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Abstract

We explain how to optimize portfolios of bonds and stocks with re-
spect to the Expected Shortfall (ES), respectively RORC or RORAC
based on ES. In a pragmatic approach we combine and correlate a
stock market model with geometric brownian motions with a two-factor
Cox-Ingersoll-Ross (CIR-2) model for the interest rates/bonds. We use
recent results from the theory of risk capital allocation, performance
measurement and Swarm Intelligence for optimization. Examples for
German market data as well as an analysis of the scalability of the solu-
tion to assure fast run-times on clusters of computers for large real-life
portfolios are given.
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1 Introduction

In the first part of this paper we introduce a general concept of portfolio op-

timization with respect to the risk measure Expected Shortfall (ES) and also
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(but not at the same time) with respect to the performance measures RORC

and RORAC (Return On Risk/Risk-Adjusted Capital) due to ES. Later, a

specific financial market model that enables optimization of portfolios consist-

ing of bonds and stocks is proposed. This model combines and correlates a

stock market model of geometric brownian motions with a two-factor Cox-

Ingersoll-Ross (CIR-2) model for the interest rates, respectively bonds. Nu-

meric optimization is done using recent results from the theory of risk capital

allocation, performance measurement and (Particle) Swarm Intelligence (SI).

Explicit formulas and methods for the model and algorithms like Gradient

Search (GS) and SI optimization are provided. Examples of optimized portfo-

lios for German market data are given. Furthermore, we analyze the scalability

of the solution (with respect to multi-processor machines, clusters or Global

Grid environments) to assure fast run-times for large real-life portfolios.

The idea of portfolio optimization with respect to modern risk and per-

formance measures like ES, RORC or RORAC and also taking correlations

between interest rates and stocks using an enhanced interest rate model into

account seems to be new. Fast developing computer technology enables to

solve optimization problems numerically even for complex market models and

big portfolios.

Our approach is pragmatic in the sense that some of the theoretical

problems which can emerge are (although not considered in depth) solved by

unorthodox methods that seem to work well with real-life portfolios. The

focus of the paper lies on the presented methods and not on the testing of

these methods. From an academic point of view, this might be unsatisfying,

but the mentioned models have (separately and sometimes in unfortunately

simplified forms) been considered in some of the biggest German insurance

companies. Practitioners should keep in mind that the paper shows what is

actually possible in optimizing portfolios, but not how good the presented

methods are from the historical point of view or compared to other market

models. Such questions are not part of this paper.

The paper is organized as follows. Section 2 introduces the considered

risk and performance measures. Section 3 explains the general approach to

the optimization problem. Furthermore, the Gradient Search, the Swarm

Intelligence optimization method and the role of stochastic simulation in these

approaches are described. After a general introduction to optimization meth-



1 INTRODUCTION 3

ods, Section 4 introduces and discusses the proposed financial market model.

Section 5 is dedicated to the stochastic simulation part, i.e. the generation of

market scenarios. In Section 6, information on parameter estimation can be

found. Section 7 gives a brief chronological overview of all steps concerning

our proposed optimization methodology. In Section 8 we present first results

for German market data. Section 9 shows the scalability of our solution.

In Section 10 we conclude. Finally in the Appendix we give two results on

the form of the derivatives of Value-at-Risk and Expected Shortfall expressions.

We introduce some notation. Let us define the total payoff

X = X(u) :=
n∑

i=1

uiXi (1)

of a portfolio

u = (ui)1≤i≤n ∈ Rn (2)

which represents n ∈ N+ = N \ {0} different payoffs Xi (1 ≤ i ≤ n) with

weights ui ∈ R. The Xi are assumed to be one-dimensional real-valued random

variables. We call B = (X1, . . . , Xn) a portfolio base (cf. Fischer, 2003) as any

considered portfolio will be described with (2) and (1). As random variables,

the components of B do not have to be linearly independent.

As an example, consider a financial market with n numbered securities.

Let us assume that the prices of these securities at some time s ∈ R+
0 (the

positive real numbers including 0) are given by random variables

V1(s), V2(s), . . . , Vn(s). (3)

We assume to have constants for s = 0, which is the present time. We will

also use the notation

Vi = Vi(0) (4)

and

V = V (u) :=
n∑

i=1

uiVi(0) (5)

for the value of the portfolio u at time 0 in the following, and define

Xi = Vi(t)− Vi(0), (6)

where the variable t > 0 is the considered time horizon for which risk man-

agement is performed. Hence, the Xi are wins or losses due to the i-th asset
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during the time interval [0, t]. Now, the portfolio u of the different assets has a

difference in value from time 0 to t which is exactly X(u), and X > 0 (X < 0)

is an increase (decrease) of the portfolio value from time 0 to t and therefore

a win (loss) for the portfolio holder.

2 Risk and performance measures

2.1 General definition

A risk measure ρ is usually defined as a mapping from a set of random variables

(i.e. payoffs) X to the real numbers, that means

ρ : X −→ R (7)

X 7−→ ρ(X).

The amount ρ(X) is commonly interpreted as the minimum cash such that the

“risk” of X is “acceptable” to the holder of the payoff or portfolio whenever

he/she has the additional amount ρ(X) stored as risk capital (cf. Artzner et

al., 1999).

Working with a portfolio base B = (X1, . . . , Xn), a risk measure ρ on the

payoffs X implies a risk measure ρB on the portfolios u ∈ Rn for which we

have X(u) ∈ X . In particular, if X(Rn) = X we can define

ρB : Rn −→ R (8)

u 7−→ ρ(X(u)).

We also write ρ(u) for ρB(u). Based on the context, no confusion can arise.

A performance measure can also be represented by functions as considered

in (7) and (8). In contrast to risk measures, performance measures are ususally

intended to describe ratios like the relation of the expected return to the risk

capital or invested risk-adjusted capital. However, the concrete interpreta-

tion of such measures is postponed until we look at conrete examples, namely

RORC and RORAC (cf. Section 2.3).

2.2 Expected Shortfall

For 0 < α < 1, we define Value-at-Risk as

VaRα(X) := − inf{x : P (X ≤ x) ≥ α}. (9)
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Hence, VaR is a negative α-quantile of the distribution of the random variable

X. Expected Shortfall (ES) is defined by

ESα(X) := −E[X|X ≤ −VaRα(X)]. (10)

The meanings of these risk measures are obvious: -VaR is a treshold which is

fallen short of in α · 100% of all cases, -ES is the expectation (i.e. the mean) of

the losses under the condition that this treshold has already been fallen short

of. The change of the sign is a matter of interpretation – to neutralize losses

(negative wins), risk capital has to be positive.

There are good reasons to only consider the ES risk measure. Ongoing

from the widely known Value-at-Risk methodology, ES is easy to understand

and always more conservative than VaR. Furthermore, ES is in most relevant

cases a coherent risk measure (cf. Acerbi and Tasche, 2002) and features (when

differentiable) explicit expressions for partial derivatives which is crucial in the

context of risk capital allocation problems, but also for portfolio optimization

which will soon become clear. We cite a risk management expert from the

German Federal Reserve (Deutsche Bundesbank): “In my opinion, ES is still

the best risk measure of all.”

