U I of X
is the tail integral of the process X I := (X i)i∈I . To simplify notation, we
denote one-dimensional margins by Ui := U{i}. The Lévy measure of a Lévy

3



process X is completely determined by its tail integral and all its marginal
tail integrals (cf. Lemma 3.5 in [8]).

We now briefly recall the definition of a Poisson random measure and
the Lévy-Itô decomposition of the sample paths of Lévy processes, which
are essential for Section 4 dealing with the simulation of Lévy processes.

Let µ be a σ-finite positive measure on Rd endowed with its Borel σ-
field B(Rd). A Poisson random measure with intensity measure µ is an
integer-valued random measure M such that

1. For every random element ω, M(·, ω) is a measure on Rd.

2. For every A ∈ B(Rd), M(A) is a Poisson random variable with mean
µ(A).

3. If A1, . . . , An are disjoint then M(A1), . . . ,M(An) are independent.

Let X be an Rd-valued Lévy process with characteristic triplet (A, ν, γ).
The Lévy-Itô decomposition theorem [16] states that there exist a Brownian
motion (Bt)t≥0 with covariance matrix A and a Poisson random measure
JX on [0,∞)×Rd with intensity measure dt×ν, such that the sample paths
of X can be represented as follows:

Xt = γt+Bt +X l
t + lim

ε↓0
X̃ε
t , where (2.6)

X l
t =

∫

|x|≥1,s∈[0,t]

xJX(ds× dx) and

X̃ε
t =

∫

ε≤|x|<1,s∈[0,t]

x{JX(ds× dx) − ds× ν(dx)}

The terms in (2.6) are independent and the convergence in the last term is
almost sure and uniform in t on [0, T ].

If the Lévy measure satisfies
∫

�
d(|x| ∧ 1)ν(dx) <∞, truncation of small

jumps is not needed and Equation (2.6) simplifies to

Xt = bt+Bt +

∫

[0,t]×
�

d

xJX(ds× dx) (2.7)
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3 Lévy copulas

We start by recalling a few facts on increasing functions. We set R :=
(−∞,∞] in this paper and

sgnx :=

{

1 for x ≥ 0
−1 for x < 0.

For a, b ∈ R
d

we write a ≤ b if ak ≤ bk, k = 1, . . . , d. In this case, let (a, b]

denote a right-closed left-open interval of R
d
:

(a, b] := (a1, b1] × · · · × (ad, bd].

Definition 3.1. Let F : S → R for some subset S ⊂ R
d
. For a, b ∈ S with

a ≤ b and (a, b] ⊂ S, the F -volume of (a, b] is defined by

VF ((a, b]) :=
∑

u∈{a1,b1}×···×{ad,bd}

(−1)N(u)F (u),

where N(u) := #{k : uk = ak}.
F is called d-increasing if VF ((a, b]) ≥ 0 for all such a, b ∈ S.

For example, for d = 2 we obtain

VF ((a1, b1] × (a2, b2]) = F (a1, b1) − F (a1, b2) − F (a2, b1) + F (a2, b2).

The distribution function F of a random variable provides an example of an
increasing function (the F -volume of a rectangle is in this case equal to the
probability that the random variable belongs to this rectangle).

Definition 3.2. Let F : R
d → R be a d-increasing function such that

F (u1, . . . , ud) = 0 if ui = 0 for at least one i ∈ {1, . . . , d}. For any non-empty

index set I ⊂ {1, . . . , d}, the I-margin of F is the function F I : R
I → R,

defined by

F I((ui)i∈I) := lim
c→∞

∑

(uj)j∈Ic∈{−c,∞}Ic

F (u1, . . . , ud)
∏

j∈Ic

sgnuj ,

where Ic := {1, . . . , d} \ I.
The stage is now set to give the definition of a Lévy copula. The prop-

erties of a Lévy copula are similar to those of an ordinary copula (see [11]
for an introduction to copulas) but the domain of definition is completely
different; this is due to the fact that Lévy measures are not necessarily finite
measures.
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Definition 3.3. A function F : R
d → R is called Lévy copula if

