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1 Introduction

Managing risk lies at the heart of the financial services industry. Regulatory frame-

works, such as Basel II for banking and Solvency 2 for insurance, mandate a focus on

operational risk. A fast growing literature exists on the various aspects of operational

risk modelling; see the list of references towards the end of the paper.

In this paper we discuss some of the more recent Extreme Value Theory (EVT)

methodology which may be useful towards the statistical analysis of certain types of

operational loss data. The key attraction of EVT is that it offers a set of ready-made

approaches to the most difficult problem of operational risk analysis, that is how can

risks that are both extreme and rare be modelled appropriately? Applying classical

EVT to operational loss data however raises some difficult issues. The obstacles are

not really due to a technical justification of EVT, but more to the nature of the data.

As already explained in Embrechts, Furrer and Kaufmann (2003) and Embrechts,

Kaufmann and Samorodnitsky (2004), whereas EVT is the natural set of statistical

techniques for estimating high quantiles of a loss distribution, this can be done with

sufficient accuracy only when the data satisfy specific conditions; we further need

sufficient data to calibrate the models. In Embrechts, Furrer and Kaufmann (2003) we

give a simulation study indicating the sample size needed in order to estimate reliably

certain high quantiles, and this under ideal (so called iid) data structure assumptions.

From the above two papers we can definitely infer that though “EVT is a highly useful

tool for high-quantile estimation, the present data availability and data structure of

operational risk losses make a straightforward EVT application highly questionable”.

Nevertheless, for specific subclasses where quantitative data can be reliably gathered,

EVT offers a useful tool. However, even in these cases, one has to go beyond standard

EVT to come up with a correct modelling. To illustrate the latter issue, consider

Figure 1 taken from Embrechts, Kaufmann and Samorodnitsky (2004); we refer to

that paper for a more detailed discussion of the data. For our purposes, it suffices

to recall that the data span a 10 year period for three different operational risk loss

types, referred to as Types 1, 2 and 3. The stylised facts observed here are:

• the historical period is relatively short (only 10 years of data);

• loss amounts very clearly show extremes;
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Figure 1: Operational risk losses. From left to right: Type 1 (n = 162), Type 2
(n = 80), Type 3 (n = 175).

• loss occurrence times are irregularly spaced in time, and

• the number of occurrences seems to increase over time with a radical change

around 1998.

The last point very clearly highlights the presence of non-stationarity in operational

loss data. The “discontinuity” might be due to the effort to build such a database of

losses of the same type going back about 10 years; quantifying operational risk only

became an issue in the later nineties. This is referred to as reporting bias. Such struc-

tural changes may also be due to an internal change (indogenous effect; management

action, M&A) or changes in the economic/political/regulatory environment in which

the company operates (exogenous effects).

In this paper, we adapt classical EVT to take both non-stationarity and covariate

modelling (different types of losses) into account. Chavez-Demoulin (1999), Chavez-

Demoulin and Davison (2004) contain the relevant methodology. Chavez-Demoulin

and Embrechts (2004) explain the new technique for finance and insurance related

applications. The paper is organised as follows. In Section 2, we briefly review the

Peaks over Threshold (POT) method and the main operational risk measures to be

analysed. In Section 3, the adapted classical POT method, taking non-stationarity
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and covariate modelling into account, is applied to the operational risk loss data from

Figure 1.

2 The Basic EVT Methodology

Over the recent years, Extreme Value Theory has been recognized as a very useful set

of probabilistic and statistical tools for the modelling of rare events and their impact

in insurance, finance and quantitative risk management. Numerous publications have

exemplified this point. Embrechts, Klüppelberg and Mikosch (1997) detail the math-

ematical theory with insurance and finance applications in mind. The edited volume

Embrechts (2000) contains an early summary of EVT applications to risk manage-

ment. Reiss and Thomas (2001) and Coles (2001) are very readable introductions to

EVT in general.

Below, we only give a very brief introduction to EVT and in particular to the Peaks

Over Threshold (POT) method for high-quantile estimation. A more detailed account

is to be found in the references below; for our purpose, Chavez-Demoulin and Davison

(2004) and Chavez-Demoulin and Embrechts (2004) contain methodological details.