2.3 RORC and RORAC

We define a performance measure

ϕ(X) :=
E[X]

ρ(X)
. (11)

ϕ is called the RORC, i.e. the Return On Risk Capital. In contrast to a risk

measure, this performance measure does not care about the absolute value of

the risk capital, but of its proportion to the mean return which is gained on

it. For ρ = ESα, i.e.

ϕα(X) :=
E[X]

ESα(X)
, (12)

we talk of the ES-RORC. Some authors (cf. Tasche, 2000) call (11) the RO-

RAC. We think that the “Return On Risk-Adjusted Capital” should be defined

as in (14).

Working on RORC optimization, one might face the problem that the opti-

mal portfolio (although the portfolio value is constant) implies a huge amount

of risk capital together with a huge expected return. However, practical rea-

sons might imply an upper bound for the risk capital. So we need a constraint
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ρ(u) ≤ ρmax, i.e. in case of the ES-RORC

ESα(u) ≤ ESmax, (13)

might be imposed.

The performance measure

ψ(X) :=
E[X]

V + ρ(X)
(14)

is called the RORAC, i.e. the Return On Risk-Adjusted Capital. Indeed, ψ

measures the mean (or expected) return per unit engaged capital, since V + ρ

is the value of the invested capital plus the costs of risk (cf. (5)). Hence, in

contrast to RORC (11), RORAC considers not only the risk capital but the

risk-adjusted investment capital and therefore seems to be a more sophisticated

performance measure. For ρ = ESα, i.e.

ψα(X) :=
E[X]

V + ESα(X)
, (15)

we talk of the ES-RORAC.

As in the case of ES-RORC, the additional constraint (13) might be im-

posed in the case of ES-RORAC optimization.

3 Portfolio optimization

3.1 The problem

In this section we explain from a general point of view how to optimize a

portfolio with respect to ES or with respect to the performance measures ES-

RORC or respectively ES-RORAC.

We assume a fixed budget/portfolio value of V (u) which must be fully

invested at the present time t = 0. Otherwise, the considered problems become

trivial or unsolvable as the ES is scalable (positive homogeneous of degree 1)

and the considered performance measures are invariant due to scaling.

Let us assume that a portfolio u ∈ Rn is given. Furthermore, this portfolio

has to be optimized with respect to a risk or performance measure ρ on Rn. For

convenience, we assume that the risk ρ has to be minimized. As mentioned,

exactly the fixed amount V has to be invested in the market at time 0. As Vi

is the price of asset i at time 0, this implies the following constraint for the
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portfolios u which must be satisfied:

V =
n∑

i=1

uiVi. (16)

A possible solution of the optimization problem is given by a portfolio u∗ ∈ Rn,

such that ρ(u∗) is minimal (on Rn) under the constraint (16). Defining

u′n := (V −
∑
i<n

uiVi)/Vn, (17)

and ρ′ as

ρ′(u1, . . . , un−1) := ρ(u1, . . . , un−1, u
′
n) (18)

it follows from (16) that we can express the solution u∗ by

(u∗1, . . . , u
∗
n−1) = argmin ρ′(u1, . . . , un−1), (19)

together with u∗n = (V −
∑

i<n u
∗
iVi)/Vn.

Working with real data, we discovered that portfolios which are candidates

for extremal points due to the considered risk or performance measures can

contain tremendous amounts of short-sold assets, i.e. the portfolio as a vector of

real numbers contains huge negative components. For this reason we introduce

a further constraint: For a, b ≥ 0 we require

−bV
Vi

≤ ui ≤ a
V

Vi

for all 1 ≤ i ≤ n. (20)

For instance, b = 0 implies portfolios which allow no short-selling. The values

a = b = 1 guarantee that the amount of capital or debts in no asset is bigger

than the total value V of the portfolio.

As an optimization (e.g. for a 1-year horizon) can be driven daily or hourly,

one could also think of self-financing ES-, ES-RORC or ES-RORAC-optimal

strategies in this context.

3.2 Gradient Search

Let the risk measure (function) ρ be differentiable on Rn. From standard

analysis we obtain for 1 ≤ i ≤ n− 1

∂ρ′

∂ui

(u1, . . . , un−1) =
∂ρ

∂ui

(u1, . . . , un−1, u
′
n)− Vi

Vn

∂ρ

∂u′n
(u1, . . . , un−1, u

′
n). (21)
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maxits=bigNumber
its=0
while its < maxits # fixed number of iterations

# or grid-based search
ptf=RandomPortfolio # satisfying constraints
loop

if Rho(ptf)<Rho(bestPtf) # small Rho wanted
bestPtf=ptf

end
grd=gradient(ptf)
ptfnew=ptf-grd*stepsize # if constraints, adapt this step

until Rho(ptfnew)>Rho(ptf)
its+=1

end

Figure 1: Slow and simple Ruby-Pseudocode for portfolio optimization using
brute-force gradient search. Clever varying choice of epsilon to calculate the
gradient and the step-size can give further speed-up. Instead of chosing random
portfolios, one can use a grid-based search.

Using the partial derivates (21), one can start looking for the (local) extreme

points of ρ′ in Rn−1 by applying Gradient Search (GS) methods. This might be

a comfortable approach to solve the optimization problem (19) as long as the

considered measures have sufficient differentiability properties. However, the

proof of such differentiability properties can be rather difficult (cf. Appendix

A or Tasche (2000)). This is one reason for our proposal of Swarm Intelligence

optimization methods (see Subsection 3.3).

Outline of a gradient minimum-search (Figure 1):

1. Evaluate the gradient for the current portfolio.

2. If the gradient is zero, exit. We have found a (local or global) minimum.

3. Follow the negative gradient (negative slope) of the current portfolio one

small step. Modify the portfolio to satify the constraints. Then continue

with step 1.

On a one-processor machine this gradient algorithm has to be started many

times with different portfolios (“brute-force”), as one might be stuck in a

local minimum. This takes a long time for real-life portfolios.
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The following three paragraphs derive the respective partial derivatives (21)

for Expected Shortfall, ES-RORC and ES-RORAC.

Expected Shortfall

Assuming sufficient differentiability properties, results of Tasche (2000) show

that
∂ESα

∂ui

(u1, . . . , un) = −E[Xi|X ≤ −VaRα(X)]. (22)

We refer to Tasche (2000) but also Lemma A.1 and A.2 in Appendix A for fur-

ther information on the differentiation of ES. For ρ(u) = ESα(X(u)), equation

(21) can be written as

∂ES′α
∂ui

(u1, . . . , un−1) = −E[Xi|X ≤ −VaRα(X)] (23)

+
Vi

Vn

E[Xn|X ≤ −VaRα(X)].

In fact, this simple expression of expectations is very suitable for numerical

computations by Monte-Carlo methods.