1. F (u1, . . . , ud) 6= ∞ for (u1, . . . , ud) 6= (∞, . . . ,∞),

2. F (u1, . . . , ud) = 0 if ui = 0 for at least one i ∈ {1, . . . , d},

3. F is d-increasing,

4. F {i}(u) = u for any i ∈ {1, . . . , d}, u ∈ R.

Example 3.1 (Clayton Lévy copulas). Let d = 2 and define

F (u, v) = (|u|−θ + |v|−θ)−1/θ
(

η1{uv≥0} − (1 − η)1{uv<0}

)

. (3.1)

In [8] it is shown that F is a Lévy copula for any θ > 0 and η ∈ [0, 1]. In this
family of Lévy copulas, the parameter η determines the dependence of the
sign of jumps: when η = 1, the two components always jump in the same di-
rection, and when η = 0, positive jumps in one component are accompanied
by negative jumps in the other and vice versa. The parameter θ is responsi-
ble for the dependence of absolute values of jumps in different components.
In particular, if η = 1 and θ → 0, the two components become independent
and the case η = 1 and θ → ∞ corresponds to complete dependence.

The following result, established in [8], clarifies the relation between Lévy
copulas and Lévy processes.

Theorem 3.1. Let X = (X1, . . . , Xd) be a Rd-valued Lévy process. Then
there exists a Lévy copula F such that the tail integrals of X satisfy:

U I((xi)i∈I) = F I((Ui(xi))i∈I) (3.2)

for any non-empty I ⊂ {1, . . . , d} and any (xi)i∈I ∈ (R \ {0})I . The Lévy
copula F is unique on

∏d
i=1 RanUi.

Conversely, let F be a d-dimensional Lévy copula and Ui, i = 1, . . . , d
tail integrals of real-valued Lévy processes. Then there exists an Rd-valued
Lévy process X whose components have tail integrals U1, . . . , Ud and whose
marginal tail integrals satisfy Equation (3.2) for any non-empty I ⊂ {1, . . . , d}
and any (xi)i∈I ∈ (R \ {0})I . The Lévy measure ν of X is uniquely deter-
mined by F and Ui, i = 1, . . . , d.

To construct an n-dimensional Lévy model, one can thus take n one-
dimensional Lévy processes (e.g. variance gamma, but different components
can also be of completely different nature, say, a compound Poisson com-
ponent and an infinite intensity one) and one Lévy copula, possibly from a
parametric family. This is the approach taken in Section 5 to construct a
two-dimensional exponential Lévy model with variance gamma margins.
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4 Simulation of multidimensional dependent Lévy

processes

To simulate a Lévy process (Xt)0≤t≤1 on Rd with Lévy measure ν, our
strategy is first to simulate a Poisson random measure on [0, 1] × Rd with
intensity measure dt× ν. The Lévy process can then be constructed via the
Lévy-Itô decomposition (2.6).

Let F be a Lévy copula such that for every I ∈ {1, . . . , d} nonempty,

lim
(xi)i∈I→∞

F (x1, . . . , xd) = F (x1, . . . , xd)|(xi)i∈I=∞. (4.1)

This Lévy copula defines a positive measure µ on Rd with Lebesgue margins
such that for each a, b ∈ Rd with a ≤ b,

VF ((a, b]) = µ((a, b]). (4.2)

In the following technical lemma, needed in the sequel, we establish the
relation between µ and the Lévy measures of processes having F as their
Lévy copula. For a one-dimensional tail integral U , the (generalized) inverse
tail integral U (−1) is defined by

U (−1)(u) :=

{

sup{x > 0 : U(x) ≥ u} ∨ 0, u ≥ 0
sup{x < 0 : U(x) ≥ u}, u < 0.

(4.3)

Lemma 4.1. Let ν be a Lévy measure on Rd with marginal tail integrals
Ui, i = 1, . . . , d, and Lévy copula F satisfying (4.1), let µ be defined by (4.2)
and let

f : (u1, . . . , ud) 7→ (U
(−1)
1 (u1), . . . , U

(−1)
d (ud)).

Then ν is the image measure of µ by f .

