
 
 

Mandelbrot and the Smile 
 

 
 

 
Thorsten Lehnert * 

 
Limburg Institute of Financial Economics (LIFE), Maastricht University, 

P.O. Box 616, 6200 MD Maastricht, The Netherlands 
 

 
 

This version: October 2004 
 
 
 
 

Abstract 
It is a well-documented empirical fact that index option prices systematically differ from Black-
Scholes prices. However, previous research provides inconclusive results whether the observed 
volatility smile could be explained by a discrete-time dynamic model of stock returns with skewed, 
leptokurtic innovations. The improvements in pricing errors are particularly pronounced for out-of-the 
money put options, while the models partly underperform a Gaussian alternative for near-the-money 
options. Motivated by theses empirical evidence, I develop a new GARCH option-pricing model with 
a more flexible innovation structure. In an application of the model to DAX index options, I test the 
relative performance of the approach against a standard nested GARCH specification and the well-
known practitioners Black-Scholes model. I show that the performance of the truncated Lévy GARCH 
option pricing model is superior to existing approaches. 
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1. Introduction 
There is extensive empirical evidence that observed market prices of traded options 

systematically differ from Black-Scholes prices. Out-of-the-money calls and puts are relatively 

overpriced compared to at-the-money options. A fact that is often represented by the well-known 

volatility smile ’implied out’ from observed option prices. For index options, the smile is skewed 

towards out-of-the money puts. As a result, the implied risk-neutral density function is 

leptokurtic and heavily skewed to the left. The difference between the actual return distribution 

of the underlying and the risk-neutral distribution implied out from option prices can only be 

explained by extremely high levels of risk aversion. Market participants seem to overestimate the 

probability of extreme downward movements and are willing to purchase overpriced out-of-the 

money put options. 

At the empirical level, several studies have shown that option valuation models with 

conditional heteroskedasticity and negative correlation between volatility and spot returns 

capture the particular pattern and significantly improve upon the performance of the Black-

Scholes model. The discrete-time GARCH option pricing model has shown to be a flexible, 

empirically successful model (see among others Heynen, et al (1994), Duan (1996), Heston and 

Nandi (2000), and Ritchken and Trevor (1999)). Recently, an increasing number of numerical 

methods for this class of option pricing models become available (see Hanke (1997), Ritchken 

and Trevor (1999), Duan and Simonato (1998), Duan et al. (2001) and Heston and Nandi 

(2000)). Heston and Nandi (2000) developed a closed form solution of a GARCH option-pricing 

model. They show that the single lag version of their model contains Heston’s (1993) model as a 

continuous-time limit, but the discrete-time counterpart is much easier to apply with available 

data. 

However, despite the rather sophisticated modeling approach, a Gaussian model cannot 

adequately account for the particular pattern observed in option prices. Using the generalized 

GARCH option-pricing framework of Duan (1999), Lehnert (2003) showed that conditional 

leptokurtosis and skewness reinforces the effects of conditional heteroskedasticity and 

asymmetry in the volatility process. His GARCH option pricing model driven by skewed 

generalized error distributed innovations outperforms the closed-form GARCH option pricing 

model of Heston and Nandi in-sample as well as out-of-sample. The improvements in pricing 

errors are particularly pronounced for out-of-the money put and call options, while the model 
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partly underperforms the Gaussian model for near-the-money options. The results are partly in 

line with recent results obtained by Christoffersen et al. (2003). They developed and empirically 

test a GARCH option pricing model with conditional skewness. While they demonstrate the 

importance of conditional skewness and jumps for the pricing of out-of-the-money puts, their 

closed-form Inverse Gaussian GARCH option pricing model significantly underperforms a 

standard Gaussian model for several other types of options. In contrast to Lehnert (2003), 

Christoffersen et al. (2003) conclude that the overall pricing performance is inferior to the 

standard Gaussian model. Therefore, the empirical evidence does not necessarily suggest that 

modeling jumps in returns and volatility in addition to stochastic volatility is the appropriate 

approach for the purpose of option valuation. 

In this paper, I argue that most is to be gained by modeling deviations from normality. In 

order to investigate the research question further, I empirically investigate whether the use of a 

more flexible innovations distribution is able to improve the performance for out-of-the-money 

options without worsening the performance for near-the-money options. A possible candidate 

might be the truncated Lévy distribution often studied in physics (see Lehnert and Wolff (2004)). 