RORC

The partial derivatives (21) of the ES-RORC under the portfolio constraint

(16) are obtained using standard rules of differentiation:

∂ϕ′α
∂ui

= −E[X] · E[Xi|X ≤ −VaRα(X)]

ESα(X)2
+

E[Xi]

ESα(X)
(24)

− Vi

Vn

(
−E[X] · E[Xn|X ≤ −VaRα(X)]

ESα(X)2
+

E[Xn]

ESα(X)

)
.

As in the case of (23), we see from the definition (10) of ES that (24) is a

relatively simple expression of expectations.

RORAC

As V is a constant, the partial derivatives (21) of the ES-RORAC under the

portfolio constraint (16) are similar to those of RORC (24):

∂ψ′
α

∂ui

= −E[X] · E[Xi|X ≤ −VaRα(X)]

(V + ESα(X))2
+

E[Xi]

V + ESα(X)
(25)

− Vi

Vn

(
−E[X] · E[Xn|X ≤ −VaRα(X)]

(V + ESα(X))2
+

E[Xn]

V + ESα(X)

)
.
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3.3 Swarm Intelligence

Swarm Intelligence (SI) is a property of a system where the collective be-

haviours of (unsophisticated) agents interacting locally with their environment

cause coherent functional global patterns to emerge. SI provides a basis with

which it is possible to explore collective (or distributed) problem solving with-

out centralized control or the provision of a global model (cf. Kennedy et al.,

2001).

The three underlying principles of SI are: evaluate, compare and imitate.

Living organisms can learn by evaluating stimuli and rate them as positive

or negative. In our case this is the metric (i.e. risk or performance measure)

we want to minimize/maximize. As practiced in the Adaptive Culture Model

(cf. Shibanai, Yasuno and Ishiguro, 2001) and in real life, people compare

themselves to others and imitate only those neighbours that are superior to

themselves. Imitation is central to human sociality and important for the

aquisition and maintenance of mental abilities (cf. Kennedy et al., 2001). SI

offers a tradeoff between individual and group learning.

We give a brief outline of the algorithm (cf. Kennedy et al. (2001), Kennedy

and Eberhart (1995)) and use standard notation. Let yi be the position of

particle i. In our case the position represents a specific portfolio (yi ∈ Rn).

The change of portfolio is called v. v traditionally stands for velocity. Each

clockstep t particles move from one stop to another by yi(t) = yi(t− 1) + vi(t)

and sample the search space by modifying the velocity term. The direction of

movement is a function of the current position (yi), velocity (vi), the location

of the individual’s previous best success (pi), and the best position found by

any member of the neighborhood (pg):

yi(t) = f(yi(t− 1), vi(t− 1), pi, pg). (26)

One possible implementation is

vi(t) = vi(t− 1) + n1(pi − yi(t− 1)) + n2(pg − yi(t− 1)) (27)

with

yi(t) = yi(t− 1) + vi(t). (28)

The n variables are random variables defined by an upper limit, so that the

particles cycle around the two best bets: pi and pg. The random numbers (n1

and n2) are updated in every iteration. With real-life data the velocity v very

quickly becomes too large and one has to set limits.
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ys=generateInitialPortfolios #satisfying the constraint
p=ys
loop

# best portfolios’s fitness so far
ys.each_with_index{ |y,i|

p[i]=y, if Rho(y)<Rho(p[i]) # small Rho wanted
}

i=rand size # arbitrary Rho
g=i
for j=indexes of neighbors

g=j if Rho(p[j])<Rho(p[g]) # g: index of best performer
# in the neighborhood

end
#assuming delta t=1
v[i]=[i]+n1*(p[i]-ys[i])+n2*(p[g]-ys[i])
v[i]=Vmax if v_id>Vmax
v[i]=Vmin if v_id<Vmin
ys[i]=ys[i]+v[i]

fixPortfolio # constraint
if loopCount mod 10000==0 # big number here

removeWorstPortfolio # remove 10% worst portfolios
injectNewPortfolios # inject 10% new portfolios

end
until some criterion

Figure 2: Extended and slow but simple Ruby-Pseudocode for portfolio op-
timization using swarm particles based on Kennedy et al. (2001). This basic
algorithm is implemented more efficiently.

As the present value of a portfolio has to remain constant, two minor

modifications in the choice of v are required.

In simulation studies on typical portfolios it proves successful to inject

about 10% of new particles with random speeds and locations from time to

time and to remove the 10% worst performing particles. The exact population

size is an open research problem with experts having different opinions. A

rule of thumb is to keep the population size small, but to rely on a high

number of iterations. As this can take a long time for higher dimensional

problems, parallel solutions are an easy way out of the dilemma, following

Kent Thompson’s (co-inventor of Unix) famous quote: ”When in doubt, use

brute force”.
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3.4 How stochastic simulation fits in

Independent from the question whether GS or SI methods are used to solve

the portfolio optimization problem, it is clear that a way must be found to

determine the distributions of the considered payoff functions Xi (cf. Section

1, Equation (1)) as finally in any optimization routine the risk or performance

measures (10), (12) and (15) must be computed. The Xi (cf. (6)) were inter-

preted as wins or losses due to the i-th asset in the market where we assumed

to have n numbered assets. It is clear that many of our thoughts so far, es-

pecially the functions ES, ES-RORC, ES-RORAC, but also their derivatives,

crucially depend on the model for future prices Vi(t). The particular stochastic

model we use is introduced in Section 4.

Once the model for the price processes Vi (cf. (3)) is chosen and a way to

get possible parameters is found, one can theoretically compute the risk and

performance measures (10), (12) and (15) and their partial derivatives under

budget constraint (23), (24) and (25). However, one often encounters models

(also in our case) where it is not possible or quite difficult to compute these

values directly. The more realistic assumption is that one succeeds in doing

a stochastic simulation of the model which computes m ∈ N+ (e.g. m = 103)

market scenarios, i.e. finally one has for each i the numerical realizations (in

increasing order)

x1
i , x

2
i , . . . , x

m
i (29)

of the random variable Xi defined by (6). The realizations (also in increasing

order)

x1, x2, . . . , xm (30)

for any X = X(u) follow immediately.

Having these realizations, estimates for the stochastic expressions in the

functions mentioned above can be used. In particular, we compute estimates

using the “empirical” distribution given by the simulation output, e.g.

Ê[X] =
1

m

m∑
j=1

xj, (31)

V̂aRα(X) = −xdαme (32)

or

ÊSα[X] =
−
∑

xj≤−V̂aRα(X) x
j

card{j : xj ≤ −V̂aRα(X)}
, (33)
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where dre denotes the smallest integer which is greater or equal the real num-

ber r. Of course, one can use other perhaps more sophisticated estimators.

Nonetheless, replacing all stochastic expressions in (10), (12), (15), (23), (24)

and (25) as suggested by (31) to (33), one obtains approximations of the re-

spective measures and their gradients which are easy to implement in any

suitable programming language.

Gradient Search methods or Swarm Intelligence optimization methods can

now be executed using the obtained approximations.

4 The proposed market model

Until now, the presented theory has not been fixed to a particular financial

market model and was intended to give a general introduction to the portfolio

optimization problem. In the following sections we apply the above ideas to a

concrete model and data setup.

