The t Copula and Related Copulas

Stefano Demarta & Alexander J. McNeil
Department of Mathematics
Federal Institute of Technology
ETH Zentrum
CH-8092 Zurich
mcneil@math.ethz.ch

May 2004

Abstract

The t copula and its properties are described with a focus on issues related to the
dependence of extreme values. The Gaussian mixture representation of a multivariate
t distribution is used as a starting point to construct two new copulas, the skewed t
copula and the grouped t copula, which allow more heterogeneity in the modelling of
dependent observations. Extreme value considerations are used to derive two further new
copulas: the ¢ extreme value copula is the limiting copula of componentwise maxima of
t distributed random vectors; the t lower tail copula is the limiting copula of bivariate
observations from a ¢ distribution that are conditioned to lie below some joint threshold
that is progressively lowered. Both these copulas may be approximated for practical
purposes by simpler, better-known copulas, these being the Gumbel and Clayton copulas
respectively.

1 Introduction

The ¢ copula (see for example Embrechts, McNeil & Straumann (2001) or Fang & Fang
(2002)) can be thought of as representing the dependence structure implicit in a multivariate
t distribution. It is a model which has received much recent attention, particularly in
the context of modelling multivariate financial return data (for example daily relative or
logarithmic price changes on a number stocks). A number of recent papers such as Mashal
& Zeevi (2002) and Breymann et al. (2003) have shown that the empirical fit of the ¢ copula
is generally superior to that of the so-called Gaussian copula, the dependence structure of
the multivariate normal distribution. One reason for this is the ability of the ¢ copula to
capture better the phenomenon of dependent extreme values, which is often observed in
financial return data.

The objective of this paper is to bring together what is known about the ¢ copula,
particularly with regard to its extremal properties, to present some extensions of the t
copula that follow from the representation of the multivariate ¢ distribution as a mixture
of multivariate normals, and to describe copulas that are related to the ¢ copula through
extreme value theory. For example, if random vectors have the ¢ copula we would like to
know the limiting copula of componentwise maxima of such random vectors, and also the
limiting copula of observations that are conditioned to lie below or above extreme thresholds.

The paper is organized as follows. In the next section we describe the multivariate ¢
distribution and its copula, the so-called ¢ copula. In Section 3 we describe properties of
the ¢ copula, with a focus on coefficients of tail dependence and joint quantile exceedance
probabilities. Brief notes on the statistical estimation of the ¢ copula are given in Section 4.

The final sections of the paper contain the four new copulas. The skewed t copula
and the grouped t copula are introduced in Section 5. The t-EV copula and its derivation



as the copula of the limiting distribution of multivariate componentwise maxima of iid t-
distributed random vectors are described in Section 6. The ¢ tail limit copulas, which provide
the limiting copulas for observations from the bivariate ¢ copula that are conditioned to lie
above or below extreme thresholds, are described in Section 7. Comments are made on the
usefulness of all of these new copulas for practical data analysis.

2 The Multivariate ¢t Distribution and its Copula

2.1 The multivariate ¢ distribution

The d-dimensional random vector X = (X7,..., Xy)" is said to have a (non-singular) mul-
tivariate t distribution with v degrees of freedom, mean vector p and positive-definite dis-
persion or scatter matrix X, denoted X ~ t4(v, p, 2), if its density is given by
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Note that in this standard parameterization cov(X) = ¥ so that the covariance matrix
is not equal to ¥ and is in fact only defined if v > 2. Useful references for the multivariate
t are Johnson & Kotz (1972) (Chapter 37) and Kotz et al. (2000).

It is well-known that the multivariate ¢ belongs to the class of multivariate normal
variance mixtures and has the representation

XL+ Vive, (2)

where Z ~ Ny(0,%) and W is independent of Z and satisfies v/W ~ x2; equivalently W
has an inverse gamma distribution W ~ Ig(v/2,r/2). The normal variance mixtures in turn

belong to the larger class of elliptically symmetric distributions. See Fang, Kotz & Ng (1990)
or Kelker (1970).

2.2 The t copula

A d-dimensional copula C is a d-dimensional distribution function on [0, 1]¢ with standard
uniform marginal distributions. Sklar’s Theorem (see for example Nelsen (1999), Theorem
2.10.9) states that every df F' with margins F},..., Fy can be written as

F(xla---amd):C(Fl(xl)a"'de($d))> (3)

for some copula C, which is uniquely determined on [0, 1] for distributions F' with absolutely
continuous margins. Conversely any copula C' may be used to join any collection of univariate
dfs Fy,..., Fy using (3) to create a multivariate df F' with margins Fy, ..., Fy.

For the purposes of this paper we concentrate exclusively on random vectors X =
(X1,...,X4)" whose marginal dfs are continuous and strictly increasing. In this case the
so-called copula C' of their joint df may be extracted from (3) by evaluating

C(u) :=Cl(uy,...,uq) = F(Fl_l(ul), . ,Fd_l(ud)), (4)

where the Fi_1 are the quantile functions of the margins. The copula C' can be thought of as
the df of the componentwise probability transformed random vector (Fi(X1), ..., Fq(Xq))

The copula remains invariant under a standardization of the marginal distributions (in
fact it remains invariant under any series of strictly increasing transformations of the com-
ponents of the random vector X). This means that the copula of a t4(v, u,>) is identical to



that of a t4(v, 0, P) distribution where P is the correlation matrix implied by the dispersion
matrix X. The unique copula is thus given by
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where ¢! denotes the quantile function of a standard univariate ¢, distribution. In the
bivariate case we simplify the notation to C,i p where p is the off-diagonal element of P.

In what follows we will often contrast the ¢ copula with the unique copula of a multivariate
Gaussian distribution, which is extracted from the df of multivariate normal by the same
technique and will be denoted C§? (see Embrechts et al. (2001)). It may be thought of as
a limiting case of the ¢ copula as v — oc.