Proof. We must prove that for each A ∈ B(Rd),

ν(A) = µ({u ∈ Rd : f(u) ∈ A}),

but because ν is completely determined by the set of all its marginal tail in-
tegrals (Lemma 3.5 in [8]), it is sufficient to show that for each I ⊂ {1, . . . , d}
nonempty and for all (xi)i∈I ∈ (R \ {0})|I|,

U I((xi)i∈I) = µ({u ∈ Rd : U
(−1)
i (ui) ∈ I(xi), i ∈ I}),

7



where I(x) was defined in (2.5). However, since Ui is left-continuous, for

every i, U
(−1)
i (u) ∈ I(x) if and only if u ∈ (Ui(x) ∧ 0, Ui(x) ∨ 0]. Therefore,

µ({u ∈ Rd : U
(−1)
i (ui) ∈ I(xi), i ∈ I})

= µ({u ∈ Rd : ui ∈ (Ui(xi) ∧ 0, Ui(xi) ∨ 0], i ∈ I}) = F I((Ui(xi))i∈I),

and an application of Theorem 3.1 completes the proof.

In Theorems 4.3 and 4.4 below, to simulate the jumps of a multidimen-
sional Lévy process (more precisely, of the corresponding Poisson random
measure), we will first simulate the jumps in the first component, and then
the jumps in the other components conditionally on the jumps in the first
one. We therefore proceed by analyzing the conditional distributions of µ.
By Theorem 2.28 in [1], there exists a family, indexed by ξ ∈ R, of positive
Radon measures K(ξ, dx2 · · · dxd) on Rd−1, such that

ξ 7→ K(ξ, dx2 · · · dxd)

is Borel measurable and

µ(dx1 . . . dxd) = dx1 ×K(x1, dx2 · · · dxd). (4.4)

In addition, K(ξ,Rd−1) = 1 almost everywhere, that is, K(ξ, ·) is, almost ev-
erywhere, a probability distribution. In the sequel we will call {K(ξ, ·)}ξ∈ �

the family of conditional probability distributions associated with Lévy cop-
ula F .

Let Fξ be the distribution function of the measure K(ξ, ·):

Fξ(x2, . . . , xd) := K(ξ, (−∞, x2] × · · · × (−∞, xd]). (4.5)

The following lemma shows that it can be computed in a simple manner
from the Lévy copula F .

Lemma 4.2. Let F be a Lévy copula satisfying (4.1), and Fξ be the corre-
sponding conditional distribution function, defined by (4.5). Then, there ex-
ists a set N ⊂ R of zero Lebesgue measure such that for every fixed ξ ∈ R\N ,
Fξ(·) is a probability distribution function, satisfying

Fξ(x2, . . . , xd)

= sgn(ξ)
∂

∂ξ
VF ((ξ ∧ 0, ξ ∨ 0] × (−∞, x2] × · · · × (−∞, xd]) (4.6)

in every point (x2, . . . , xd), where Fξ is continuous.
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Remark 4.1. Since the law of a random variable is completely determined by
the values of its distribution function at the continuity points of the latter,
being able to compute Fξ at all points where it is continuous is sufficient for
all practical purposes.

Proof. Since it has already been observed that K(ξ,Rd−1) = 1 almost ev-
erywhere, we only need to prove the second part of the lemma. Let

G(x1, . . . , xd) := sgnx1VF ((x1 ∧ 0, x1 ∨ 0] × (−∞, x2] × · · · × (−∞, xd])

By Theorem 2.28 in [1], for each f ∈ L1(Rd, µ),

∫

�
d

f(x1, . . . , xd)µ(dx1 · · · dxd)

=

∫ ∞

−∞
dx1

∫

�
d

f(x1, . . . , xd)K(x1, dx2 · · · dxd), (4.7)

which implies that

G(x1, . . . , xd) = sgnx1

∫

(x1∧0,x1∨0]
dξFξ(x2, . . . , xd),

Therefore, for fixed (x2, . . . , xd), (4.6) holds ξ-almost everywhere. Since a
union of countably many sets of zero measure is again a set of zero measure,
there exists a set N ⊂ R of zero Lebesgue measure such that for every
ξ ∈ R \ N , (4.6) holds for all (x2, . . . , xd) ∈ Qd, where Q denotes the set of
rational numbers.