Mandelbrot (1963) first proposed the idea that price changes are distributed according to a Lévy 

stable law. This model was frequently criticized, because the tails are now too fat from a 

financial modeling perspective and the infinite variance makes it impossible to apply the Central 

Limit Theorem. The problems with these kinds of distributions are the power law tails, which 

decay too slowly. This problem can be overcome by taking the Lévy distribution in the central 

part and introducing a cutoff in the far tails that is faster than the Lévy power law tails. The Lévy 

distribution with a cutoff and exponentially declining tails was introduced in the physics 

literature by Mantegna and Stanley (1994) and is known as a truncated Lévy distribution. The 

exponential decay in the tails ensures that all relevant moments are finite. 

In an in-sample and out-of-sample analysis, I compare my model with two benchmarks: a 

standard nested Gaussian alternative specification and the ad-hoc Black-Scholes model of 

Dumas, Fleming and Whaley (1998) (DFW) and conclude which method is superior in 

describing the observed market smile in DAX index options. The paper is arranged as follows. 

Section 2 describes the GARCH option-pricing framework. Section 3 discusses the data and 

methodology. In Section 4, I provide the empirical results and finally Section 5 concludes. 
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2. Econometric Framework 
2.1. Option Pricing under GARCH 

In a Gaussian discrete-time economy the value of the index at time t, St, can be assumed to 

follow the following dynamics (see e.g. Duan (1995)): 
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where dt is the dividend yield of the index portfolio, rf is the risk-free rate, λ is the price of risk; 

Ωt-1 is the information set in period t-1 and the combination of ω2 and γ captures the leverage. 

 Duan (1995) shows that under the Local Risk Neutral Valuation Relationship (LRNVR) 

the conditional variance remains unchanged, but under the pricing measure Q the conditional 

expectation of rt is equal to the risk free rate rf: 
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Therefore, the LRNVR transforms the physical return process to a risk-neutral dynamic. The 

risk-neutral Gaussian GARCH process reads: 

 

tt
2
t2

1
ft rr εσ+σ−=  

)1,0(~| 1 Ntt −Ωε  under risk-neutralized probability measure Q 

( ) ( ) ( )( )λεγλεωσωωσ −−−++= −−− 112
2

110
2 ||lnln tttt  

(3) 

 

where the term 2
t2

1 σ−  gives additional control for the conditional mean. In Equation (3), tε  is 

not necessarily normal, but to include the Black-Scholes model as a special case we typically 

assume that tε  is a Gaussian random variable. 
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2.2. GARCH option pricing with conditional skewness and leptokurtosis 

Lévy flights have been observed experimentally in physical systems and have been used very 

successfully to describe for instance the spectral random walk of a single molecule embedded in 

a solid. In all these cases an unavoidable cutoff in the tails of the distribution is always present. 

One possible cutoff is the exponential function, for which the characteristic function (CF) of the 

so-called truncated Lévy distribution (TLD) has been developed (Koponen (1995)). For financial 

data the cutoff region is early in the tails, which ensures the finiteness of all relevant moments. 

The standardized CF with location parameter equal to zero and scale parameter c equal to one 

reads (Nakao (2000)): 
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where α is the characteristic exponent determining the shape of the distribution and especially 

the fatness of the tails (0 < α ≤ 2, but 1≠α ) and δ is the cutoff parameter, which determines the 

speed of the decay in the tails and as a result the cutoff region. The parameter β (β∈[-1,1]) 

determines the skewness when 0≠β , the distribution is skewed to the right when -1 < β < 0 

and skewed to the left when 0 < β < 1. For 0+→δ  the TLD reduces to the Lévy distribution 

and for 0+→δ , β=0 and α=2 the TLD reduces to the Normal distribution with scale parameter 

c. For comparison purposes, Figure 1 shows the density of a truncated Lévy distribution with 

reasonable parameter values for financial return data and the special case of a Gaussian density. 

Both densities are standardized, such that the scale parameter c equals one. Accurate numerical 

values for the density ψTLD can be calculated by Fourier-transforming the CF and evaluating the 

integral numerically. I use Romberg integration, which allows ex-ante specification of the 

tolerated error and in fact a calculation of the density as precise as necessary (see Lambert and 

Lindsey (1999)). 