Simulation of the ¢ copula is particularly easy: we generate a multivariate ¢-distributed
random vector X ~ t4(v,0, P) using the normal mixture construction (2) and then return
a vector U = (t,(X1),...,t,(Xyg))’, where ¢, denotes the df of a standard univariate t.
For estimation purposes it is useful to note that the density of the ¢ copula may be easily
calculated from (4) and has the form

o Jep (6 (W), (ua)
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where f, p is the joint density of a t4(v, 0, P)-distributed random vector and f, is the density
of the univariate standard ¢-distribution with v degrees of freedom.

, ue(0,1)% (6)

2.3 Meta t distributions

If a random vector X has the ¢ copula C’f;’ p and univariate ¢ margins with the same degree of
freedom parameter v, then it has a multivariate ¢ distribution with v degrees of freedom. If,
however, we use (3) to combine any other set of univariate distribution functions using the ¢
copula we obtain multivariate dfs F' which have been termed meta-t, distribution functions
(see Embrechts et al. (2001) or Fang & Fang (2002)). This includes, for example, the case
where F1, ..., Fy are univariate ¢ distributions with different degree of freedom parameters
Viy...,l(q.

3 Properties of the t Copula

For this section it suffices to consider a bivariate random vector (Xi, X3) with continuous
and strictly increasing marginal dfs and unique copula C.

3.1 Kendall’s 7 Rank Correlation

Kendall’s tau is a well-known measure of concordance for bivariate random vectors (see, for
example, (Kruskal, 1958)). In general the measure is calculated as

pT(Xl,XQ) =F <sign(X1 - Xl)(XQ - XQ)) s (7)

where (th )72) is a second independent pair with the same distribution as (X7, X2).

However, it can be shown (see Nelsen (1999), page 127, or Embrechts et al. (2001)) that
the Kendall’s tau rank correlation p, depends only on the copula C' (and not on the marginal
distributions of X; and X3) and is given by

1 1
pT(Xl,Xg):él/O /0 C(ur, 12)dC (s, u3) — 1. (8)



Remarkably Kendall’s tau takes the same elegant form for the Gauss copula CEa, the
t copula C,f, , or the copula of essentially all useful distributions in the elliptical class, this
form being

2
pr(X1,X1) = — arcsin p. (9)
T

A proof of this result can be found in Fang & Fang (2002); a proof of a slightly more general
result applying to all elliptical distributions has been derived independently in Lindskog
et al. (2003).

3.2 Tail Dependence Coefficients

The coefficients of tail dependence provide asymptotic measures of the dependence in the
tails of the bivariate distribution of (X1, X32). The coefficient of upper tail dependence of X
and X5 is

lim P (Xo > Fy () | X1 > F (@) = A, (10)

provided a limit A, € [0, 1] exists, and the coefficient of lower tail dependence is

i P (X2 < Fy ) | X0 < Fy ) = A )

provided a limit A; € [0, 1] exists. Thus these coefficients are limiting conditional probabilities
that both margins exceed a certain quantile level given that one margin does.

These measures again depend only on the copula C of (X7, X2) and we may easily derive
the copula-based expressions used by Joe (1997) from (10) and (11) using basic conditional
probability and (4). The copula-based forms are

Clg,9) Cl4,9)

Ay, = i A= 1li 12
w= lim g M Jim, . (12)

where C(u,u) = 1 — 2u + C(u,u) is known as the survivor function of the copula. The
interesting cases occur when these coefficient are strictly greater zero as this indicates a
tendency for the copula to generate joint extreme events. If Ay, > 0, for example, we talk of
tail dependence in the lower tail; if Ay = 0 we talk of asymptotic independence in the lower
tail.

For the copula of an elliptically symmetric distribution like the ¢ the two measures A,
and Ay coincide, and are denoted simply by A. For the Gaussian copula the value is zero and
for the t copula it is positive; a simple formula was calculated by Embrechts et al. (2001)
using an argument that we reproduce here.

Proposition 1. For continuously distributed random wvariables with the t copula C’,’;P the
coefficient of tail dependence is given by

A o= 2. (—\/1/ T1VI—p/V/IT p) , (13)

where p is the off-diagonal element of P.

Proof. Applying 'Hospital’s rule to the expression for A = \; in (12) we obtain

ac
A= lim M: lim P(Uy <u|Up=u)+ lim P(Uy <u|Us=u),
u—0Tt du u—0t u—0+
where (U1, Us) is a random pair whose df is C' and the second equality follows from an easily
established property of the derivative of copulas (see Nelsen (1999), pages 11, 36). Suppose
we now define Y; = t,1(U;) and Yz = t,1(Us) so that (Y7, Ys) ~ t2(v, 0, P). We have, using
the exchangeability of (Y7,Y>), that
A=2 lim+P(Y2§y\Y2:y).

Y——00



Since, conditionally on Y] = y we have

v+1\Y? Yo — py
~ti(v+1,0,1 14
(i) A ~uerton (19
this limit may now be easily evaluated and shown to be (13). O

Using an identical approach we can show that the Gaussian copula has no tail depen-
dence, provided p < 1. This fact is much more widely known and has been demonstrated
in a variety of different ways (see Sibuya (1961) or Resnick (1987), Chapter 5). Coefficients
of tail dependence for the ¢ copula are tabulated in Table 1. Perhaps surprisingly, even for
negative and zero correlations, the t-copula gives asymptotic dependence in the tail.

v/p| -0.5 0 05 09
2 0.06 0.18 0.39 0.72
4 0.01 0.08 0.25 0.63
10 0.0 0.01 0.08 0.46
00 0 0 0 0

—_ = = = =

Table 1: Coefficient of tail dependence of the t copula Cli p for various values of v and p.