Fix ξ ∈ R \ N and let x ∈ Rd−1 and {x+
n } and {x−n } be two sequences

of d − 1-dimensional vectors with coordinates in Q, converging to x from
above and from below (componentwise). Since Fξ is increasing in each co-
ordinate (as a probability distribution function), the limits limn Fξ(x

+
n ) and

limn Fξ(x
−
n ) exist. Suppose that

lim
n
Fξ(x

+
n ) = lim

n
Fξ(x

−
n ) = F ∗ (4.8)

and observe that for every δ 6= 0,

G(ξ + δ, x−n ) −G(ξ, x−n )

δ
≤ G(ξ + δ, x) −G(ξ, x)

δ
≤ G(ξ + δ, x+

n ) −G(ξ, x+
n )

δ
.

For every ε > 0, in view of (4.8), there exists N0 such that for every n ≥ N0,
Fξ(x

+
n ) − F ∗ ≤ ε/2 and F ∗ − Fξ(x

−
n ) ≤ ε/2. Since G is differentiable with
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respect to the first variable at points (ξ, x+
n ) and (ξ, x−n ), we can choose δ

small enough so that

∣

∣

∣

∣

G(ξ + δ, x−n ) −G(ξ, x−n )

δ
− Fξ(x

−
n )

∣

∣

∣

∣

≤ ε/2

and
∣

∣

∣

∣

G(ξ + δ, x+
n ) −G(ξ, x+

n )

δ
− Fξ(x

+
n )

∣

∣

∣

∣

≤ ε/2

This proves that

lim
δ→0

G(ξ + δ, x) −G(ξ, x)

δ
= F ∗.

We have thus shown that Fξ satisfies Equation (4.6) in all points where (4.8)
holds, that is, where Fξ is continuous.

In the following two theorems we show how Lévy copulas may be used to
simulate multidimensional Lévy processes with specified dependence. Our
results can be seen as an extension to Lévy processes, represented by Lévy
copulas, of the series representation results, developed by Rosinski and oth-
ers (see [14] and references therein). The first result concerns the simpler
case when the Lévy process has finite variation on compacts.

Theorem 4.3. (Simulation of multidimensional Lévy processes, fi-
nite variation case)
Let ν be a Lévy measure on Rd, satisfying

∫

(|x|∧1)ν(dx) <∞, with marginal
tail integrals Ui, i = 1, . . . , d and Lévy copula F (x1, . . . , xd), such that the
condition (4.1) is satisfied, and let K(x1, dx2 · · · dxd) be the corresponding
conditional probability distributions, defined by (4.5). Let {Vi} be a sequence
of independent random variables, uniformly distributed on [0, 1]. Introduce
d random sequences {Γ1

i }, . . . , {Γdi }, independent from {Vi} such that

• N =
∑∞

i=1 δ{Γ1
i }

is a Poisson random measure on R with Lebesgue
intensity measure.

• Conditionally on Γ1
i , the random vector (Γ2

i , . . . ,Γ
d
i ) is independent

from Γkj with j 6= i and all k and is distributed on Rd−1 with law

K(Γ1
i , dx2 · · · dxd).

Then

(Zt)0≤t≤1 where Zkt =
∞
∑

i=1

U
(−1)
i (Γki )1[0,t](Vi), k = 1, . . . , d, (4.9)
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is a Lévy process on the time interval [0, 1] with characteristic function

E
[

ei〈u,Zt〉
]

= exp

(

t

∫

�
d

(ei〈u,z〉 − 1)ν(dz)

)

. (4.10)

Remark 4.2. The probability distribution function of (Γ2
i , . . . ,Γ

d
i ) condition-

ally on Γ1
i is known from Lemma 4.6.

Remark 4.3. The sequence {Γ1
i }i≥1 can be constructed, for example, as

follows. Let {Xi}i≥1 be a sequence of jump times of a Poisson process with
jump intensity equal to 2. Then it is easy to check that one can define Γ1

i

by Γ1
i = Xi(−1)i.

Proof. First note that {Γki } are well defined since by Lemma 4.2, K(x1, ·) is
a probability distribution for almost all x1. Let

Zkτ,t =
∑

−τ≤Γ1
i ≤τ

U
(−1)
k (Γki )1Vi≤t, k = 1, . . . , d.