We model stocks and non-defaultable bonds. All stochastics evolves from a

(d+2)-dimensional brownian motion (Wiener process) (Wi)i=1,...,d+2, where the

first two components drive the dynamics of the two-factor interest rate model

for the bonds and the last d drive the dynamics of d stocks. The brownian

motions Wi are correlated by a covariance matrix Σ (see also Section 5). We

assume

Σi,i = 1 (34)

for i = 1, . . . , d+ 2 and

Σ1,0 = Σ0,1 = 0, (35)

i.e. each Wi is a one-dimensional standard brownian motion and W1 and W2

are uncorrelated.

4.1 Interest rates and bonds

We use

eR(t,τ)·τ =
1

p(t, τ)
(36)

as the defining equation of the relation between the price p(t, τ) of a zero-

coupon bond with maturity τ at time t, i.e. the price at time t of the guaranteed

payoff 1 at time t+τ , and the corresponding spot (interest) rate R(t, τ). Hence,

R(t, τ) is the at t guaranteed continuous interest rate during the time interval

[t, t + τ ]. For future points of time (t > 0), p(t, τ), respectively R(t, τ), are
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assumed to be random variables. We now turn to the considered interest rate

model of Chen and Scott (1992) with two stochastic factors.

The model is usually called Cox-Ingersoll-Ross-2 (CIR-2) as it relies heavily

on the work of Cox, Ingersoll and Ross (1985) which is a so-called short rate

model with only one (economically interpretable) stochastic factor (modelled

by a square-root process). However, the authors also formulated the main

ideas for a theory with multiple stochastic factors. In our description of the

model, we closely follow Fischer, May and Walther (2003), which also includes

comments on the model choice which we want to adopt for our purposes (see

also Subsection 4.3).

The concrete model setup is given by the two stochastic factors x = (x1, x2)

fulfilling the stochastic differential equations

dxi = (bi − ai · xi)dt+ σi

√
xidWi (i = 1, 2) (37)

where bi, ai and σi are positive constants. One has xi > 0 if 2bi > σ2
i . Wi(t)

is the i-th brownian motion at time t, W1 and W2 are independent (not corre-

lated). Equation (37) defines a so-called mean reversion process. The param-

eter a is called the strength of the mean reversion and b/a the mean reversion

level, i.e. the long-term mean of the process xi. The implied spot interest rate

at time t for a maturity τ is

R(t, τ) =
2∑

i=1

(
− logAi(τ)

τ
+
Bi(τ)

τ
xi(t)

)
, (38)

the implied zero-coupon bond price at time t for the maturity τ

p(t, τ, x(t)) =
2∏

i=1

Ai(τ)e
−Bi(τ)xi(t). (39)

The respective functions Ai and Bi are given by

Ai(τ) =

[
2hie

(ai+λi+hi)τ/2

2hi + (ai + λi + hi)(eτhi − 1)

]2bi/σ2
i

(40)

and

Bi(τ) =

[
2(eτhi − 1)

2hi + (ai + λi + hi)(eτhi − 1)

]
, (41)

with

hi =
√

(ai + λi)2 + 2σ2
i . (42)
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The parameter λi concerns the change of measure (physical to martingale mea-

sure) and can together with all other parameters be estimated from historical

interest rates. In the one-factor case, a particular function of λ is interpreted

as the so-called market price of risk (Cox, Ingersoll and Ross (1985); see also

Fischer, May and Walther (2002)). For more than one factor, an economic

interpretation is not possible or at least not obvious.

It is clear that the price of any coupon bond can be computed as the sum

of the prices of the respective set of zero-coupon bonds.

4.2 Stocks

The d stocks of the considered financial market are modelled by geometric

brownian motions, i.e. price processes Sj (j = 1, . . . , d) with

Sj(t) = Sj(0)eµjt+σjWj+2(t), (43)

where µj ∈ R is the drift and σj ∈ R+ the diffusion coefficient of the brownian

motion in the exponent, i.e. the pice process has the “trend”

E[Sj(t)] = Sj(0)e(µj+σ2
j /2)t. (44)

In terms of stochastic differential equations (SDE) we have

d lnSj = µjdt+ σjdWj+2. (45)

Wi(t) is the i-th brownian motion at time t.

4.3 Comments

The model choice is based on our experience with practitioners. We know

that at least in three major German life insurance companies one-factor Cox-

Ingersoll-Ross models together with geometric brownian motions have been

considered in the context of Asset Liability Management. CIR-1 is used to

model the debt securities market and interest rates whereas the geometric

brownian motions (in reminiscence of the Black-Scholes model) are used to

model “stocks”. The mentioned insurance companies are interested in multi-

factor models although not yet using them. The combination and correlation

of the models as proposed in this paper seems to be new.

For insurance companies (known to be conservative), an important aspect

of such models is the acceptance by the scientific public. This enlightens the
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decision for standard models like geometric brownian motions or the CIR-1

model.

As mentioned in Fischer, May and Walther (2003), for instance the Vasicek-

2 (Gaussian) model behaves in some way better than CIR-2 (concerning pa-

rameter estimation or the values of the likelihood function; see also Babbs and

Nowman (1998)). Nonetheless, insurance companies seem to prefer CIR, as

under the respective parameter constraints CIR assures positive interest rates.

Facing a possible deflation in the Eurozone (especially in Germany), one might

want to reconsider this philosophy.

From the academic point of view it is clear that alternative models like the

Vasicek model should also be examined with respect to the optimization prob-

lem. However, for several reasons which will become clear later we recommend

to stay inside the class of so-called affine term structure models.

Another more theoretical problem is whether the probably for optimization

purposes used derivatives (23), (24) and (25) really exist. Depending on the

considered model, this might not be trivial, see also Appendix A for some

comments on the differentiability problem. We have not proven the existence

of the derivatives for the proposed model (in this case, the Vasicek model may

be easier to handle, too). However, for our purposes, this unsolved theoretical

problem (which relies on the used model) is no drawback as our optimization

routines are subject to “back-testing” by the SI methods. Nonetheless, the GS

methods work very well in the search of local extrema.

The problems coming in line with differentiation of quantile expressions

could be avoided by using risk measures which have more suitable differen-

tiability properties as e.g. the risk measures depending on one-sided moments

which are proposed in Fischer (2003).

The authors admit that the proposed model has not been examined for

absence of arbitrage. This is postponed to further research. Actually, the

model is used like an econometric framework. In this sense, the philosophy of

our approach is pragmatic.

5 Market scenario generation

As described in Subsection 3.4, we carry out a stochastic simulation to obtain

an “empirical” distribution of the considered random payoffs.

A simulation requires discretization. We consider points of time tm (m ∈
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N). The width of the time step is the constant ∆, e.g. one day, one month

etc., i.e. tm+1 = tm + ∆ and t0 = 0. Increments

δWi,m := Wi(tm)−Wi(tm−1) (46)

of the (d+ 2) brownian motions have to be simulated. For fixed m, the δWi,m

are correlated by the covariance matrix ∆Σ (cf. (34) and (35)). For fixed i,

the increments δWi,m are independent normally distributed random variables

with variance ∆ and expectation 0.