Hult & Lindskog (2001) have given a general result for tail dependence in elliptical
distribution, and hence its copula. It is well known (see Fang et al. (1987)) that a random

vector X is elliptically distributed if and only if X 4 pn+ RAS where R is a scalar random
variable independent of S, a random vector distributed uniformly on the unit hypersphere,
p is the location vector of the distribution and A is related to the dispersion matrix by
Y = AA’. Hult and Lindskog show that a sufficient condition for tail dependence is that R has
a distribution with a so-called regularly varying or power tail (see, for example, Embrechts
et al. (1997)). In this case they give the alternative formula
f(77rr//227arcsin p)/2 cos® tdt

foﬂ/ 2 cose tdt

=

(15)

where « is the so-called tail index of the distribution of R. For the multivariate ¢ it may be
shown that R%/d ~ F(d,v) (the usual F distribution) and the tail index of the distribution
of R turns out to be @ = v. The formulas (15) and (13) then coincide. Hult and Lindskog
conjecture that the regular variation of the tail of R is a necessary condition.

3.3 Joint Quantile Exceedance Probabilities

While tail dependence as presented in the previous section is an asymptotic concept, the
practical implications can be seen by comparing joint quantile exceedance probabilities. To
motivate this section we consider Figure 1 which shows 5000 simulated points from four
bivariate distributions. The distributions in the top row are meta-Gaussian distributions;
they share the same copula Cfa. The distributions in the bottom row are meta-t distribu-
tions; they share the same copula C,i - The values of v and p in all pictures are 4 and 0.5
respectively. The distributions in the left column share the same margins, namely standard
normal margins. The distributions in the right column both have standard ¢4 margins. The
distributions on the diagonal are of course elliptical, being standard bivariate normal and
standard bivariate t4; they both have linear correlation p = 0.5. The other distributions are
not elliptical and do not necessarily have linear correlation 50%, since altering the margins
alters the linear correlation. All four distributions have identical Kendall’s tau values given

by (9).



Gaussian Meta—Gaussian

X2
0
1

X2
0
1

-2

X1 X1
Meta—t4 t4

2

-10

Figure 1: 5000 simulated points from 4 distributions. Top left: standard bivariate normal
with correlation parameter p = 0.5. Top right: meta-Gaussian distribution with copula
C’Sa and t4 margins. Bottom left: meta-t4 distribution with copula C}Lp and standard
normal margins. Bottom right: standard bivariate ¢4 distribution with correlation parameter
p = 0.5. Horizontal and vertical lines mark the 0.005 and 0.995 quantiles.

The vertical and horizontal limes mark the true theoretical 0.005 and 0.995 quantiles for
all distributions. Note that for the meta-t distributions the number of points that lie below
both 0.005 quantiles or exceed both 0.995 quantiles is clearly greater than for the meta-
Gaussian distributions, and this can be thought of as a consequence of the tail dependence
of the t copula. The true theoretical ratio by which the number of these joint exceedances
in the £ models should exceed the number in the Gaussian models is 2.79 which may be read
from Table 2, whose interpretation we now discuss.

) Copula Quantile

0.05 0.01 0.005 0.001
0.5 Gauss |1.21 x1072 1.29x 1072 4.96 x 107* 5.42x 107°
0.5 t8 1.20 1.65 1.94 3.01
0.5 t4 1.39 2.22 2.79 4.86
0.5 t3 1.50 2.55 3.26 5.83
0.7 Gauss | 1.95x 1072 2.67x107% 1.14x 103 1.60x 104
0.7 t8 1.11 1.33 1.46 1.86
0.7 t4 1.21 1.60 1.82 2.52
0.7 t3 1.27 1.74 2.01 2.83

Table 2: Joint quantile exceedance probabilities for bivariate Gaussian and ¢ copulas with
correlation parameter values of 0.5 and 0.7. For Gaussian copula the probability of joint
quantile exceedance is given; for the ¢ copulas the factors by which the Gaussian probability
must be multiplied are given.



In Table 2 we have calculated values of Cfa(u, u)/Cy, ,(u,u) for various p and v and u =
0.05,0.01,0.005,0.001. For notes on the method we have used to calculate these values see
Appendix A.1. The rows marked Gauss contain values of CpGa(u, u), which is the probability
that two random variables with this copula lie below their respective u-quantiles; we term
this event a joint quantile exceedance. Obviously it is identical to the probability that both
rvs lie above their (1 —u)-quantiles. The remaining rows give the values of the ratio and thus
express the amount by which the joint quantile exceedance probabilities must be inflated
when we move from models with a Gaussian copula to models with a ¢ copula.

P Copula Dimension d
2 3 4 5

0.5 Gauss |1.29x1073 3.66 x 107 1.49x10~* 7.48x10~°
0.5 t8 1.65 2.36 3.09 3.82
0.5 t4 2.22 3.82 5.66 7.68
0.5 t3 2.55 4.72 7.35 10.34
0.7 Gauss |267x1073 1.28x107% 7.77x10"* 535x 1074
0.7 t8 1.33 1.58 1.78 1.95
0.7 t4 1.60 2.10 2.53 2.91
0.7 t3 1.74 2.39 2.97 3.45

Table 3: Joint 1% quantile exceedance probabilities for multivariate Gaussian and ¢ equicor-
relation copulas with correlation parameter values of 0.5 and 0.7. For Gaussian copula the
probability of joint quantile exceedance is given; for the ¢ copulas the factors by which the
Gaussian probability must be multiplied are given.

In Table 3 we extend Table 2 to higher dimensions. We now focus only on joint ex-
ceedances of the 1% (or 99% quantiles). We tabulate values of the ratio

CE*u, ..., w)/CL p(u,. .. u),

where P is an equicorrelation matrix with all correlations equal p. It is noticeable that not
only do these values grow as the correlation parameter or degrees of freedom falls, they also
grow with the dimension of the copula.