By Proposition 3.8 in [13],

Zkτ,t =

∫

[0,t]×[−τ,τ ]×
�

d−1

U
(−1)
k (xk)M(ds× dx1 · · · dxd),

where M is a Poisson random measure on [0, 1]×Rd with intensity measure
dt× µ(dx1 · · · dxd), and the measure µ was defined in Equation (4.2).

By Lemma 4.1 and Proposition 3.7 in [13],

Zkτ,t =

∫

[0,t]×
�

d

xkNτ (ds× dx1 · · · dxd), (4.11)

for some Poisson random measure Nτ on [0, 1] × Rd with intensity measure
ds× ντ (dx1 · · · dxd), where

ντ := 1
(−∞,U

(−1)
1 (−τ)]∪[U

(−1)
1 (τ),∞)

(x1)ν(dx1 · · · dxd) (4.12)

The Lévy-Itô decomposition (2.7) implies that Zτ,t is a Lévy process on the
time interval [0, 1] with characteristic function

E
[

ei〈u,Zτ,t〉
]

= exp

(

t

∫

�
d

(ei〈u,z〉 − 1)ντ (dz)

)

.
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Let h be a bounded continuous function such that h(x) ≡ x on a neigh-

borhood of 0. Since limτ→∞ U
(−1)
1 (τ) = 0 and limτ→∞U

(−1)
1 (−τ) = 0, by

dominated convergence,

∫

�
d

h2(x)ντ (dx) −−−→
τ→∞

∫

�
d

h2(x)ν(dx)

and

∫

�
d

h(x)ντ (dx) −−−→
τ→∞

∫

�
d

h(x)ν(dx).

Moreover, for every f ∈ Cb(R
d) such that f(x) ≡ 0 on a neighborhood of 0,

∫

�
d

f(x)ντ (dx) =

∫

�
d

f(x)ν(dx)

starting from sufficiently large τ . Therefore, Corollary VII.3.6 in [7] allows
to conclude that (Zτ,t)0≤t≤1 converges in law to a Lévy process with char-
acteristic function given by (4.10).

If the Lévy process has paths of infinite variation on compacts, it can
no longer be represented as the sum of its jumps and we have to introduce
a centering term into the series (4.9).

Theorem 4.4. (Simulation of multidimensional Lévy processes, in-
finite variation case)
Let ν be a Lévy measure on Rd with marginal tail integrals Ui, i = 1, . . . , d
and Lévy copula F (x1, . . . , xd), such that the condition (4.1) is satisfied. Let
{Vi} and {Γ1

i }, . . . , {Γdi } be as in Theorem 4.3. Let

Ak(τ) =

∫

|x|≤1
xkντ (dx1 · · · dxd), k = 1 . . . d,

where ντ is given by (4.12). Then the process

(Zτ,t)0≤t≤1, where Zkτ,t =
∑

−τ≤Γ1
i ≤τ

U
(−1)
k (Γki )1Vi≤t − tAk(τ),

converges in law as τ → ∞ to a Lévy process (Zt)0≤t≤1 on the time interval
[0, 1] with characteristic function

E
[

ei〈u,Zt〉
]

= exp

(

t

∫

�
d

(ei〈u,z〉 − 1 − i〈u, z〉)1|z|≤1ν(dz)

)

. (4.13)
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Proof. The proof is essentially the same as in Theorem 4.3. Similarly to
Equation (4.11), Zkτ,t can now be represented as

Zkτ,t =

∫

[0,t]×{x∈
�

d:|x|≤1}

xk {Nτ (ds× dx1 · · · dxd) − dsντ (dx1 · · · dxd)}

+

∫

[0,t]×{x∈
�

d:|x|>1}
xkNτ (ds× dx1 · · · dxd),

where Nτ is a Poisson random measure on [0, 1]×Rd with intensity measure
ds×ντ , and ντ is defined by (4.12). This entails that (Zτ,t) is a Lévy process
(compound Poisson) with characteristic function

E
[

ei〈u,Zτ,t〉
]

= exp

(

t

∫

�
d

(ei〈u,z〉 − 1 − i〈u, z〉1|z|≤1)ντ (dz)

)

.

Corollary VII.3.6 in [7] once again allows to conclude that (Zτ,s)0≤s≤1 con-
verges in law to a Lévy process with characteristic function (4.13).