The analogue of the standard deviation σ in the family of Lévy distributions is the scale 

parameter c. If I replace the standard deviation σ by the scale parameter c, I allow the conditional 
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scale parameter ct to be serially correlated and to vary over time. If et, conditional on Ωt-1 is a 

skewed truncated Lévy distributed random variable, then the risk-neutral GARCH process 

reads1: 
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where φLévy[.] stands for a standardized normal cumulative distribution with zero mean and scale 

parameter c equal to 1, TLD-1[.] stands for the inverse skewed truncated Lévy cumulative 

distribution with standardized mean equal to 0, scale parameter c equal to 1, tail parameter α, 

skewness parameter β and δ controls for the exponential decay in the tails. The term EQ(.|Ω) 

gives additional control for the conditional mean and can be evaluated numerically. The 

unconditional volatility level is equal to
( )[ ]
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numerically. The parameter ω1 measures the persistence of the variance process. 

A European call option with exercise price X and time to maturity T has at time t price 

equal to: 
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For this kind of derivative valuation models with a high degree of path dependency, 

computationally demanding Monte Carlo simulations are commonly used for valuing derivative 

securities. I use the recently proposed simulation adjustment method, the empirical martingale 

simulation (EMS) of Duan and Simonato (1998), which has been shown to substantially 

accelerate the convergence of Monte Carlo price estimates and to reduce the so called 

                                                           
1  See Lehnert (2003) for details regarding GARCH option pricing with conditional leptokurtosis and skewness. 
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‘simulation error’. Monte Carlo simulations are also frequently and successfully used in various 

risk management applications (e.g. see Bams, Lehnert and Wolff (2002)). 

 

2.3. Alternative option valuation approach 

I compare both GARCH option-pricing models with the so-called practitioners Black-Scholes 

model (see e.g. Dumas, Fleming and Whaley (1998) or Christoffersen and Jacobs (2002b)). I 

allow each option to have its own Black-Scholes implied volatility depending on the exercise 

price X and time to maturity T and use the following functional form for σ: 
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an option for the i-th exercise price and j-th maturity. For every exercise price and maturity I can 

compute the implied volatility and derive option prices using the Black-Scholes model. 

I calibrate the parameters of the various model by minimizing the root mean squared 

absolute pricing error between the market prices and the theoretical option prices: 
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where N is the total number of call options evaluated, the subscript i refers to the n different 

maturities and subscript j to the mi different strike prices in a particular maturity series i. 

Depending on the moneyness of the option, put or call prices are used. Motivated by the actual 

trading volume, I use put prices for option with moneyness of less than 1 and call prices for 

options with moneyness of more than 1. 

As starting values for the calibration, I make use of the time-series estimates from the 

augmented GARCH model using approximately three years (752 trading days) of historical 

returns. Additionally, I use the time-series parameter estimate of the price of risk parameter δ for 

the option calibration (see e.g. Christoffersen and Jacobs (2002a)). 
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3. Data and Methodology 
I use daily closing DAX 30 index options and futures prices for a period from January 2000 until 

December 2000. The raw data set is directly obtained from the EUREX, European Futures and 

Options Exchange. The market for DAX index options and futures is the most active index 

options and futures market in Europe. Therefore, it is a good market for testing option-pricing 

models. 

For index options the expiration months are the three nearest calendar months, the three 

following months within the cycle March, June, September and December, as well as the two 

following months of the cycle June, December. For index futures, the expiration months are the 

three nearest calendar months within the cycle March, June, September and December. The last 

trading day is the third Friday of the expiration month, if that is an exchange trading day; 

otherwise on the exchange-trading day immediately prior to that Friday. 

I exclude options with less than one week and more than 25 weeks until maturity and 

options with a price of less than 2 Euro to avoid liquidity-related biases and because of less 

useful information on volatilities. Instead of using a static rule and exclude options with absolute 

moneyness |K/F-1| of more than 10% (see DFW), I exclude options with a daily turnover of less 

than 10000 Euro (see Lehnert (2003)). Among others DFW argue that options with absolute 

moneyness of more than 10% are not actively traded and therefore contain no information on 

volatilities. Therefore, an obvious solution is to filter the available option prices and include all 

options that are actively traded, inside or outside the 10% absolute moneyness interval. In 

particular, in volatile periods deep out-of-the money options are highly informative if they are 

actively traded. As a result, each day I use a minimum of 3 and a maximum of 4 different 

maturities for the calibration. 