Consider the following example of the implications of the tabulated numbers. We study
daily returns on five stocks which are roughly equicorrelated with a correlation of 50%. In
reality they are generated by a multivariate ¢ distribution with four degrees of freedom. If
we erroneously assumed a multivariate Gaussian distribution we would calculate that the
probability that on any day all returns would drop below the 1% quantiles of their marginal
distributions is 7.48 x 107°. In the long run such an event will happen once every 13369
days on average, that is roughly once every 51 years (assuming 260 days in the stock market
year). In the true model the event actually occurs with a probability that is 7.68 times
higher, making it more of a seven year event.

4 Estimation of the ¢t Copula

When estimation of a parametric copula is the primary objective, the unknown marginal
distributions of the data enter the problem as nuisance parameters. The first step is usually
to transform the data onto the “copula scale” by estimating the unknown margins and then
using the probability-integral transform. Denote the data vectors X1, ..., X,, and write the
jth component of the ith vector as X; ;. We assume in the following that these are from a
meta t distribution and the parameters of the copula Cf,’ p are to be determined.

Broadly speaking the marginal modelling can be done in three ways: fitting parametric
distributions to each margin; modelling the margins nonparametrically using a version of



the empirical distribution functions; using a hybrid of the parametric and nonparametric
methods.

The first method has been termed the IFM or inference-functions-for-margins method
by Joe (1997) following terminology used by McLeish & Small (1988). Asymptotic theory has
been worked out for this approach (Joe (1997)) but in practice the success of the method is
obviously dependent upon finding appropriate parametric models for the margins, which may
not always be so straightforward when these show evidence of heavy tails and/or skewness.

The second method involving estimation of the margins by the empirical df has been
termed the pseudo-likelihood method and extensively investigated by Genest et al. (1995);
consistency and asymptotic normality of the resulting copula parameter estimates are shown
in the situation when Xj,...,X,, form an iid data sample. Writing X; = (X 1,...,X;q)’
for the ith data vector, the method involves estimating the jth marginal df F; by

~ 1 <
Fj(z) = —— > lx, <o) (16)
=1

The pseudo-sample from the copula is then constructed by forming vectors 61, cees ﬁn where

~

~ —~ /
Ui = (Uis,... . Usg) = <F1 (Xi1), ... ,Fd(Xi,d)) . (17)

Observe that, even if the original data vectors Xi,...,X,, are iid, the pseudo-sample data
are dependent, because the marginal estimates ﬁj are constructed from all of the original
data vectors through the univariate samples Xj ;,..., X, j. Note also that division by n+1
in (16) keeps transformed points away from the boundary of the unit cube.

A hybrid of the parametric and nonparametric methods could be developed by modelling
the tails of the marginal distributions using a generalized Pareto distribution as suggested
by extreme value theory (Davison & Smith (1990)) and approximating the body of the
distribution using the empirical distribution function (16).

4.1 Maximum likelihood

Assuming the marginal dfs have been estimated by one of the methods described above and
that pseudo-copula data (17) have been obtained, we can use ML to estimate the parameters
v and P of the ¢ copula. The estimates are obtained by maximizing

log L(v, P; Uy, . .. ,ﬁn) = Zlog CV,P(ﬁz‘) (18)
i=1

with respect to v and P, where ¢!, , denotes the density of the ¢ copula in (6).

This maximization is not part{cularly easy in higher dimensions due to the necessity of
maximizing over the space of correlation matrices P. For this reason, the method described
in the next section is of practical interest.

4.2 Method-of-Moments using Kendall’s tau

A simple method based on Kendall’s tau for estimating the correlation matrix P which
partly parameterizes the t copula was suggested in Lindskog (2000) and Lindskog et al.
(2003). The method consists of constructing an empirical estimate of Kendall’s tau for each
bivariate margin of the copula and then using relationship (9) to infer an estimate of the
relevant element of P. More specifically we estimate p,(X;, Xi) by calculating the standard
sample Kendall’s tau coefficient

-1
~ n .
pr(Xj, Xi) = (2) > sign(Xi g — Xip ) (Xiy ke — Xig ), (19)

1<ii<io<n



from the original data vectors X4,...,X,,; this yields an unbiased and consistent estimator
of (7). An estimator of Pj; is then given by sin (5p-(X;, X)). Note that this amounts
to a method-of-moments estimate because the true moment (7) is replaced by its empirical
analogue to turn (9) into an estimating equation for the parameter p.

In order to obtain an estimator of the entire matrix P we can collect all pairwise estimates
in an empirical Kendall’s tau matrix R” defined by R}, = p-(X;, Xj) and then construct
the estimator P* = sin (gRT). However, there is no guarantee that this componentwise
transformation of the empirical Kendall’s tau matrix will be positive definite (although in
our experience it mostly is). In this case P* can be adjusted to obtain a positive definite
matrix using a procedure such as the eigenvalue method of Rousseeuw & Molenberghs (1993).

The easiest way to estimate the remaining parameter v is by maximum likelihood with
the P matrix held fixed, which is a special case of the general ML method discussed in the
previous section. This method has been implemented in practice in the work of Mashal
& Zeevi (2002) and found to give very similar estimates to the full maximum likelihood
procedure.

5 Generalizations of ¢ Copula Via Mixture Constructions

The t copula has been found in empirical studies, such as those of Mashal & Zeevi (2002)
and Breymann et al. (2003), to be a better model than the Gauss copula for the dependence
structure of multivariate financial returns, which often seem to show empirical evidence of
tail dependence.

However a drawback of the ¢ copula is its strong symmetry. The ¢t copula is the df of
a radially symmetric distribution; if (U, ...,ug) is a vector distributed according to C? ,
then 7

U,....U) L0 -U,...,1-Uy),

which means, for example, that the level of tail dependence in any corner of the copula is
the same as that in the “opposite” corner.