Example 4.1. Let d = 2 and F be the Lévy copula of Example 3.1. A
straightforward computation yields:

Fξ(x2) =







(1 − η) +

(

1 +

∣

∣

∣

∣

ξ

x2

∣

∣

∣

∣

θ
)−1−1/θ

(η − 1x2<0)







1ξ≥0

+







η +

(

1 +

∣

∣

∣

∣

ξ

x2

∣

∣

∣

∣

θ
)−1−1/θ

(1x2≥0 − η)







1ξ<0. (4.14)

This conditional distribution function can be inverted analytically:

F−1
ξ (u) = B(ξ, u)|ξ|

{

C(ξ, u)−
θ

θ+1 − 1
}−1/θ

with B(ξ, u) = sgn(u− 1 + η)1ξ≥0 + sgn(u− η)1ξ<0

and C(ξ, u) =

{

u− 1 + η

η
1u≥1−η +

1 − η − u

1 − η
1u<1−η

}

1ξ≥0

+

{

u− η

1 − η
1u≥η +

η − u

η
1u<η

}

1ξ<0.

If ν is a Lévy measure on R2, satisfying
∫

(|x| ∧ 1)ν(dx) <∞ with marginal
tail integrals U1, U2 and Lévy copula F of Example 3.1, the Lévy process
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Figure 1: Trajectories of two variance gamma processes with dependence
structure given by the Lévy copula of Example 3.1. In both graphs both
variance gamma processes are driftless and have parameters c = 10, λ− = 1
and λ+ = 1 (cf. Equation (2.4)). In the left graph, the dependence between
the two components is strong both in terms of sign and absolute value (η =
0.9 and θ = 3): the processes jump mostly in the same direction and the sizes
of jumps are similar. In the right graph the dependence of absolute values
is weak (θ = 0.5) and the dependence of jump signs is negative (η = 0.25).

with characteristic function (4.10) can be simulated as follows. Let {Vi}
and {Γ1

i } be as in Theorem 4.3 and let {Wi} be an independent sequence of
independent random variables, uniformly distributed on [0, 1]. For each i,
let Γ2

i = F−1
Γ1

i

(Wi). Then the Lévy process that we want to simulate is given

by Equation (4.9).
Figure 1 shows the simulated trajectories of two variance gamma pro-

cesses with dependence structure given by the Lévy copula of Example 3.1
with different values of parameters. The number of jumps for each trajec-
tory was limited to 2000 and the inverse tail integral of the variance gamma
Lévy measure was computed by inverting numerically the exponential in-
tegral function (function expint available in MATLAB). Simulating two
trajectories with 2000 jumps each takes about 1 second on a Pentium III
computer running MATLAB, but this time could be reduced by several or-
ders of magnitude if the inverse exponential integral function is tabulated
and a lower-level programming language (e.g. C++) is used.
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5 Pricing multi-asset options using Lévy copulas

In this section we present a case study showing how one particular model,
constructed using Lévy copulas, can be used to price multi-asset options.

The model We suppose that under the risk-neutral probability, the prices
(S1
t )t≥0 and (S2

t )t≥0 of two risky assets satisfy

S1
t = ert+X

1
t , S2

t = ert+X
2
t , (5.1)

where (X1, X2) is a Lévy process on R2 with characteristic triplet (0, ν, b)
with respect to zero truncation function. X1 and X2 are supposed to be
variance gamma processes, that is, the margins ν1 and ν2 of ν are of the form
(2.4) with parameters c1, λ1

+, λ
1
− and c2, λ2

+, λ
2
−. The Lévy copula F of ν is

supposed to be of the form (3.1) with parameters θ and η. The no-arbitrage
condition imposes that for i = 1, 2, λi+ > 1 and the drift coefficients satisfy

bi = ci log

(

1 − 1

λi+
+

1

λi−
− 1

λi+λ
i
−

)

.