The DAX index calculation is based on the assumption that the cash dividend payments 

are reinvested. Therefore, when calculating option prices, theoretically I don’t have to adjust the 

index level for the fact that the stock price drops on the ex-dividend date. But the cash dividend 

payments are taxed and the reinvestment does not fully compensate for the decrease in the stock 

price. Therefore, in the conversion from e.g. futures prices to the implied spot rate, one observe 

empirically a different implied dividend adjusted underlying for different maturities. For this 

reason, I always work with the adjusted underlying index level implied out from futures or 

option market prices. 
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In particular I’m using the following procedure for one particular day to price options on 

the following trading day: 

First, I compute the implied interest rates and implied dividend adjusted index rates from 

the observed put and call option prices. I’m using a modified put-call parity regression proposed 

by Shimko (1993). The put-call parity for European options reads:  

 
)(

,, )]([ tTr
ijtjiji

jjeXDPVSpc −−−−=−     (9) 

 

where ci,j and pi,j are the observed call and put closing prices, respectively, with exercise prices 

Xi and maturity (Tj-t), PV(Dj) denotes the present value of dividends to be paid from time t until 

the maturity of the options contract at time Tj and rj is the continuously compounded interest rate 

that matches the maturity of the option contract. Therefore, I can infer a value for the implied 

dividend adjusted index for different maturities, St-PV(Dj), and the continuously compounded 

interest rate for different maturities, rj. In order to ensure that the implied dividend adjusted index 

value is a non-increasing function of the maturity of the option, I occasionally adjust the standard 

put-call parity regression. Therefore, I control and ensure that the value for St-PV(Dj) is 

decreasing with maturity, Tj. Since I’m using closing prices for the estimation, one alternative is 

to use implied index levels from DAX index futures prices assuming that both markets are 

closely integrated. 

Second, I estimate the parameters of the particular models by minimizing the loss 

function (8). Given reasonable starting values, I price European call options with exercise price 

Xi and maturity Tj. Using well-known optimization methods (e.g. Newton-Raphson method), I 

obtain the parameter estimates that minimize the loss function. The goodness of fit measure for 

the optimization is the mean squared valuation error criterion. 

Third, having estimated the parameters in-sample, I turn to out-of-sample valuation 

performance and evaluate how well each day’s estimated models value the traded options at the 

end of the following day. I filter the available option prices according to our criteria for the in-

sample calibration. The futures market is the most liquid market and the options and the futures 

market are closely integrated, therefore it can also be assumed that the futures price is more 

informative for option pricing than just using the value of the index. For every observed futures 
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closing price I can derive the implied underlying index level and evaluate the option. Given a 

futures price Fj with time to maturity Tj, spot futures parity is used to determine St-PV(Dj) from 
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where PV(Dj) denotes the present value of dividends to be paid from time t until the maturity of 

the options contract at time Tj and rj is the continuously compounded interest rate (the 

interpolated EURIBOR rate) that matches the maturity of the futures contract (or time to 

expiration of the option). If a given option price observation corresponds to an option that 

expires at the time of delivery of a futures contract, then the price of the futures contract can be 

used to determine the quantity St-PV(Dj) directly. 

The maturities of DAX index options do not always correspond to the delivery dates of 

the futures contracts. In particular for index options the two following months are always 

expiration months, but not necessarily a delivery month for the futures contract. When an option 

expires on a date other than the delivery date of the futures contract, then the quantity St-PV(Dj) 

is computed from various futures contracts. Let F1 be the futures price for a contract with the 

shortest maturity, T1 and F2 and F3 are the futures prices for contracts with the second and third 

closest delivery months, T2 and T3, respectively. Then the expected future rate of dividend 

payment d can be computed via spot-futures parity by: 
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Hence, the quantity St-PV(D) = Ste–dT associated with the option that expires at time T in the 

future can be computed by2 
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2 See e.g. the appendix in Poteshman (2001) for details. 
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This method allows us to perfectly match the observed option price and the underlying dividend 

adjusted spot rate. Given the parameter estimates and the implied dividend adjusted underlying I 

can calculate option prices and compare them to the observed option prices of traded index 

options. For the out-of-sample part the same loss functions for call options are used.  The 

prediction performance of the various models are evaluated and compared by using the root 

mean squared valuation error criterion. I compare the predicted option values with the observed 

prices for every traded option. I repeat the whole procedure over the out-of-sample period and 

conclude, which model minimizes the out-of-sample pricing error. 