Moreover, whenever P is an equicorrelation matrix the t copula is an exchangeable
copula, i.e. the df of a random vector whose distribution is invariant under permutations.
In the bivariate case, this means that (Uy, Us) 4 (Ua,Uy) so that the diagonal u; = uy is an
axis of symmetry of the copula. We now look at extensions of the ¢ copula that attempt to
introduce more asymmetry.

5.1 Skewed t copula

A larger class of multivariate normal mixture distributions, known as mean-variance mix-
tures, may be obtained by generalizing the construction (2) to get

X = p+yg(W) +VIVZ, (20)

for some function g : [0,00) — [0, 00) and a d-dimensional parameter vector yv. When ~ # 0
this gives a family of skewed, non-elliptically-symmetric distributions. Much attention has
been received by the family obtained when g(WW) = W and W has a so-called generalized
inverse Gaussian (GIG) distribution. In this case X is said to have a multivariate generalized
hyperbolic distribution; see, for example, Barndorff-Nielsen & Blaesild (1981) or Blaesild &
Jensen (1981).

A special, but little-studied, case of this family is encountered when W ~ Ig(v/2,v/2)
(since inverse gamma is a special case of the GIG distribution). The resulting mixture
distribution could be referred to as a skewed multivariate ¢ (although there are a number of



other multivariate distributions sharing this name) and has density

Koss (/I (= p)'S71 0= )78 ) expl((x — 'S 1)
f(X) =cC 2 _v+d , 1 v+d ? (21)
(\/(y +(x—p)S1(x - u))'y’Z*lﬂy) : (1 + %V‘(x—u)) d

where K\ denotes a modified Bessel function of the third kind (see Abramowitz & Stegun
(1965), Chapters 9 and 10) and the normalizing constant is

2—(v+d)
2

2

Cc = ﬁ
L(5)(mv)2[X|2
We denote this distribution by X ~ ¢4(v, p, 3,7). Properties of the modified Bessel function
of the third kind may be used to show that as v — 0 the skewed ¢ density converges to the
usual multivariate ¢ density in (1).

Moments of this distribution are easy to calculate because of the normal mixture struc-
ture of the distribution and are given by

B(X) = B(E(X|W))=pn+EW)y=n+ 2.
1% y2
cov(X) = E(var(X | W) +var(EX | W)) = —— 5+ o 52(” — .

The covariance matrix is only finite when v > 4, which contrasts with the symmetric ¢
distribution where we only require v > 2. In other words, using a mean-variance mixture
construction of the form (20) with g(w) = w results in a skewed distribution which has
heavier marginal tails than the non-skewed special case obtained when v = 0. (The tail
of |X;| will have tails that decay like 27%/2 rather than ™" in the symmetric case.) This
possibly undesirable feature could be avoided by setting g(w) = w'/? which would give a
skewed kind of distribution whose tails behaved in the same way in both the skewed and
symmetric cases. However this distribution would not reside in the class of generalized
hyperbolic distribution and would be somewhat less analytically tractable.

We persist with the model described by (21) and refer to its copula as a skewed ¢ copula.
In particular we denote by C,i Py the copula of a t4(v,0, P,~) distribution, where P is a
correlation matrix. For simulation purposes it is useful to note that the univariate margins
of this distribution are ¢;(v, 0, 1,~;) distributions for i = 1,...,d.

To appreciate the flexibility of the skewed ¢ copula it suffices to consider the bivariate
case C’f,’ pie- I Figure we have plotted simulated points from nine different examples
of this copula; the centre picture corresponds to the case when v = 2 = 0 and is thus
the ordinary ¢ copula; all other pictures show copulas which are non-radially symmetric
copulas, as is obvious by rotating each picture 180 degrees about the point (1/2,1/2); the
three pictures on the diagonal show exchangeable copulas while the remaining six are non-
exchangeable.

5.2 Grouped t copula

The grouped ¢ copula has been suggested by Daul et al. (2003) and the basic idea is to
construct a copula closely related to the ¢ copula where different subvectors of the vector X
can have quite different levels of tail dependence. To this end we build a distribution using a
generalization of the mixing construction in (2) where instead of multiplying all components
of a correlated Gaussian vector with the root of a single inverse-gamma-distributed variate
W we multiply different subgroups with different variates W; where W; ~ Ig(v;/2,v;/2) and
the W; are perfectly positively dependent.

10



gamma = (0.8,-0.8) gamma = (0.8,0) gamma = (0.8,0.8)

u2

gamma = (0,0)

u2

Figure 2: 10000 simulated points from the bivariate skewed ¢ copula C’f;yp,,ﬂ,,y2 for v = 5,

p = 0.8 and various values of the parameters (71, 72) as shown above each picture.

The rationale is to create groups whose dependence properties are described by the same
vj parameter, which dictates in particular the extremal dependence properties of the group,
whilst using perfectly dependent mixing variables to create a distribution and copula whose
calibration may be achieved by the kind of rank-correlation-based methods we discussed in
Section 4.2.