From the latter paper, we borrow the basic notation (see also Figure 2):

• ground-up losses are denoted by Z1, Z2, . . . , Zq;

• u is a typically high threshold, and

• W1, . . . , Wn are the excess losses from Z1, . . . , Zq above u, i.e. Wj = Zi − u for

some j = 1, . . . , n and i = 1, . . . , q, where Zi > u.

Note that u is a pivotal parameter to be set by the modeller so that the excesses above

u, W1, . . . , Wn, satisfy the required properties from the POT method; see Leadbet-

ter (1991) for the basic theory and for instance Embrechts, Klüppelberg and Mikosch

(1997) for an overview of the method. For iid losses, the excesses W1, . . . , Wn, asymp-

totically for n large, follow a so-called Generalized Pareto Distribution (GPD):

Gκ,σ(w) =

{
1 − (1 + κw/σ)

−1/κ
+ , κ 6= 0,

1 − exp(−w/σ) , κ = 0 .

For operational loss modelling one typically finds κ > 0 which corresponds to ground-

up losses Z1, . . . , Zq following a Pareto-type distribution with power tail with index
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Figure 2: The point process of exceedances (POT).

1/κ, i.e.

P (Zi > z) ∼ z−1/κL(z), z → ∞,

for some slowly varying function L; see Embrechts, Klüppelberg and Mikosch (1997).

From Leadbetter (1991) it also follows that for u high enough, the exceedance points of

Z1, . . . , Zq of the threshold u follow (approximately) a homogeneous Poisson process

with intensity λ > 0. Based on Leadbetter (1991), an approximate log-likelihood

function l(λ, σ, κ) can be derived; see Chavez-Demoulin and Embrechts (2004) for

details. In a further step, the POT method can be extended by allowing the parameters

λ, σ, κ to be dependent on time and explanatory variables so as to allow for non-

stationarity; this is very important for the applications to operational risk modelling.

In the next section (where we apply the POT method to the data in Figure 1), we

will take for λ = λ(t) a specific function of time which models the obvious “increase”

in loss intensity in Figure 1. We moreover will differentiate between the different loss

types and adjust the parameters κ and σ accordingly.

Before we proceed with the data analysis, we briefly review the main risk measures

to be analysed, Value-at-Risk (VaR) and Expected-Shortfall (ES) (also referred to

as “conditional VaR”, “mean excess loss”, “beyond VaR” or “tail VaR”). The ES

is an alternative risk measure that has been proposed to alleviate some conceptual
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problems inherent in VaR. For α close to 1 and a general loss random variable X with

distribution function F , these measures are defined as follows:

VaRα = F−1(1 − α),

ESα = E(X | X > VaRα).

In cases where the POT method can be applied, these measures can be estimated as

follows:

V̂aRα = u +
σ̂

κ̂

{(
1 − α

λ̂

)
−κ̂

− 1

}
, (1)

and

ÊSα =

{
1

1 − κ̂
+

σ̂ − κ̂u

(1 − κ̂)V̂aRα

}
V̂aRα. (2)

Here λ̂, κ̂, σ̂ are the maximum likelihood estimators of λ, κ and σ. Interval esti-

mates can be obtained by the delta method or by the profile likelihood approach

and has been programmed into the freeware EVIS by Alexander McNeil, available

under www.math.ethz.ch/˜mcneil.

Though an analysis of the data in Figure 1 in Section 3 is self-contained, the inter-

ested reader, wanting to learn more about the specifics of modelling non-stationarity

and covariates into the POT method is adviced to read Chavez-Demoulin and Em-

brechts (2004) and the references therein before proceeding. The less technical reader

will no doubt find the analysis presented in the next section sufficiently easy to follow

in order to grasp the relevance of this more advanced EVT method.