 
4. Empirical results 

In this section, I present estimation and evaluation results using 254 days of option data 

from the year 2000. Each trading day, on average 85 option prices are used for the calibration 

and evaluation of the models, with a minimum of 62 and a maximum of 155. The numbers of 

option contracts in the in-sample and out-of-sample data set are reported across moneyness and 

maturity in Table 1. 

 

[Table 1] 

 

In total more than 21400 option contracts have been evaluated. The number contracts are nearly 

equally distributed over the five different moneyness categories, except the fewer number 

options with moneyness of less than 0.92. Most options are short term (<21 trading days until 

maturity) or long term (>63 days until maturity), but there is also a substantial number options 

traded in the medium term.  

All models are calibrated using the Euro root mean squared error loss function (8). For 

the GARCH models, theoretical option prices are obtained using (5), and the local scale 

parameter ct+1 is estimated together with the other parameters. I additionally use a time-series 

parameter estimate for the option calibration: the price of risk parameter λ. The joint 

identification of λ and γ is possible but not reasonable, since both parameters control for 

asymmetry by modifying the news impact curve. 
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Table 2 shows the averages of daily parameter estimates of the three models analyzed, 

obtained by minimizing the squared Euro pricing error, using data for 253 trading days in the 

year 2000.  

 

[Table 2] 

 

For the models that are investigated, estimating the parameters using a single day of option 

prices is a convenient approach. The objective function is always well behaved and no numerical 

problems have been encountered. It is well-known fact that the parameters of the ad-hoc Black-

Scholes model can be significantly estimated, but substantially vary over time, already on a day-

to-day basis. Similar results are obtained for the particular option data set under investigation 

(results not reported). For the GARCH option pricing models, parameter estimates are obtained 

that are more stable and in line with the ones expected from a time-series calibration. The value 

of 0.98 for ω1 suggests strong mean reversion of the volatility process. The significant estimates 

for ω2 and γ suggest that the volatility process is asymmetric, meaning that returns and volatility 

are negatively correlated and resulting in negative skewness in the simulated multiperiod index 

returns. However, in the case of the truncated Lévy GARCH option pricing model, this effect is 

augmented by negative skewness in the innovations distribution. Additionally, also the other 

parameter estimates suggest that the data dictate a non-normal innovations distribution: the tail 

fatness parameter α is different from 2 and the ‘cutoff’ parameter δ is different from 0. A value 

of around 0.25 for δ implies that the exponential decay is introduced earlier in the tails, which 

rejects the extremely fat-tailed Lévy distribution as a possible alternative. 

 The in-sample relative pricing errors are in the range of 1–2 Euros; usually slightly 

smaller for the truncated Lévy GARCH option pricing model (on average around €1.5) and the 

ad-hoc Black-Scholes model (on average around €2) compared to the Gaussian GARCH option 

valuation model (on average around €2.2). Table 3 reports the results for the in-sample pricing 

errors of the various models. 

 

[Table 3] 
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In general, the in-sample results are in line with the empirical findings of Christoffersen et al. 

(2003) and Lehnert (2003): The more flexible innovations structure improves the pricing 

performance of the GARCH option pricing model significantly. The results are consistent over 

different levels of moneyness and for various maturities. The good pricing performance of the 

GARCH model with conditional skewness and leptokurtosis cannot be confirmed for the 

Gaussian alternative: on average the model underperforms the ad-hoc Black-Scholes model.  

However, it is a well-known fact that the ad-hoc Black-Scholes model typically overfits the data 

in-sample, but when evaluated out-of-sample, it typically underperforms GARCH-type option 

pricing approaches (Heston and Nandi (2000)). Additionally Christoffersen et al. (2003) show 

that a GARCH model with conditional skewness and jumps overfits the data in-sample, but 

underperforms a Gaussian model when evaluated out-of-sample. Therefore, we cannot rely on 

the in-sample results, but an out-of-sample analysis has to be conducted. 

 

The out-of-sample valuation errors are presented in Table 4. Results strongly suggest that 

the findings of Christoffersen et al. (2003) cannot be confirmed for a more recent data set of 

DAX options: the out-of-sample valuation errors of the truncated Lévy GARCH model are on 

average lower compared to the Gaussian alternative and the ad-hoc Black-Scholes model.  