Let G, denote the df of a univariate Ig(r/2,v/2) distribution. Let Z ~ N4(0,%) and let
U ~ U(0,1) be a uniform variate independent of Z. Partition {1,...,d} into m subsets of
sizes s1,...,8n and for k = 1,...,m let v; be the degree of freedom parameter associated
with group k. Let W = G;kl(U) so that Wy,..., Wy, are perfectly dependent (in the sense
that they have a Kendall’s tau value of one). Finally define

X = (VWiZ1, - N WL Zg, N WaZai1s oAV WaZiyhsr s N WinZa)'-

From (2) it follows that (Xi,..., X5, ) has a sj-dimensional ¢-distribution with v; degrees
of freedom and, for k = 1,...,m — 1, the vector (X, . 45,41, Xsj4ts,ts,y,) Das a
sgr1-dimensional t-distribution with vy degrees of freedom. The grouped t copula is the
unique copula of the multivariate df of X. Note that like the ¢ copula, the skewed ¢ copula
and anything based on a mixture of multivariate normals, it is very easy to simulate, which
has been a further motivation for its use in financial modelling where Monte Carlo methods
are popular.
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Moreover the parameter estimation method based on Kendall’s tau described in Sec-
tion 4.2 may be applied. Daul et al. (2003) show that when vy # o, X; = VW1Z; and
X; = VWaZ; with i # j then the approximate identity

2
pr (X1, X2) = —arcsinp
0

holds, where p is the correlation between Z; and Z;. The approximation error is shown
to be extremely small. Thus estimates of correlation parameters of the grouped ¢ copula
may be inferred from inverting this relationship and degree of freedom parameters may be
estimated by applying maximum likelihood methods to subgroups which are considered a
priori to have different tail dependence characteristics.

6 The t-EV Copula

In this section we derive a new extreme value copula, known as the ¢t-EV copula or ¢ limit
copula, which can be thought of as the limiting dependence structure of componentwise
maxima of iid random vectors having a multivariate ¢ distribution or meta-¢ distribution.
The derivation requires a brief summary of relevant information from multivariate extreme
value theory.

6.1 Limit copulas for multivariate maxima

Consider 4id random vectors Xy, ...,X,, with distribution function F' (assumed to have
continuous margins) and define M,, to be the vector of componentwise maxima (i.e. the jth
component of M,, is the maximum of the jth component over all n observations). We say
that F' is in the maximum domain of attraction of the distribution function H, if there exist
sequences sequences of vectors a,, > 0 and b,, € R” such that

<M"’1_b"’1 <. MndZbua md> = lim F*(apx+by) = H(x). (22)

n—oo

lim P

n—o0 an,1 Qn,d

A non-degenerate limiting distribution H in (22) is known as a multivariate extreme value
distribution (MEVD). Its margins must be of extreme value type, that is either Gumbel,
Fréchet or Weibull. This is dictated by standard univariate EVT; see, for example, Em-
brechts et al. (1997). The unique copula Cj of the limit H must satisfy the scaling property

Co(u, ... ,ul) = Cl(uy,...,ug), Vt>0, (23)

as is shown in Galambos (1987) (where the copula is referred to as a stable dependence
function) or Joe (1997), page 173. Any copula with the property (23) is known as an
extreme value copula (EV copula) and can arise as the copula in a limiting MEVD.

A number of characterizations of the EV copulas are known. In particular, the bivariate
EV copulas are characterized as being copulas of the form

Co(u1,us) = exp <10g (uruz) A <1°g(“1)>> , (24)

log(uy,us)

for some function A : [0, 1] — [0, 1] known as the dependence function, which must be convex
and satisfy max(w,1 —w) < A(w) <1 for 0 < w < 1. See, for example, Joe (1997), page
175, or Pickands (1981), Genest et al. (1995) or Tiago de Oliveira (1975).

If we have convergence in distribution as in (22) then the margins of the underlying df
F' determine the margins of H, but are irrelevant to the limiting copula Cy. The copula C
of F' determines Cy. One may thus define the concept of a copula domain of attraction and
speak of certain underlying copulas C' being attracted to certain EV copula limits Cj. See
again Galambos (1987).
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In this context we note an interesting property of upper tail dependence coefficients.
The set of upper tail dependence coefficients for the bivariate margins of C' can be shown
to be identical to those of Cp, the limiting copula; see Joe (1997), page 178. If the up-
per tail dependence coefficients of C' are all identically zero then the limit Cy must be
Co(ut,...,uq) = H?Zl u;, which is the so-called independence copula, since this is the only
EV copula with upper tail dependence coefficients identically zero. Multivariate maxima,
from distributions without tail dependence, such as the Gaussian distribution, are indepen-
dent in the limit.

These facts motivate us to search for the limit for maxima of random vectors whose
dependence is described by the multivariate ¢ copula; we know that the limit cannot be the
independence copula in this case. We require a workable characterization of a copula domain
of attraction and use the following.

Theorem 2. Let C be a copula and Cy an extreme value copula. Then C' is attracted to the
EV copula limit Cy if and only if for all x € [0, 00)?

. 1—C(1—sm1,...,1—sxd)
lim

s—0 S

= —log Cy(exp(—z1),...,exp(—xq)). (25)

For a proof see Demarta (2001). Note also that this result follows easily from a se-
ries of very similar characterizations given byTakahashi (1994) which are listed in Kotz &
Nadarajah (2000), page.

6.2 Derivation of the t-EV Copula

We use Proposition 2 and calculate a limit directly from (25). The techniques of calculation
are very similar to those used in Proposition 1. We restrict our attention to the bivariate
case d = 2; in fact, it is possible although notationally cumbersome to derive a limit in the
general case.

We begin with a useful lemma which shows how extreme quantiles of the univariate ¢
distribution scale.

Lemma 3. . .
t7H(1 — t
1171( Sﬂ?) — hm Vil(sx) — x*l/lj. (26)
s=0 ¢, (1—s) =0 ¢, (s)

This is proved using the so-called regular variation property of the tail of the univariate
t distribution in Appendix A.2.