Hence, all discretized dynamics is driven by a series of standard normally

distributed random variables Ni,m (i = 1, . . . , d + 2;m ∈ N+), where for each

m the random variables (Ni,m)i=1,...,d+2 are correlated by the covariance matrix

Σ which will later be estimated from real data.

5.1 Simulation of correlated normal random variables

Simulation of i.i.d. normal random variables is standard. Let us consider the

Cholesky decomposition

Σ = CCt (47)

of the covariance matrix Σ. If Z = (Zi)i=1,...,d+2 are d+2 i.i.d. normal random

variables, then

(Ni)i=1,...,d+2 = N = C · Z (48)

contains d+ 2 normally distributed random variables with covariances Σ.

5.2 Interest rates and bonds

From (37) an Euler-approximation gives the recursion

xi,m = xi,m−1 + (bi − ai · xi,m−1)∆ + σi
√
xi,m−1

√
∆Ni,m (i = 1, 2) (49)

where the Ni,m (fixed i or alternatively fixed m) are i.i.d. N(0, 1) (cf. Fischer,

May and Walther, 2003). For a general introduction into the numerics of

stochastic differential equations we refer to Kloeden and Platen (1992).

Plugging the computed values into (38), resp. (39), returns the desired

interest rates, resp. bond prices.

5.3 Stocks

From (45) we get the Euler-approximation

lnSj,m − lnSj,m−1 = µj ·∆ + σj ·
√

∆ ·Nj+2,m (1 ≤ j ≤ d) (50)
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where the Nj+2,m (fixed j) are i.i.d. N(0, 1). This implies for M ∈ N+

Sj,M = Sj,0 exp

(
µjM∆ + σj

M∑
m=1

√
∆Nj+2,m

)
. (51)

6 Estimation of parameters

6.1 Interest rates and bonds

The estimation of the parameters of the CIR-2 model and detailed description

of the used methods are subject of several existing articles, e.g. Chen and Scott

(1993), Duan and Simonato (1999), Bolder (2001), Beletsky and Szimayer

(2002) and Fischer, May and Walther (2003). The problem is not trivial.

The most efficient method seems to be maximum-likelihood estimation with

Kalman-filtering. In particular, we used the machinery as explained in Fischer,

May and Walther (2003). The interested reader can find further information

in this paper and the references therein.

A comment on the data: We use the historical yield structure of the Ger-

man debt securities market (monthly, taken at the end of each month). The

values for spot rates with maturities τ > 0 up to 28 years can be computed

via a parametric presentation of yield curves (the so-called Svensson-method;

cf. Svensson (1994) and Schich (1997)) for which the historical parameters can

be taken from the homepage of the German Federal Reserve (Deutsche Bun-

desbank; http://www.bundesbank.de). The implied Bundesbank values R′

are estimates of discrete interest rates on notional zero-coupon bonds based

on German Federal bonds and treasuries (cf. Schich, 1997) and have to be

converted into continuous interest rates by R = ln(1 +R′).

6.2 Stocks

Given the market data Sj,m (j = 1, . . . , d; m = −M, . . . , 0; time step = ∆;

t = 0 is the present), discretization (50) is used to compute the estimators

µ̂j =
1

M∆
ln(Sj,0/Sj,−M) (52)

and

σ̂j =

√√√√ 1

M∆

0∑
i=1−M

(ln(Sj,m/Sj,m−1)−∆µ̂j)2 (53)

for the parameters of the stock price dynamics.
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6.3 The covariance matrix

After having plugged in historical data, solving equations (49) and (50) for the

values Ni,m gives us a time series (Ni,m) (i = 1, . . . , d+2; m = 1−M, . . . , 0) of

hypothetical historical realizations of the normal random variables (48). Now,

the values

Σ̂i,j =
1

M

0∑
m=1−M

Ni,mNj,m (54)

can be used as estimates for the entries of the covariance matrix Σ. However,

there is still something missing since we can not get the historical realizations

xi,m of the stochastic factors of the interest rate model (49) directly from the

market. Instead, we use the affine term structure (38) to derive them from the

interest data distributed by the German Federal Reserve (cf. Subsection 6.1).

One has(
R(t, τ1)
R(t, τ2)

)
︸ ︷︷ ︸ =

(
− log A1(τ1)

τ1
− log A2(τ1)

τ1

− log A1(τ2)
τ2

− log A2(τ2)
τ2

)
︸ ︷︷ ︸+

(
B1(τ1)

τ1

B2(τ1)
τ1

B1(τ2)
τ2

B2(τ2)
τ2

)
︸ ︷︷ ︸ ·

(
x1(t)
x2(t)

)
︸ ︷︷ ︸ (55)

Rt = MA + MB · x(t). (56)

Hence, we obtain by

x(t) = M−1
B (Rt −MA) (57)

a time series xi,m (i = 1, 2; m = −M, . . . , 0) by inserting the time series of

the respective spot rates into (57). Slightly different from Fischer, May and

Walther (2003), our suggestion is

τ1 = 0.5 years, τ2 = 10.0 years. (58)

Equation (57) also returns the starting values x(0) = (x1(0), x2(0)) for the

simulation of the factors x1 and x2. The computation of the values x(0) im-

plies a mathematically continuous continuation of the history of the spot rates

R(., τ1) and R(., τ2) by the CIR-2 model. For other maturities than τ1 and τ2

there might be jumps in the dynamics of the respective sport rate (cf. Fischer,

May and Walther, 2003). A simulation study of the same authors showed that

for realistic time horizons the starting values have significant influence on the

means of the simulated interest rates. Hence, a proper calculation of starting

values is important.

Having executed the explained procedure, one can compute the empirical

covariance matrix Σ̂ by (54). At this point, a further problem arises. The
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CIR-2 model works with uncorrelated brownian motions (cf. subsection 4.1).

Nonetheless, the upper left 2× 2-submatrix of Σ̂, which theoretically should

be the two-dimensional identity, may differ from the theoretical values. To

stay in the proposed model, one can adjust the estimate Σ̂ by setting the

upper left 2× 2-submatrix to the identity matrix. Doing this, it is important

to check whether the new matrix is still positively definite as we afterwards

have to carry out the Cholesky decomposition. In cases where positive

definiteness gets lost, one should choose a symmetric positively definite matrix

close to the proposed matrix with the identity in the upper left corner.

The proposed technique for the computation of the covariance matrix and

the starting values should be suitable for any stochastic interest rate model

with an affine term structure as in (38) (e.g. Vasicek-2).

7 Chronological overview

I. Estimation

• Get data.

• Estimate parameters of stock prices; (52) and (53).

• Estimate parameters of interest rate dynamics (cf. Subsection 4.1).

• Compute the historical time series xi,m (m ≤ 0) by (57).

• Solve equations (50) and (49) for the historical Nj,m (m ≤ 0).

• Compute the covariance matrix Σ̂; (54).

• Compute the Cholesky decomposition of Σ̂; (47).

II. Simulation

• Simulate future i.i.d. normal random variables and plug them into (48)

to get the simulated Ni,m (m > 0).

