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Value at Risk, Expected Shortfall, and Marginal Risk Contribution

1. Introduction

Value at risk (VaR) is today the standard tool in risk management for banks and other

financial institutions. It is defined as the worst loss for a given confidence level: For a con-

fidence level of e.g. p=99%, one is 99% certain that at the end of a chosen risk horizon the-

re will be no greater loss than just the VaR. In terms of probabil ity theory, VaR is the 1%

quantile (in general the (1-p)% quantile) of the profit and loss distribution.

A simple case is the assumption of a normal distribution, because then VaR is simply a

multiple of the standard deviation1 (e.g. for a confidence level of 99%, VaR is 2.33 stan-

dard deviations). In this case, the concept of VaR would not generate any new theoretical

problems. VaR would only be a different, less technical form of risk reporting, in which

the term „standard deviation“ is replaced by the perhaps easier to understand term „Value

at Risk“. However, it is wellkown that the assumption of a normal distribution is que-

stionable for stock market quotations. It is with particular importance for risk management

that high losses are far more probable in the stock market than the assumption of a normal

distribution would suggest. Also, if VaR is applied to credit risk, it is immediately obvious

from the asymmetry of credit risk (small probabil ity of a high loss far below the average

outcome) that the loss distribution of a credit loan portfolio cannot be described by a sym-

metric normal distribution.

Without the assumption of a normal distribution, VaR is a very problematic risk measure.

These problems will be illustrated in the next section. Subsequently, I concentrate on one

specific issue, namely convexity and sub-additivity of a risk measure. In order to check for

convexity, first and second derivatives of VaR are calculated. The same calculations are

then repeated for expected shortfall, which is often proposed as an alternative for VaR.

                                                       
1 More generally, this holds for all elliptic probabilit y distributions.
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2. Value at Risk as a problematic risk measure

For an ill ustration of the problems of VaR as a risk measure, consider a bank where a VaR-

limit (confidence level 99%) of say 50 000 Euro is imposed on a certain trader. The mea-

ning of this is that a loss of more than 50 000 Euro should occur only once in every

hundred trading days on average. But because of the very definition of VaR, there is no

differentiation between small and very large violations of the 50 000 Euro limit. The

eventual loss could be 60 000 Euro as well as 600 000 Euro. Therefore, in particular then

VaR is used as a criterion for risk-adjusted compensation, the trader has an incentive to run

a strategy which would create an additional profit in most cases, but at the expense of a

probability just below 1% of huge losses. For example, the trader could2:

• sell options far out the money and earn the respective premiums, where the probabil ity

that the option will be exercised is below 1%.

• buy high yield bonds on credit, again on condition that the default probability of the

bonds is sufficiently low (such a strategy was reportedly persecuted by Long Term Capital

Management, the Hedge Fund which eventually brokes down in 1998)

Of course, in every real-world bank, additional restrictions are probably in place which

will prevent the trader from running such strategies. But these additional restrictions are

only necessary because of the given deficiencies of VaR. The emerging principal agent

problem could be completely avoided if risk-adjusted compensation would be based on a

criterion which correctly reflects the riskiness of a portfolio.

Here, it is not my intention to give a systematic overwiew about all problems of VaR3. The

most important issues are:

• VaR could violate second order stochastic dominance and therefore does not always de-

scribe risk aversion in the traditional sense4.

• VaR is not smooth: Events with a probabil ity just below 1% are not taken into account.

This changes immediatly if the probability is exactly or greater than 1%.

                                                       
2 Jaschke (2001).
3 A good overview is Pflug (2000). An axiomatic approach for so-called coherent risk measures has been deve-
loped by Artzner et al. (1999). VaR is not a coherent risk measure.
4 See for example Guthoff et al. (1998).
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• VaR is not always sub-additive: If VaR is calculated for each unit within a bank, the sum

of the Values at Risk of each unit could be lower(!) than the VaR for the whole bank.

Obviously, this contradicts the idea of diversification, because risk could than be reduced

by running each unit seperately. (These centrifugal forces are presumably not in the

interest of the top management). The lack of sub-additivity makes VaR a problematic

criterion for portfolio optimization, the internal allocation of capital, and for the design of

RAROC-type risk-adjusted compensation schemes.

For an example which illustrates why VaR is not always sub-additive, consider a loan with

a default probability below 1%. For a portfolio which contains only one loan, VaR is ob-

viously zero. (There will be no loss with a probabili ty of at least 99%). If sufficiently many

of such loans are pooled within the same portfolio, almost surely some of the loans will de-

fault, resulting in a VaR now greater than zero.

3. Derivatives of Value at Risk and Expected Shortfall

3.1 Preliminary remarks

In order to get a better understanding of the problems of VaR mentioned above, the margi-

nal behaviour of VaR if a new position is added to the portfolio could be studied. In prac-

tice, marginal risk contributions are often deduced from the contribution of the new positi-

on to the standard deviation of the portfolio. However, without the assumption of a normal

distribution, there is no close relationship between standard deviation and VaR. So what

we want to get is a general formula for marginal risk contributions which does not rely on

specific assumptions about the profit and loss distribution.