3 POT analysis of the operational loss data

In the previous sections, we briefly laid the foundation of the approach towards the

analysis of extremes based on the exceedances of a high threshold. We now return

to the operational risk data of Figure 1 which consists of three different types over

a 10 year period. Our analysis below is more illustrative; in order to become fully

applicable, much larger operational loss data bases will have to become available. From

the discussion of the data, it follows that we should at least take the risk type T as

well as the non-stationarity (switch around 1998) into account. Following Embrechts,

Kaufmann and Samorodnitsky (2004), we pool the data in the three panels of Figure 1
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to get a sample size bigger than when analysing each loss data separately. Using the

advanced POT modelling, including non-stationarity and covariates, the data pooling

has also the advantage to allow for testing interaction between explanatory variables

(is there an interaction between type of loss and regime switching, say?). In line with

Chavez-Demoulin and Embrechts (2004), we fix a threshold u = 0.4 and concentrate

on the VaR and ES estimation. The latter paper also contains a sensitivity analysis of

the results with respect to this choice of threshold u. A result from that analysis is that

small variations in the value of the threshold have nearly no impact. So concretely,

we want to model VaRα and ESα as functions of time: are they constant or changing

in time? Are they dependent on the type of losses? And if the latter is the case, how

do they change with time? Following the non-parametric methodology summarized

in Chavez-Demoulin and Embrechts (2004), we fit different models for λ, κ and σ

allowing for:

• functional dependence on time g(t), where t refers to the year over the domain

of study;

• dependence on T , where T defines the Type of loss data through an indicator IT :

IT =

{
1, if Type = T,
0, otherwise,

with T = 1, 2, 3, and

• discontinuity modelling through an indicator I(t>tc) where tc = 1998 is the year

of change point or regime switching and

I(t>tc) =

{
1, if t > tc,
0, if t ≤ tc.

Of course a more formal test on the existence and value of tc can be included; the

rather pragmatic choice of tc = 1998 suffices for this first illustrative analysis. We

apply the different possible models to each parameters λ, κ and σ and compare them

(using tests based on the likelihood ratio statistics).

The selected model for the Poisson intensity λ(t, T ) is

log λ̂(t, T ) = γ̂T IT + β̂I(t>tc) + ĝ(t).
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Figure 3: Operational risk losses. From left to right: Estimated Poisson intensity λ̂
and 95% confidence intervals for data loss of Type 1, 2, 3. The points are the yearly
numbers of exceedances over u = 0.4.

Inclusion of the first component γ̂T IT on the right hand side indicates that the type of

loss T is important to model the Poisson intensity; that is the number of exceedances

over the threshold differs significantly for each type of loss 1, 2 or 3. The selected model

also contains the discontinuity indicator I(t>tc) as a test based on the hypothesis that

the model β = 0 suffices is rejected at a 5% level. We find β̂ = 0.47(0.069) and the

intensity is rather different in mean before and after 1998. Finally, it is clear that the

loss intensity parameter λ is dependent on time (year). This dependence is modelled

through the estimated function ĝ(t). For the reader interested in fitting details, we use

a smoothing spline with 8 degrees of freedom selected by AIC (see Chavez-Demoulin

and Embrechts (2004)). Figure 3 represents the resulting estimated intensity λ̂ for

each type of losses and its 95% confidence interval based on bootstrap resampling

schemes (details in Chavez-Demoulin and Davison (2004)). The resulting curves seem

to capture the behaviour of the number of exceedances (points of the graphs) for each

type rather well. The global increase of the estimated intensity curves therefore seems

in accordance with reality. Note that the inclusion of the time dependent function

g(t) allows us to model this non-stationarity. The advantage of such a non-parametric

technique becomes very clear.

Similarly, we fit several models for the GPD parameters κ = κ(t, T ) and σ = σ(t, T )

modelling the loss-size and compare them. For both κ and σ, the model selected

depends only on the type of the losses, not on time t. Their estimates κ̂(T ) and σ̂(T )

and 95% confidence intervals are given in Figure 5. The shape parameter κ (upper

panels) is around 0.7 for types 1 and 2 and is significantly smaller for type 3 (estimated

value around 0.3); this suggests a loss distribution for type 3 with less heavy tail than

for types 1 and 2. The effect due to the switch in 1998 is not retained in the models
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Figure 4: Operational risk losses. Estimated GPD parameters: upper κ̂, lower σ̂ and
95% confidence intervals for different loss types.

for κ and σ, i.e. the loss size distribution does not switch around 1998. Finally, note

that, as the GPD parameters κ and σ are much more difficult to estimate than λ, the

lack of sufficient data makes the detection of any trend and/or periodic components

difficult.