• Plug the Ni,m into (50) and (49) to get the simulated scenario of stock

prices and interest rate model factors xi,m (m > 0).

• Plug the factors xi,m into (38) or (39) to get spot rates or bond prices.
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• Reiterate the above three steps to get a large set of market scenarios.

III. Evaluation

• Choose (or assume to be given) a certain portfolio.

• Compute portfolio values (e.g. by (1)) using the scenarios generated in

step II.

• Compute the risk and performance measures (10), (12) and (15) by the

empirical portfolio distributions obtained; cf. (31) to (33).

• If necessary, compute the partial derivatives (23), (24) and (25).

IV. Optimization

• Use a GS or SI method repeating step III for each new portfolio.

Note that the simulation procedure (=scenario generation; step II) must

only be done once. The optimization loops use the same set of scenarios for

alternating portfolios.

8 First results

8.1 Gradient Search vs. Swarm Intelligence

(Particle) Swarm Intelligence is a powerful tool to solve optimization problems

in a fixed search-space. SI is computationally appealing as simple to implement

and computationally robust with respect to local minima and maxima, pro-

vided enough iterations (generations) are performed. As an additional bonus,

SI is inherently parallel and can be implemented in a massively parallel way

(cf. Auslander et al. (1995), Fabiunke (2002)).

Gradient (Grid) Search methods like hill-climbing are superior to random-

guessing algorithms like SI if the search-space is e.g. a sphere, but on highly

multi-dimensional surfaces, the gradient method gets stuck too often in local

extreme points and therefore becomes computationally expensive, as one has

to start from many different starting points.

In higher-dimensional problems, SI seem fitter than GS methods. How-

ever, one has to be careful with such statements, as according to the No Free

Lunch (NFL) theorem (cf. Wolpert and Macready, 1996), when performance is
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averaged over all possible search spaces, all search algorithms perform equally

well.

Ultimately we decided to stick with SI algorithms, which seem to con-

verge faster for large real-life size portfolios. Combining these evolutionary

algorithms with a selected Gradient Search for selected good intermediate so-

lutions provides further speed-up.

One caveat with all numerical solutions, without further assumptions about

the search-space is that there is no guarantee that the optimal solution is found.

In practice one monitors the rate of convergence and dedicates enough search-

time. Looking at the number of idle PCs and workstations in the typical

investment bank or insurance company one can be on the save side and farm

out the work in fractions of a second to a large number of processors or a

dedicated cluster or Global Grid.

8.2 Examples

The general setup for our numeric examples is a time horizon of one month

where the simulation takes 20 steps per month. The number of loops is 1000.

We consider portfolios which have a present value of exactly 1000 EUR. We

optimize using a local GS method and a combined GS-SI method. The second

one is run with and without constraint b = 0, i.e. with and without short-

selling in the portfolio (cf. (20)). The considered confidence level is 5%. Two

types of portfolios are examined. The smaller one contains two bonds and two

stocks, the bigger one 10 bonds and 10 stocks. In particular, we considered

the following bonds and stocks (which are here listed in the same order as in

the portfolio vectors):

• 2 zero-coupon bonds: Maturity 1 year and 10 years.

2 “stocks”: Xetra DAX and Allianz

• 10 zero-coupon bonds: Maturity 1 year up to 10 years.

10 stocks: Allianz, BASF, BMW, Bayer, Commerzbank, Daimler-

Chrysler, Deutsche Bank, Lufthansa, E.ON, Hypovereinsbank

All stocks are elements of the Xetra DAX and had their IPO (Ini-

tial Public Offering) at least 10 years ago. Data was taken from

http://de.finance.yahoo.com. The estimates are calculated from monthly

data from May 2002 to April 2003. We obtain the model parameters listed in
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Table 1. The same time interval and discretization was taken for the estima-

tion of the term structure model parameters (cf. Subsection 6.1). Maturities

from 1 to 10 years were taken into consideration. Results are in Table 2.

The values of the (adjusted) covariance matrix in Table 3 confirm the use

of correlations between the interest rate model factors and the stock market

dynamics to obtain a more realistic combined model.

For each of our setups we computed the ES-, ES-RORC- and ES-RORAC-

optimal portfolio. The mean, VaR, ES, ES-RORC and ES-RORAC for these

portfolios are listed in the Tables 4-9 in Appendix B (and the portfolios them-

selves in the four assets case). The optimized portfolios are compared with

“normed” portfolios where the same capital is invested in each of the four, re-

spectively 20 assets. As expected, all optimized measures have been improved

significantly (see also Figures 3 and 4) and the combined GS-SI method is su-

perior to the local GS method starting at the normed portfolio. Local extreme

points seem to exist in the most considered cases. A situation as in Table 6

where the ES of the ES-optimized portfolio is lower than (but close to) the ES

of the RORC-optimized portfolio could be a symptom for the need of more (or

finer) iterations.

Due to our pragmatic approach we did not invest any time in proofs for the

existence or absence of global, respectively local extreme points in our model.

Real financial companies are not interested in such questions, especially as

portfolios are often optimized in small steps and not a complete restructuring.

An interesting (and reasonable) model output is that the local GS results

imply that bonds of longer maturities bear more financial risks. This can be

seen in decreasing weights of bonds with higher maturities in the optimized

portfolios (this is also true for the portfolios whith 20 assets which are not

listed in detail).

Massive short-selling and probable absence of global extreme points (e.g. in

the RORAC case, cf. Table 4) motivate the use of constraint b = 0 (no short-

selling). Roughly speaking, the implication seems to be that optimized port-

folios under the constraint contain almost no stocks. Optimization under the

no-shortselling constraint seems to imply rather similar optimized portfolios

for all measures (cf. Tables 6 and 9).

In summary, all obtained results seem to be reasonable from the economic

point of view and confirm the proposed methods. We cannot really judge the

impact of other models at this stage of our research. However, we guess that
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reasonable models (e.g. such using Vasicek-2) will imply results close to ours.

9 Parallel programming and scalability

9.1 Bulk synchronous parallel computing

Since 1944 von Neumann’s model for sequential computing has been widely

accepted, but there is no standard model for parallel computing. Most ap-

proaches nowadays are based on message-passing, but they are often inade-

quate, since the potential danger of deadlock, in which each possible activity

is blocked, waiting on some other activity that is also blocked, increases dra-

matically with the complexity of software.

Furthermore, models based on message-passing, e.g. MPI (Message passing

interface), do not easily allow performance prediction. The Bulk synchronous

parallel computing model (BSP) however abstracts low-level program structure

in favour of so-called supersteps. This allows easy debugging, removes the

problem of deadlock and allows a reasoning of the correctness of the code

nearly as easily as in sequential code.

BSP computers

A BSP computer consists of a set of processor/memory pairs, a global com-

munication network and a mechanism for the efficient barrier synchronisation

of the processors. In real life, this could be anything: a single/multi-processor

PC, a cluster of workstations or a real parallel machine like the Cray T3D.

Supersteps

The fundamental idea of BSP is the notion of a superstep. In a superstep,

computation and communication are decoupled. This avoids deadlock.