Proposition 4. The bivariate t copula C’,f’p 1s attracted to the EV limit given by

log(uq)
v = 1 Ay | ——= 2
CLEY (ur, ) = exp (1o una) A,y (250 ) ) (27)
where
1/v
tEV (1301”) / —r (l_w)l/y—f’
ALY (w) = why | S VT |+ (L wtn | SRV T (28)
—p —p

Proof. We first evaluate the limit in the lhs of (25), which we call ¢(z1,z2), for fixed z; > 0
and xo > 0. Clearly, for boundary values we have ¢(x1,0) = x1, £(0,22) = 22 and ¢(0,0) = 0.
To evaluate the limit when x; > 0 and x2 > 0 we introduce a random pair (Uy,Us) with df

13



C}, , and calculate

1-Cf (1 —sx1,1 — sxy)

lim
s—0+ S
= lim xli Ct (uy u2)| —|—in Ct (uy uz)’
S0+ 8U1 v,p ) 1—sx1,1—sx2 aU2 v,p ’ 1—sx1,l1—sx9
= lim xl-P(Uggl—st ’ U1:1—S$1)+$2~P(U1 <1-—sr | U2:1—Sx2).

s—0+

Pl P2

Let Y1 = t,1(U;) and Ys = t,,}(Us) and introduce the notation ¢(s,x) = ¢, (1 — sz). The
bracketed conditional probability term P; can be evaluated easily using (14) and is

Py = P(Yz < q(s,22) | Y1 = q(s,21))
_, q(s,22) — pq(s, 1) <u +q(s, x1)2>1/2
v+1 ﬂ vl
_—— <Q(Saw2)/q(8,x1) —p_ v+l ) '

A similar expression holds for Py. Since y/1+v/q(s,z1)> — 1 as s — 0 and the only
remaining term depending on s is ¢(s, x2)/q(s,x1) the limit can be obtained using Lemma 3
and is

(ﬂ 1/v (Q 1/v

—p —p
= VAL | Fag g |~ e+l . (29

K(ml,xg) =T t,,.;.l

2 2

1—p 1—p
Using (25) the limiting copula must be of the form

Cﬁﬁv(ul, ug) = exp (—4(—loguy, —logus)) ,

and by observing that ¢(z1,z2) = (z1+x2)l(z1/(x1 +22), 22/ (21 + x2)) we see that this can
be rewritten as

log u1 log u;
CtEV , = I g 11— !
op (u1 uz) exp Og(UIUZ) log(u1u2)’ 1og(u1u2)

Setting A, ,(w) = ¢(w,1 —w) on [0, 1] we obtain the form given in (27) and (28). It remains
to be verified that this is an EV copula; this can be done by checking that A, ,(w) defined
by (28) is a convex function satisfying max(w,1 —w) < A(w) <1 for 0 <w < 1. O

6.3 Using the bivariate t-EVcopula in practice

The bivariate t-EV copula of proposition 4 is not particularly convenient for practical pur-
poses. The copula density that is required for maximum likelihood inference is quite cum-
bersome and our experience also suggests that the parameters v and p are not well identified.

However it can be shown that for any choice of the parameters v and p, the A-function
of the t-EV copula given in (28) has a functional form which is almost identical to the A-
functions of the Gumbel and Galambos EV copulas. The Gumbel copula in particular has
been widely used in applied work. The A-functions of these copulas are respectively

AS () = (w9+(1—w)9)1/9, (30)

A3 (w) = 1—<w_9+(1—w)_9>71/9, (31)
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Gumbel Galambos

Aw)

Aw)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Plot of the A functions for four copulas; in Gumbel case 6 runs from 1.1 to 10 in
steps of size 0.1; in Galambos case 6 runs from 0.2 to 5 in steps of size 0.1; in t4 and t1g
cases p runs from -0.2 to 0.9 in 100 equally spaced steps.

and the expressions for the copulas are obtained by inserting these in (24). All three A-
functions are shown in Figure 3 for a variety of values of the parameters.

The parameter 6 of the Gumbel or Galambos A-functions can always be chosen so that
the curve is extremely close to that of the t-EV A-function for any values of v and p. We
have comfirmed empirically that if we fix (v, p) for the t-EV model and minimize the sum
of squared errors (A, ,(w;) — Ag(w;))? at n = 100 equally spaced points (wi)i=1,...,100 on
[0,1], with respect to 6 then the resulting curve in the Gumbel or Galambos models is
indistinguishable from the ¢-EV curve. The implication is that in all situations where the
t-EV copula might be deemed an appropriate model we can work instead with the simpler
Gumbel or Galambos copulas.

7 The t Tail Copulas

7.1 Limits for lower and upper tail copulas

Consider a random vector (X, X2) with continuous margins F; and F» whose copula C
is exchangeable. We consider the distribution of (X1, X2) conditional on both being being
below their v-quantiles, an event we denote by

Ay={X1 <F'(v),Xo <Fy'(v)}, 0<wv<l.

Assuming P(A,) = C(v,v) # 0, the probability that X; lies below its z1-quantile and X,
lies below its xo-quantile conditional on this event is

C(x1,x2)

W, fIfl,fEQE [0,'1)].

P (X1 < Fy N (a1), Xo < Fy Ha) | Ay) =

Considered as a function of z; and xy this defines a bivariate df on [0,v]? and by Sklar’s
theorem we can write
C(z1,72)

lo
C(v,v) = C)(F)(21), Flo)(22)), 21,22 € [0,0],
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for a unique copula CI° and continuous marginal distribution functions

Fiy(z) =P (X < F () | Ay) ="+, 0<z<uw. (32)

This unique copula may be written as

010( ) _ C(F(;)l(ul)’F(;)l(u2))
v Ul,UQ - C(U’U) 9

(33)

and will be referred to as the lower tail copula of C at level v. Juri and Wiithrich Juri &
Wuethrich (2002), who developed the approach we describe in this section, refer to it as a
lower tail dependence copula or LTDC. It is of interest to attempt to evaluate limits for this
copula as v — 0; such a limit will be known as a limiting lower tail copula and denoted C(l)o.
Upper tail copulas can be defined in an analogous way if we condition on variables being
above their v-quantiles for 0 < v < 1. Similarly upper tail limit copulas are the limits as
v — 1.