 

[Table 4] 

 

The improvements in the pricing performance are in particularly pronounced for short-term out-

of-the-money put options. Christoffersen et al. (2003) presented empirical evidence that the 

pricing performance of the GARCH model with skewness and jumps is inferior to the Gaussian 

alternative especially for longer-term options. Nevertheless, it is remarkable that also with the 

approach proposed in this study, the pricing performance worsens for longer-term options, but 

still remains superior compared the Gaussian alternative. One might conclude that the more 

flexible innovations structure of the truncated Lévy GARCH option pricing model does not seem 

to overfit the data in-sample, but results in significant valuation improvements for all types of 

options. Therefore, one might argue that most is to be gained from modeling deviations from 

normality, but less is to be gained from modeling jumps in returns and volatility in addition to 

stochastic volatility. In addition, the findings of Heston and Nandi (2000) can be confirmed: the 
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alternative Gaussian GARCH model outperforms the ad-hoc Black-Scholes model out-of-

sample. As expected, the alternative approach of modeling the scale parameter c instead of the 

variance does not result in a different pricing performance of the Gaussian GARCH option 

valuation model. 

However, one result is in particularly interesting: for all approaches the pricing 

performance dramatically worsens when the maturity of the option contract increases. This is in 

line with the results of Christoffersen et al. (2003) and shows that still not even the more 

sophisticated GARCH approach adequately captures the volatility dynamics underlying option 

prices.  

 

5. Conclusions 
This paper presents a new option valuation model that is based on a return dynamic that contains 

conditional skewness and leptokurtosis as well as conditional heteroskedasticity and a leverage 

effect. The truncated Lévy GARCH option pricing model nests a standard GARCH model, 

which contains Gaussian innovations, and the empirical comparison between our new model and 

the standard GARCH model investigates the importance of modeling conditional skewness and 

leptokurtosis. Our empirical results are strongly in favor of the new modeling approach: the 

truncated Lévy GARCH option pricing model achieves a better fit than standard models in-

sample and out-of-sample. The improvements in the pricing performance are particularly 

pronounced for short-term deep out-of-the-money puts, but it also performs better than standard 

models for longer terms and for several other types of options. 
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Figure 1: Truncated Lévy Density 
The graph depicts a comparison of a truncated Lévy density and a normal density. Both 
densities are standardized, such that the scale parameter c is equal to one. 
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Table 1: Number of Observations 
 

  Days to Expiration 

  < 21 [21,63] > 63  

Moneyness  Total 
Daily 

Median 
Daily 
Max Total 

Daily 
Median 

Daily 
Max Total 

Daily 
Median 

Daily 
Max 

Total 

            
< 0.92  909 3 16 634 3 6 1712 7 16 3255 
            
[0.92,0.96)  2918 9 44 1017 5 7 728 3 6 4663 
            
[0.96,1.00)  2034 7 26 1816 7 17 1074 4 15 4924 
            
[1.00,1.04)  753 7 36 818 3 10 2791 10 42 4362 
            
> 1.04  1444 6 12 1030 5 7 1728 7 15 4202 
            
Total  8058 5 44 5315 4 17 8033 6 42 21406 
            

 
Notes: This Table reports the number of observations for different moneyness and maturity during the period January 2000 until December 2000. 
‘Moneyness’ is defined in the following way: a put option is said to be near- or at-the-money if K/F ∈ [0.96,1.00] or K/F ∈ [1.00,1.04), out of the 
money if K/F ∈ [0.92,0.96), deep out-of-the-money if K/F < 0.92 and in the money if K/F > 1.04, where K is the strike price and F is the forward 
price. Similar terminology is defined for calls by replacing K/F by F/K. ‘Days to Expiration’ is the number of trading days until maturity. ‘Total’ 
is the total number of options priced during the period August 2000 until March 2001 of the particular maturity and/or exercise price. ‘Median’ 
and ‘Max’ are the median and the maximum number of options priced on one trading day of the particular moneyness and/or maturity. 
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Table 2: Parameter Estimates 

 Ad-hoc Black-Scholes  Gaussian GARCH Truncated Lévy GARCH 

   
Parameter Mean 

 
Parameter Mean 

 
Mean 

 

   
π0 0.9027 

 
ω0 -0.2274 

 
-0.1548 

 