The problem In the rest of this section, model (5.1) will be used to price
two different kinds of multi-asset options: the option on weighted average,
whose payoff at expiration date T is given by

HT =

(

2
∑

i=1

wiS
i
T −K

)+

with w1,2 ≥ 0 and w1 +w2 = 1,

and the best-of or alternative option with payoff structure

HT =

(

N max

(

S1
T

S1
0

,
S2
T

S2
0

)

−K

)+

Option pricing by Monte Carlo Basket options, described above can be
priced by Monte Carlo method using European options on individual stocks
as control variates. Denote the discounted payoffs of European options by

V i
T = e−rT (SiT −K)+ for i = 1, 2.

and the discounted payoff of the basket option by VT = e−rTHT . Then the
Monte Carlo estimate of basket option price is given by

Ê[VT ] = V̄T + a1(E[V 1
T ] − V̄ 1

T ) + a2(E[V 2
T ] − V̄ 2

T ),
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Figure 2: Scatter plots of returns in a 2-dimensional variance gamma model
with correlation ρ = 50% and different tail dependence. Left: strong tail
dependence (η = 0.75 and θ = 10). Right: weak tail dependence (η = 0.99
and θ = 0.61).

where a bar over a random variable denotes the sample mean over N i.i.d.

realizations of this variable, that is, V̄T = 1
N

∑N
i=1 V

(i)
T , where V

(i)
T are in-

dependent and have the same law as VT . The coefficients a1 and a2 should

be chosen in order to minimize the variance of Ê[VT ]. It is easy to see
that this variance is minimal if a = Σa0, where Σij = Cov(V i

T , V
j
T ) and

a0
i = Cov(VT , V

i
T ). In practice these covariances are replaced by their in-

sample estimates; this may introduce a bias into the estimator Ê[VT ], but
for sufficiently large samples this bias is small compared to the Monte Carlo
error [6].

To illustrate the option pricing procedure, we fixed the following parame-
ters of the marginal distributions of the two assets: c1 = c2 = 25, λ1

+ = 28.9,
λ1
− = 21.45, λ2

+ = 31.66 and λ2
− = 25.26. In the parametrization (2.3) this

corresponds to θ1 = θ2 = −0.2, κ1 = κ2 = 0.04, σ1 = 0.3 and σ2 = 0.25.
To emphasize the importance of tail dependence for pricing multi-asset op-
tions, we used two sets of dependence parameters, which correspond both
to a correlation of 50% (the correlation is computed numerically) but lead
to returns with very different tail dependence structures:

Pattern 1 Strong tail dependence: θ = 10 and η = 0.75. The scatter plot
of returns is shown in Figure 2, left graph. Although the signs of
returns may be different, the probability that the returns will be large
in absolute value simultaneously in both components is very high.
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Figure 3: Prices of options on weighted average (left) and of best-of options
(right) for two different dependence patterns.

Pattern 2 Weak tail dependence: θ = 0.61 and η = 0.99. The scatter plot
of returns in shown in Figure 2, right graph. With this dependence
structure the returns typically have the same sign but their absolute
values are only weakly correlated.

In each of the two cases, a sample of 1000 realizations of the couple
(X1

T , X
2
T ) with T = 0.02 (one-week options) was simulated using the pro-

cedure described in Example 4.1. The cutoff parameter τ (see Equation
(4.11)) was taken equal to 1000, which lead to limiting the average number
of jumps for each trajectory to about 40. For this value of τ , U−1

i (τ) is
of order of 10−19 for both assets. Since for the variance gamma model the
convergence of U−1 to zero as τ → ∞ is exponential, the error resulting
from the truncation of small jumps is of the same order, hence, negligible.

Figure 3 shows the prices of basket options, computed for different strikes
with dependence patterns given above. The initial asset prices were S1

0 =
S2

0 = 1, and the interest rate was taken to be r = 0.03. For the option on
weighted average, the weights wi were both equal to 0.5 and for the best-of
option the coefficient was N = 1. The prices of European options, used for
variance reduction, were computed using the Fourier transform algorithm
(see [17] for the detailed description of our procedure and [3] for the original
reference). The standard deviation of Monte Carlo estimates of option prices
was below 2 · 10−4 at the money in all cases.

The difference between option prices computed with and without tail
dependence is clearly important for both types of options: as seen from
Figure 3, neglecting tail dependence may easily lead to a 10% error on the
option price at the money. On the other hand, this example shows that

17



using Lévy copulas allows to take into account the tail dependence and
discriminate between two situations that would be undistinguishable in a
log-normal framework.
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