Suppose that the value of the actual portfolio is described  by a random variable X and that

a fraction a of another random variable Y  is added to that portfolio. It is then possible to

calculate the derivatives of a certain risk measure with respect to a. Of particular interest is

the second derivative which must be positive for a convex risk measure which fulfils the

property of sub-additivity. The standard deviation for example is a convex risk measure as
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can be seen from the curve shape of the eff icient frontier in the usual risk-return chart. We

conclude that the standard deviation is also sub-additive5:
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3.2 First and second derivative of Value at Risk

Let us now replace the standard deviation by VaR as an alternative measure of risk. Assu-

me that Y ,X are continuously distributed random variables (where 
X

f  denotes the den-

sity of X ) and define )aYX(
p

VaR +  as function of a implicitly by

const.p))aYX(
p

VaRaYXProb( ==+≤−− . We then have a nice result: The derivative

of the VaR is the conditional expectation of the marginal position, on condition that the

actual value of the portfolio X  and VaR are exactly identical6:
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The intuiton behind this result is as follows: If X>VaR(X) (the actual loss is already greater

than VaR) or if X<VaR(X) (there is a remainig buffer), adding a sufficiently small fraction

of a new risk would not change the outcome. Therefore, it seems plausible that the risk

contribution is the average value for all critical cases with X=VaR(X).

For the second derivative we get the following expression7:

                                                       
5 Note that the standard deviation is also linear homogeneous, i.e. σ(aX) = aσ(X). The same holds for VaR and
expected shortfall.
6 Gourieroux et al. (2000), Tasche (1999).
7 Gourieroux et al. (2000).
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This is the sum of two terms. The sign of the second term is positive if the density slopes

upwards in the left tail. This wil l usually be the case (if the distribution is unimodal). Un-

clear is the sign of the first term. To get an intuition, note that the new position which is

added to the portfolio could also li ft the value of the portfolio above the VaR-threshold if a

violation of that threshold would otherwise occur. If x/)x (Y2� ∂∂  is negative (the vari-

ance is a decreasing function of x), the chance that the new position prevents a violation of

the VaR-threshold is greater than the corresponding risk that a violation of the VaR-

threshold is triggered by the new position. This explains why, in a second order approxi-

mation, the contribution to VaR could be lower than the respective conditional mean. The

bottom line is that we cannot be sure that the second derivative is always positive.

3.3 First and second derivative of Expected Shortfall

Expected shortfall (ES) is defined as the average of all losses which are greater or equal

than VaR, i.e. the average loss in the worst (1-p)% cases. For a continuous distribution, ES

is the same as Conditional VaR, where Conditional VaR is defined as the average VaR for

all confidence levels above p:8

 )X(
p

SE  (X))
p

VaRX X-(�  ≥−=  ∫=
1

p
ds  (X)

s
aRV      

p-1

1
   

It follows that VaR is the negative derivative with respect to p of ES times 1-p. (the follo-

wing results therefore contain the previous ones as special cases).

The first derivative of ES is the conditional mean of the marginal position, now on conditi-

on that the portfolio value is below VaR9:

                                                       
8 For a  proof, simply substitute z = VaRs(X) �  s = Prob(-X ≤ z).
9 Tasche (1999).
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At this point, let us try to get an intuition for marginal VaR and marginal ES. Consider a

Monte Carlo simulation with 1000 iterations. The results are ranked from the worst loss to

the highest gain, so that VaR for a confidence level of 99% is the outcome in the 10th worst

scenario. The portfolio value in the 10th worst scenario is the sum of the values of each in-

dividual position. Accordingly, the values of the individual positions in that particular

scenario are the VaR-contributions or an estimation of the derivative of VaR. This illu-

strates why the derivative of VaR is the conditional mean, on condition that portfolio value

and VaR are identical. However, the accuracy of a so calculated predictor of the conditio-

nal mean is very doubtful, because a completely new Monte Carlo simulation could deliver

very different values for the individual positions. Only on the aggregate level for the port-

folio as a whole, such random errors due to simulation wil l be largely eliminated.

Now consider ES, which is the average portfolio value in the 10 worst scenarios. The con-

tributions to ES are the average values of the individual positions in the 10 worst scenarios,

in accordance with our formal result for the derivative of ES. In addition, because the

calculation of marginal risk contributions is now based on the outcome of 10 scenarios

(rather than only one), they are presumably less subject to simulation errors. This advanta-

ge would be even greater for a simulation with 5000 or 10 000 iterations.

But the advantage of ES lies not only in the calculation of the marginal risk contributions.

It also has the advantage of being convex and sub-additive. This follows directly from the

following expression for the second derivative (this relatively simply expression is, to my

best knowledge, a completely new result):
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4. Outlook

As often, there are bad news and good news. The bad news are that VaR, despite it is wi-

dely used in practice, is not an adequate measure of risk. In particular, VaR is not always

sub-additive and therefore an inappropriate tool for risk-adjusted performance measure-

ment and the internal allocation of capital. The good news are that an alternative to VaR is

given by ES, which not only fulfils the property of sub-additivity, but also makes it easier

to calculate marginal risk contributions in practice.

Many open questions remain. I see mainly two topics for future research. First, we have

always assumed that the random variables are continuously distributed. However, the abo-

ve results could be wrong for random variables with a discrete probabil ity distribution. So

the question arises what can be said about marginal risk contributions if random variables

are not continuously distributed. This is an important issue because all real-world probabi-

lity distributions are in fact discrete distributions (Consider credit risk as an important ex-

ample).

The second question relates to the interpretation of a risk measure. VaR is the amount of

equity capital which is needed so that the confidence level is the probabil ity that insolven-

cy will not occur. ES however has at first sight no such obvious interpretation. We might

see ES as the average loss of the creditors of the bank in case of a default10. However, this

either presumes risk neutrality or the actual probabil ity distribution must be replaced by a

pseudo risk neutral distribution. The question is then how to obtain the risk neutral distri-

bution in practice.

                                                       
10 If a new position is added to the portfolio, it then has to be determined how much additional equity must be
hold so that expected shortfall remains constant.
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Proof:

ad (i):

First note that the formula for the conditional density is given by:
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To get the general result for 0a ≠ , simply replace X by X+aY.
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