   
π1 -1.0026 

 
ω1 0.9713 

 
0.9801 

 

  
π2 0.3213  ω2 0.0925 

 
0.0602 

 

   
π3 -1.1039 

 
γ 0.6821 

 
0.9781 

 

 
π4 -0.1133  

 cτ+1 0.0123  0.0124 
 

 
π5 0.2394  α 2  1.7211 

 

   δ 0  0.2532  

   β 0  0.1987  

 
Notes. The table presents the average parameters estimates of the daily estimations of the various models during the period January 2000 until 
December 2000.  
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Table 3: In-Sample Analysis: Average Valuation Errors across moneyness and maturity 
 

 Ad-hoc Black-Scholes EGARCH-Normal EGARCH-truncated Lévy 

 Days to Expiration Days to Expiration Days to Expiration 

Moneyness < 21 [21,63] > 63 Total < 21 [21,63] > 63 Total < 21 [21,63] > 63 Total 

             

< 0.92 3.04 1.02 1.69 1.81 2.23 1.34 2.41 2.13 1.81 0.99 1.57 1.53 
             
[0.92,0.96) 1.68 1.96 0.79 1.45 1.89 2.22 1.06 1.66 1.64 1.19 0.78 1.36 
             
[0.96,1.00) 1.76 1.78 2.02 1.84 1.96 1.80 1.93 1.88 1.27 1.78 1.71 1.75 
             
[1.00,1.04) 2.98 0.73 2.45 2.00 2.35 0.94 1.62 1.92 2.01 0.76 1.44 1.51 
             
> 1.04 1.29 1.94 0.96 1.36 1.51 2.43 1.06 1.41 1.12 1.68 0.94 1.21 
             
Total 2.06 1.45 1.57 1.92 2.09 1.77 1.81 1.98 1.63 1.34 1.32 1.46 

             

 
Notes: This Table reports the average absolute in-sample pricing errors of the alternative models for different moneyness and maturity during the 
period January 2000 until December 2000. ‘Moneyness’ is defined in the following way: a put option is said to be near- or at-the-money if K/F ∈ 
[0.96,1.00] or K/F ∈ [1.00,1.04), out of the money if K/F ∈ [0.92,0.96), deep out-of-the-money if K/F < 0.92 and (deep) in the money if K/F > 
1.04, where K is the strike price and F is the forward price. Similar terminology is defined for calls by replacing K/F by F/K. ‘Days to Expiration’ 
is the number of trading days until maturity. 
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Table 4: Out-of-Sample Analysis: Average Valuation Errors across moneyness and maturity 
 

 Ad-hoc Black-Scholes EGARCH-Normal EGARCH-truncated Lévy 

 Days to Expiration Days to Expiration Days to Expiration 

Moneyness < 21 [21,63] > 63 Total < 21 [21,63] > 63 Total < 21 [21,63] > 63 Total 

             

< 0.92 3.14 7.65 7.23 6.27 2.64 6.42 6.15 5.76 1.95 5.77 5.46 4.83 
             
[0.92,0.96) 3.74 5.29 8.17 5.74 3.62 5.67 7.54 5.87 3.47 4.40 7.35 5.58 
             
[0.96,1.00) 5.38 7.30 3.15 5.43 5.42 7.02 3.57 5.49 4.78 6.69 2.67 4.98 
             
[1.00,1.04) 4.28 8.21 5.42 6.07 4.10 7.65 4.52 5.79 3.33 7.46 4.26 5.31 
             
> 1.04 6.11 5.23 6.49 5.99 6.02 5.50 5.98 5.75 5.87 4.32 5.79 5.46 
             
Total 4.62 6.84 6.20 6.05 4.49 6.58 6.19 5.73 4.01 6.01 5.43 5.14 

             

 
Notes: This Table reports the average absolute out-of-sample pricing errors of the alternative models for different moneyness and maturity during 
the period January 2000 until December 2000. ‘Moneyness’ is defined in the following way: a put option is said to be near- or at-the-money if 
K/F ∈ [0.96,1.00] or K/F ∈ [1.00,1.04), out of the money if K/F ∈ [0.92,0.96), deep out-of-the-money if K/F < 0.92 and (deep) in the money if 
K/F > 1.04, where K is the strike price and F is the forward price. Similar terminology is defined for calls by replacing K/F by F/K. ‘Days to 
Expiration’ is the number of trading days until maturity. 