First the processes perform as many calculations as possible using their

local data. If one processor needs data from another, communication starts

only after all the computation has stopped. When communication is finished,

barrier synchronisation is called and the next superstep begins.

9.2 Cost modelling and performance prediction

A cost model helps to guide the choice of programming algorithm.
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The separation of communication from synchronisation and the inherent

simplicity of the superstep structure make it relatively easy to find a suitable

cost-model. The cost is expressed in terms of steps or floating point opera-

tions (FlOps) for each portion of the program. The cost parameters are the

BSP parameters for the machine and parameters determined by the choice of

algorithm and their implementation.

As a BSP program consists of a sequence of supersteps, the “cost” of an

entire program is the sum of the contributions from its supersteps.

What are the key parameters that determine performance? Extensive re-

search by the originators of the BSPlib showed that the following four key

parameters are sufficient (cf. Hill and McColl, 1996):

• the number of processors, p;

• processor speed, s (number of steps per second);

• the cost l (steps), of achieving barrier synchronisation (which depends

on network latency, which is a measurement of delay from one end of a

network to another). Basically l is the cost of telling all processors to

wait till all communication has been performed; and

• the cost g (steps per word), of delivering message data. This captures

the interprocess communication speed.

Since the processor speed s is essentially a normalising factor, there are only

three independent parameters: p, l and g.

The cost of one superstep is

max(wi) + g ·max(hi) + l (59)

where i ranges over processors (i = 1, . . . , p), wi is the time for the local compu-

tation in processor i and hi is the number of incoming or outcoming messages

per processor. The values of the parameters are determined by measurement

using suitable benchmarks that mimic average computation and communica-

tion loads (cf. Hill, 1996).

The dependence on a specific platform enters the cost function only through

the parameters p, l and g.

We follow convention and count every floating point operation as 1.

The BSP approach offers a simple cost model. In general, cost-modeling

applications give a rough ball-park figure of the cost on any parallel machine
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and configuration size. The role of profiling tools like bsprof aids simplis-

tic pencil and paper cost modeling, and it effectively predicts the cost of an

algorithm on any parallel machine (cf. Hill, Crumpton and Burgess, 1996).

9.3 Scalability

Programmers take the burden of writing parallel programs to increase speed

and memory. The aim of every parallel algorithm designer is to write code

that scales linearly, i.e. runs p times as fast on a p-processor machine. This

clearly constitutes an upper bound, if the sequential algorithm is already op-

timal. Linear scalability is achieved by using good load-balancing, keeping all

processors busy all the time and communication costs are minimized.

Data dependency can make optimal speed-up impossible. It determines

parallel complexity, the minimum number of steps an algorithm would need to

run on a PRAM-computer. This constitutes an upper bound on the maximal

speed-up that can be achieved.

There are many different and more sophisticated layouts of parallel imple-

mentations possible. The right choice depends on the size of the portfolio and

available hardware. For the sake of simplicity in this article we have chosen

the brute force approach.

Sketch of the scalability for a parallel brute-force GS: To avoid local extrema,

one has to start many times from different grid-points:

1. Superstep: Broadcast the initial portfolio structure and search-areas,

or only the portfolio structure and use random startpoints. Depend-

ing on the network architecture (reflected in the value of g), one might

use several supersteps and use e.g. a tree-shaped communication form.

Asymptotic cost for a 1 phase broadcast: l + npg, where n is the size of

the initial portfolio structure.

2. Superstep: Now work out gradient searches on all processors for a given

time. E.g. every processors performs a set-number of searches. On av-

erage this will balance out. Asymptotic cost: 1/p× sequential time, as

if p processors work out k/p searches, k searches are performed in total.

The sequential time is the all dominating factor.

3. Superstep: Each processor sends its best grid point back to processor 1,
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which sorts them and gives the final result. Asymptotic cost: l+ng+ p.

The extra p arise from chosing the point with best fitness.

As the communication cost, sorting, etc. is negligible for any reasonable

number of searches, this algorithm clearly scales linearly with the number of

processors used.

Sketch of the scalability for SI:

Superstep: As in the 1-processor mode (see Figure 2), but now per-

formed on all p processors. Every 1000 or 10000 iterations fit values are

exchanged, then the next superstep starts.

Since the cost of data interchange is negligible compared to the cost of the

iterations in each superstep, we have scalability as in the GS case.

One typical schoolbook error in this context is not to use a high quality

random number generator, assuring independent random number streams on

all processors (cf. Mascagni, Ceperley and Srinivasan (1998, 1999)).

Large clusters as well as the rise of grid-computing requires analytic fore-

castig of run-times to chose the appropriate hardware for the task. There are

many potential trade-offs (cf. Jarvis et al. (2002, 2003) and Roehrl (1998)):

time versus money, etc. Our paper has shown that a pragmatic approach can

take advantage of developments in computerscience to enable the exploration

of new portfolio optimization techniques using parallel computing techniques.

10 Conclusion

The purpose of this paper is twofold. First, we describe in Section 1 to 3 a

general methodology of ES-, ES-RORC- and ES-RORAC-optimization which

seems to be suitable independently from the considered market model. Second,

we propose a particular market model which seems to be suitable to describe

at the same time bonds and stocks as well as dependencies between them and

which is used for our numerical examples. We thoroughly explain the proposed

model and the respective simulation and optimization procedures. Concrete

examples and a scalability analysis show the suitability and practicability of

the methodology. Alternative models, model tests and the examination of

some more theoretical questions have to be postponed to future research.



A DERIVATIVES OF VAR AND ES 28

A Derivatives of VaR and ES

This section derives expressions for the derivatives of Value-at-Risk and Ex-

pected Shortfall. Equation (22) is directly implied by Lemma A.2.

We consider a bivariate random variable (X, Y ) with continuous density

f(x, y) such that X + εY has for any ε ∈ R a continuous density, too. Define

VaRα(ε) for 0 < α < 1 as

VaRα(ε) := VaRα(X + εY ). (60)

Since X + εY is a continuous random variable, the infimum in (9) is actually

reached (i.e. is a minimum) and the respective probability is exactly α.

LEMMA A.1. Under certain strong assumptions on the density f , the Value-

at-Risk VaRα(ε) can be differentiable in ε and

∂VaRα(ε)

∂ε
= −E[Y |X + εY = −VaRα(ε)]. (61)

The following proof is analogous to Gouriéroux, Laurent and Scaillet

(2000). The mentioned authors have derived the expression for the deriva-

tive if existing, but have not proven the existence (of the derivative).

Proof (Gouriéroux, Laurent and Scaillet, 2000). If ∂VaRα(ε)/∂ε exists, we

have ∫ ∫ −VaRα(ε)−εy

−∞
f(x, y)dxdy = α, (62)

and hence by differentiation with respect to ε∫
[−∂VaRα(ε)/∂ε− y]f(−VaRα(ε)− εy, y)dy = 0. (63)

This implies
∂VaRα(ε)

∂ε
= −

∫
yf(−VaRα(ε)− εy, y)dy∫
f(−VaRα(ε)− εy, y)dy

(64)

and therefore (61).