To assess the model goodness-of-fit for the GPD parameters, a possible diagnostic

can be based on the result that, when the model is correct, the residuals

Rj = κ̂−1 log {1 + κ̂Wj/σ̂} , j = 1, . . . , n,

are approximately independent, unit exponential variables. Figure 4 shows exponential

quantile plots for the residuals using the estimates κ̂(T ) and σ̂(T ) for the three types

of loss data confounded. This plot suggests that our model is reasonable.

We now want to estimate the 99% VaR and the 99% ES at time 2002. Again,

this estimation is illustrative as in practice (Basel II) values of the order of 99.97%

are used for the calculation of operational risk measures. The ES0.99 at time 2002 is

the conditional expectation of total loss over 2002 given that the loss is beyond the

VaR0.99 level. Using our modelling approach for λ(t, T ), κ(t, T ) and σ(t, T ), one can

predict the values of λ(t + 1, T ), κ(t + 1, T ) and σ(t + 1, T ) for each type T . Using

equations (1) and (2) where u = 0.4 and λ, κ, σ are replaced by their predicted values
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Figure 5: Operational risk losses. Residuals against exponential plotting positions.

λ̂(t+1, T ), κ̂(T ) and σ̂(T ) (for t = 2001 and T = 1, 2, 3), it is then possible to estimate

the 99% VaR and 99% ES at time 2002. As the model selected for λ depends on time

t, the risk measures are “dynamic” (prefix d below), and as the selected models also

depend on the type of losses (index T below), we denote dVaRT
0.99(t) and dEST

0.99(t)

the estimated risk measures at time t for type T . Table 1 provides the 99% VaR

and 99% ES estimated for each type of losses 1,2,3 at time 2002 ( ̂dVaR
T

0.99(2002) and

d̂ES
T

0.99(2002)). The values in brackets are the 95% bootstrap confidence intervals

bounds (the missing values in the confidence intervals are due to a lack of data to

estimate very heavy tails as for types 1 and 2). For instance, ̂dVaR
T=1

0.99 (2002) gives an

estimation of the total 2002 loss of type 1 of 40.4 at 99% confidence. We also note

that this value for type 3 is around 12, significantly smaller than the estimated losses

for types 1 and 2. The importance of using models including covariates (representing

type) instead of pooling the data and finding a unique estimate value of VaR (or ES) is

highlighted here. In a certain sense, the use of our adapted model allows to exploit all

the provided information about the data, a feature which is becoming more and more
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̂dVaR
T

0.99(2002) d̂ES
T

0.99(2002)
T = 1 40.4 (17.3, 120.5) 166.4 (−,−)
T = 2 48.4 (11.9, 83.7) 148.5 (21.4,−)
T = 3 11.9 (7.2, 27.5) 18.8 (9.8, 63.8)

Table 1: Operational risk losses. Estimated 99% dynamic VaR and ES for each type
of losses over 2002. The values in brackets are the 95% confidence intervals bounds.

crucial, particularly in the context of operational and credit risk. Using the estimated

historical VaR values, it is possible to test whether the hypothesis that the approach

correctly estimates the risk measures holds. This backtesting test however would need,

in our case, much more historical.

4 Comment

With the increasing interest on explicit treatment of operational risk (Basel II and

Solvency 2), there is a pressing need for flexible modelling of severe tail loss events. The

use of an adapted extreme value method taking into account non-stationarity (time

dependent structure) and covariates (changing business and/or economic environment)

provides a convenient, rapid and flexible explorative technique that will have the ability

to self-improve with the further growth of data-bases. It also puts into evidence

features of the underlying distribution as the covariates changes, provides an objective

tool to determine their relative importance and highlights (unexpected) interactions

of risk components. We stress once more that much longer databases are needed to

make our approach fully operational.
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