Glossar & Definitionen

alle Einträge A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Benfordsches Gesetz

Das Benfordsche Gesetz, auch Newcomb-Benford’s Law (NBL) beschreibt eine Gesetzmäßigkeit in der Verteilung der Ziffernstrukturen von Zahlen in empirischen Datensätzen, zum Beispiel ihrer ersten Ziffern.

Kurz gefasst besagt es: Je niedriger der zahlenmäßige Wert einer Ziffernsequenz bestimmter Länge an einer bestimmten Stelle einer Zahl ist, umso wahrscheinlicher ist ihr Auftreten. Für die Anfangsziffern in Zahlen des Zehnersystems gilt zum Beispiel: Zahlen mit der Anfangsziffer 1 treten etwa 6,5-mal so häufig auf wie solche mit der Anfangsziffer 9.

Bereits im Jahr 1881 wurde diese Gesetzmäßigkeit von dem Mathematiker Simon Newcomb entdeckt und im "American Journal of Mathematics" publiziert. Er hatte bemerkt, dass in den benutzten Büchern mit Logarithmentafeln die Seiten mit Tabellen mit Eins als erster Ziffer deutlich schmutziger waren als die anderen Seiten, weil sie offenbar öfter benutzt worden seien. Die Abhandlung Newcombs blieb unbeachtet und war schon in Vergessenheit geraten, als der Physiker Frank Benford (1883–1948) diese Gesetzmäßigkeit wiederentdeckte und darüber 1938 neu publizierte. Seither war diese Gesetzmäßigkeit nach ihm benannt, in neuerer Zeit wird aber durch die Bezeichnung "Newcomb-Benford’s Law" (NBL) dem eigentlichen Urheber wieder Rechnung getragen.


zurück