As already mentioned, the main problem in this reasoning is the missing

proof of the differentiability of VaR. Also the strict positivity of the integral∫
f(−VaRα(ε)−εy, y)dy should be an important ingredient in a proper proof of

the lemma. In the paper of Tasche (2000), there is given a sufficient condition,

named (S), for VaR-differentiation. However, condition (S) is in the most cases

not easy to prove (the normal distribution excluded) and differentiation may

be possible even if (S) is not fulfilled.
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LEMMA A.2. Under certain strong assumptions on the density f , the Ex-

pected Shortfall ESα(ε) := ESα(X + εY ) can be differentiable in ε and

∂ESα(ε)

∂ε
= −E[Y |X + εY ≤ −VaRα(ε)]. (65)

Proof. We have

ESα(ε) = − 1

α

∫ ∫ −VaRα(ε)−εy

−∞
(x+ εy)f(x, y)dxdy. (66)

Differentiation with respect to ε leads to

∂ESα(ε)

∂ε
= − 1

α

∫ ∫ −VaRα(ε)−εy

−∞
yf(x, y)dy (67)

+
1

α

∫
VaRα(ε)[−∂VaRα(ε)/∂ε− y]f(−VaRα(ε)− εy, y)dy.

Due to (64), the second summand is 0.

In a more general context, Tasche (2000) also derives (65). Again, the most

important parts of an existence proof would be the existence of the respective

integrals and the proof of the correct application of all used differentiation

rules.

B Tables and figures



B TABLES AND FIGURES 30

Share Vi(0) µ̂i σ̂i

Xetra DAX 2942.04 -0.54 0.45
Allianz 56.17 -1.46 0.78
BASF 38.16 -0.29 0.31
BMW 29.06 -0.50 0.32
Bayer 16.75 -0.80 0.66

Commerzbank 8.32 -0.92 0.79
DaimlerChrysler 28.90 -0.65 0.36
Deutsche Bank 44.86 -0.59 0.47

Lufthansa 8.79 -0.56 0.48
E.ON 41.80 -0.31 0.29

Hypovereinsbank 10.20 -1.41 0.92

Table 1: Stock market parameters (1 year history). In the portfolio with 4
assets the Xetra DAX is treated like a single stock.

â1 b̂1 σ̂1 λ̂1

0.2648 0.0120 0.1236 -0.0647

â2 b̂2 σ̂2 λ̂2

1.7563 0.0145 0.1704 0.4968

Table 2: Estimates for the CIR-2-model (1 year history)


1 0 0.7333 0.5860

0 1 −0.4180 −0.3799

0.7333 −0.4180 1 0.9062

0.5860 −0.3799 0.9062 1


Table 3: Adjusted covariance matrix Σ̂ (4 assets)
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Figure 3: Histogram of returns; normed portfolio with 4 assets, 104 loops

Figure 4: Histogram of returns; ES-optimized portfolio with 4 assets (local
GS), 104 loops. Compared to the original portfolio in Figure 3, all values have
tremendously been improved (please note the different scales).
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Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -29.21 148.56 169.90 -0.1719 -0.0250
Units (256.03, 382.88, 0.0850, 4.4508)

Capital (250.0, 250.0, 250.0, 250.0)

ES-opt. 2.20 8.02 11.67 0.1888 0.0022
Units (575.22, 595.47, 0.0284, -0.6059)

Capital (561.67, 388.81, 83.54, -34.03)

RORC-opt. 8.73 18.61 28.39 0.3071 0.0085
Units (506.74, 650.08, 0.0856, -3.0470)

Capital (494.81, 424.47, 251.87, -171.15)

RORAC-opt. 14535.32 34795.68 56428.72 0.2576 0.2531
Units (89585.98, -170200.78, 102.93, -4952.51)

Capital (87476.85, -111132.65, 302838.23, -278182.42)

Table 4: 4 assets; α = 0.05; no constraints; locally GS-optimized portfolios;
GS started at normed portfolio

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -29.21 148.56 169.90 -0.1719 -0.0250
Units (256.03, 382.88, 0.0850, 4.4508

Capital (250.0, 250.0, 250.0, 250.0)

ES-opt. 2.75 1.11 2.19 1.2555 0.0027
Units (1758.10, -1049.55, -0.0115, 0.0413)

Capital (1716.71, -685.31, -33.73, 2.32)

RORC-opt. 3.07 0.84 1.96 1.5643 0.0031
Units (1533.04, -730.19, -0.0036, -0.1729)

Capital (1496.95, -476.78, -10.46, -9.71)

RORAC-opt. 29454.12 70484.98 114339.65 0.2576 0.2554
Units (186074.79, -353548.05, 208.71, -10038.90)

Capital (181693.00, -230849.31, 614040.41, -563885.10)

Table 5: 4 assets; α = 0.05; no constraints; SI-GS-optimized portfolios
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Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -29.21 148.56 169.90 -0.1719 -0.0250
Units (256.03, 382.88, 0.0850, 4.4508)

Capital (250.0, 250.0, 250.0, 250.0)

ES-opt. 1.81 4.19 6.26 0.2894 0.0018
Units (1020.03, 0.22, 0.0013, 0.0001)

Capital (996.01, 0.14, 3.84, 0.01)

RORC-opt. 1.88 4.29 6.37 0.2957 0.0019
Units (1020.60, 4.22, 0.0000, 0.0119)

Capital (996.57, 2.76, 0.01, 0.67)

RORAC-opt. 2.13 19.43 25.32 0.0843 0.0021
Units (84.47, 1404.48, 0.0001, 0.0027)

Capital (82.48, 917.06, 0.31, 0.15)

Table 6: 4 assets; α = 0.05; constraint b = 0; SI-GS-optimized portfolios

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -19.29 115.36 134.59 -0.1433 -0.0170
ES-opt. 0.32 6.93 8.87 0.0361 0.0003

RORC-opt. 7.13 8.28 13.79 0.5172 0.0070
RORAC-opt. 653.55 884.70 1369.21 0.4773 0.2759

Table 7: 20 assets; α = 0.05; no constraints; locally GS-optimized portfolios;
GS started at normed portfolio

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -19.29 115.36 134.59 -0.1433 -0.0170
ES-opt. 2.52 2.23 3.56 0.7064 0.0025

RORC-opt. 4.40 2.92 4.82 0.9129 0.0044
RORAC-opt. 651.75 842.94 1357.35 0.4802 0.2765

Table 8: 20 assets; α = 0.05; no constraints; SI-GS-optimized portfolios

Portfolio Mean VaR ES ES-RORC ES-RORAC

normed -19.29 115.36 134.59 -0.1433 -0.0170
ES-opt. -2.10 18.59 22.75 -0.0922 -0.0021

RORC-opt. -2.22 23.76 27.84 -0.0799 -0.0021
RORAC-opt. -2.1723 19.01 23.17 -0.0937 -0.0021

Table 9: 20 assets; α = 0.05; constraint b = 0; SI-GS-optimized portfolios
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