Limiting lower and upper tail copulas must possess a stability property under the kind
of conditioning operations discussed above. For example, a limiting lower tail copula must
be stable under the operation of calculating lower tail copulas as in (33). It must satisfy the

relation | ( 1( ) 1( )
COO F; (51 ,F; u9
CI° (w1, us) = W 7 = C(uy, up). (34)
Cy(v,v)

An example of a limiting lower tail copula is the Clayton copula

CMur,uz) = (up? +uy? — 1)1, (35)

which is a limit for many underlying copulas, including many members of the Archimedean
family. It may be easily verified that this copula has the stability property in (34).

7.2 Derivation of the t tail copulas

We wish to find upper and lower tail copulas for the ¢t copula. The general result we use is
expressed in terms of survival copulas; if C' is a bivariate copula then its survival copula is
given by R
C(ul,uQ) =uyt+uy— 1+ C(l —uy, 1 — u2).
If C is the df of (Uy,Us) then C is the df of (1 — Uy, 1— Uy). Thus for a radially symmetric
copula, like the t copula, we have C=cC , but this is not generally the case.
An elegant general result follows directly from a theorem in Juri & Wuethrich (2002);

this shows how to find tail limit copulas for any bivariate copula that is attracted to an EV
limiting copula.

Theorem 5. If C is attracted to the EV copula Cy with upper tail dependence coefficient
Ay > 0 then its survival copula C has a limiting lower tail copula which is the copula of the

df
o (14 ()
2(1-A(3)) ’

where A(w) is the A-function of Cy. Also C' has a limiting upper tail copula which is the
survival copula of the copula of the df G.

G(:Cl, xg) =

(36)

We conclude from this result and the radial symmetry of the ¢ copula that the lower
tail limit copula of the ¢ copula is the copula of the df G in (36) in the case when A(w) is
the A-function of the t-EV copula given in (28). The upper tail limit copula is the survival
copula of this limit.
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7.3 Use of the bivariate t-LTLcopula in practice

The t lower tail limit copula is concealed in a somewhat complex bivariate df and cannot be
easily extracted in a closed form and used for practical modelling purposes. Our philosophy
once again is to look for alternative models that can play the role of the true limiting copula
without any loss of flexibility. Since the A-function of the ¢-EV copula can be effectively
substituted by that of the Gumbel or Galambos copulas we can investigate the df G that is

obtained when these alternative A-functions are inserted in (36).
It turns out that a tractable choice is the Galambos copula, which yields the G function
a:l_e + xy 0

-1/0
G($1,$2) = (2) , (xl,xQ) S (0, 1]2.

It is easily verified using (4) that the copula of this bivariate df is the Clayton copula (35).
Thus we conclude that the ¢ lower tail limit copula may effectively be replaced by the simple,
well-known Clayton copula for any practical work. This finding underscores an empirical
observation by Breymann et al. (2003) that for bivariate financial return data where the ¢
copula seemed to be the best overall copula model for the dependence, the Clayton copula
seemed to be the best model for the most extreme observations in the joint lower tail and
the survival copula of Clayton to be the best model for the most extreme observations in
the joint upper tail.

A Appendix

A.1 Evaluation of Joint Quantile Exceedance Probabilities

We consider in turn the Gaussian copula Cg’a and t copula C’,’; p in the case when P is
an equicorrelation matrix with non-negative elements, i.e. all diagonal elements equal to p
where p > 0. We recall that if X ~ Ny(0, P) then

X, L pZ+ 1= pe, i=1,....d, (37)
where €1, ..., €4, Z are iid standard normal variates. This allows us to calculate
CSu) = P(X1<d Hu),...,X; <0 Hu))
O~ (u) — /pz O~ 1(u) — /pz
- E<p<€1 < M,...,edg M ]Zzz))
V1—p v1—p
= B(@m)’),
where Y ~ N(p,0?) with g = & 1(u)/\/T=p and 0% = p/(1 — p). The final expectation
may be calculated easily using numerical integration.
For the ¢ copula we recall the mixture representation (2). We will calculate the copula

of the random vector vIWWX where X ~ N;(0, P) as above and W is an independent variate
with an inverse gamma distribution (W ~ Ig(r/2,v/2)). This allows us to calculate that

Clpn) = PWVWXy <t ' u),....vIWXy <t (u))

= E<P <61§ t_l(u)—\/piwz"”’Edg t_l(u)_\/ﬁz|Z:z,W:w>>
(1=pw (1=pw

= E((2())"),
where v £ a/NVW + bZ with a = t~Y(u)//T—p and b = \/p/(1 — p). In this case the

evaluation of the expectation requires a numerical double integration; in the inner integral
the density of Y is evaluated by applying the convolution formula to a/vW + bZ. Results
may be obtained using standard mathematical software.
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A.2 Proof of Lemma 3

It is well known, and can be easily shown exploiting the rule of Bernoulli-L’Hopital, that
the tail of a t distribution function, t,(z) = 1 — t,(z), is regularly varying at oo with index
—v. This means that ¢, (z) = 7" L(x), where L(x) is a slowly-varying function satisfying

lim Lisz)

=1.
5—00 L(s)

For more on regular and slow variation see, for example, Resnick (1987).

Proof. Since, for any = we have x = —t,;}(f,(z)) the identity

_ 1 (B (s2)
0 (0(5)

must also hold for all s. Hence taking limits we obtain

. t;1(t, (sz)) _ 1 t; (7 ¥s7V L(sx)) . t; (V) . t; (1 —27v)
s—oo trh(T,(s))  s—oo tyNsVL(s))  v—0 #Y(w)  v—0 11— )
where we use the fact that L(sx)/(Ls) — 1 and sV L(s) — 0 as s — oo. The identities (26)
follow. O
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